1
|
Pattanaik S, Ghose A, Pakeeraiah K, Paidesetty SK, Prusty SK, Sahu PK. Repurposing drugs: promising therapeutic approach against Alzheimer's disease. Ageing Res Rev 2025; 106:102698. [PMID: 39993451 DOI: 10.1016/j.arr.2025.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 02/26/2025]
Abstract
Alzheimer's disease (AD) is an insidious, irreversible, complex neurodegenerative disorder characterized by progressive cognitive decline and memory loss; affecting millions worldwide. Despite decades of research, no effective disease-modifying treatment exists. However, drug repurposing is a progressive step in identifying new therapeutic uses of existing drugs. It has emerged as a promising strategy in the quest to combat AD. Various classes of repurposed drugs, such as antidiabetic, antihypertensive, antimicrobial, and anti-inflammatory, have shown potential neuroprotective effects in preclinical and clinical studies. These drugs act by combating free radicals generation, neuroinflammation, amyloid-beta aggregation, and tau hyper-phosphorylation. Furthermore, repurposing offers several advantages, including reduced time and cost compared to de novo drug development. It holds immense promise as a complementary approach to traditional drug discovery. Future research efforts should focus on elucidating the underlying mechanisms of repurposed drugs in AD, optimizing drug combinations, and conducting large-scale clinical trials to validate their efficacy and safety profiles. This review overviews recent advancements and findings in preclinical and clinical fields of different repurposed drugs for AD treatment.
Collapse
Affiliation(s)
- Swagata Pattanaik
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India
| | - Aruna Ghose
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India
| | - Kakarla Pakeeraiah
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India
| | - Sudhir Kumar Paidesetty
- Medicinal Chemistry Research Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India.
| | - Shakti Ketan Prusty
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India.
| | - Pratap Kumar Sahu
- Department of Pharmacology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India.
| |
Collapse
|
2
|
Rout M, Kar DM, Dubey D, Kispotta S, Sarangi P, Prusty SK. Neuroprotective effect of Bacillus subtilis in haloperidol induced rat model, targeting the microbiota-gut-brain axis. J Mol Histol 2024; 56:18. [PMID: 39625518 DOI: 10.1007/s10735-024-10307-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/04/2024] [Indexed: 02/07/2025]
Abstract
Functional microbes regulate Parkinson's disease (PD), according to contemporary research. The mechanism by which probiotics (PBT) improve PD was not fully explored yet. We examined the antioxidant impact and mechanism of PBT (Bacillus subtilis) on PD using gut-brain axis regulation. To establish a model of PD, rats were given haloperidol (HAL) intraperitoneally (i.p.) in this study. The standard group received L-DOPA for 21 days. After that, the motor function was assessed using different neurobehavioral tests. Further estimation comprehends the build up of alpha-synuclein, the manifestation of monoamine oxidase-B (MAO-B) activity, the deterioration of dopaminergic neurons and the induction of an oxidative stress reaction. In addition, the concentration of intestinal microbes was measured. These findings demonstrated that the administration of PBT in combination with L-dopa could alleviate motor impairments caused by HAL, the deterioration of dopaminergic neurons, and the build up of α-synuclein. Furthermore, the levels of superoxide dismutase (SOD) and dopamine were considerably raised by co-administration of L-dopa and PBT in the case of HAL-treated rats, whereas the levels of alpha-synuclein, MAO-B, and malondialdehyde (MDA) were reduced. Particularly, PBT administration reduced the gut microbial dysbiosis, which in turn raised the concentration of good bacteria i.e., Bifidobacterium and reduced the concentration of E. coli in experimental animals. These findings indicated that PBT might represent a promising candidate to inhibit the progression of Parkinson's disease by targeting the gut-brain axis.
Collapse
Affiliation(s)
- Monalisa Rout
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India
| | - Durga Madhab Kar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India
| | - Debasmita Dubey
- Institute of Medical Sciences and Sum Hospital, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India
| | - Sneha Kispotta
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India
| | - Prerna Sarangi
- Centre for Biotechnology, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India
| | - Shakti Ketan Prusty
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan deemed to Be University, Bhubaneswar, India.
| |
Collapse
|
3
|
Dash R, Ray A, Mamidi P, De S, Mohapatra TK, Moharana AK, Mukherjee T, Ghosh S, Chattopadhyay S, Subudhi BB, Chattopadhyay S. Salicylic Acid Conjugate of Telmisartan Inhibits Chikungunya Virus Infection and Inflammation. ACS OMEGA 2024; 9:146-156. [PMID: 38222605 PMCID: PMC10785651 DOI: 10.1021/acsomega.3c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/16/2023] [Accepted: 10/23/2023] [Indexed: 01/16/2024]
Abstract
There is no approved antiviral for the management of the Chikungunya virus (CHIKV). To develop an antiviral drug that can manage both CHIKV and arthritis induced by it, an ester conjugate of telmisartan (TM) and salicylic acid (SA) was synthesized (DDABT1). It showed higher potency (IC50 of 14.53 μM) and a good selectivity index [(SI = CC50/IC50) > 33]. On post-treatment of DDABT1, CHIKV infection was inhibited significantly by reducing CPE, viral titer, viral RNA, and viral proteins. Further, the time of addition experiment revealed >95% inhibition up to 4hpi indicating its interference predominantly in the early stages of infection. However, the late stages were also affected. This conjugate of SA and TM was found to increase the antiviral efficacy, and this might be partly attributed to modulating angiotensin II (Ang II) receptor type 1 (AT1). However, DDABT1 might have other modes of action that need further investigation. In addition, the in vivo experiments showed an LD50 of 5000 mg/kg in rats and was found to be more effective than TM, SA, or their combination against acute, subacute, and chronic inflammation/arthritis in vivo. In conclusion, DDABT1 showed remarkable anti-CHIKV properties and the ability to reduce inflammation and arthritis, making it a very good potential drug candidate that needs further experimental validation.
Collapse
Affiliation(s)
- Rudra
Narayan Dash
- Drug
Development and Analysis Lab, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Amrita Ray
- Infectious
Disease Biology, Institute of Life Sciences, NALCO square, Bhubaneswar 751023,Odisha, India
- Regional
Centre for Biotechnology, 121001 Faridabad, India
| | - Prabhudutta Mamidi
- Infectious
Disease Biology, Institute of Life Sciences, NALCO square, Bhubaneswar 751023,Odisha, India
- Department
of Microbiology (VRDL), AIIMS, Sijua, Patrapada, Bhubaneswar 751019,Odisha, India
| | - Saikat De
- Infectious
Disease Biology, Institute of Life Sciences, NALCO square, Bhubaneswar 751023,Odisha, India
- Regional
Centre for Biotechnology, 121001 Faridabad, India
| | - Tapas K Mohapatra
- Drug
Development and Analysis Lab, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
- Nityananda
College of Pharmacy, Seragarh, Balasore, Odisha 756060, India
| | - Alok K Moharana
- Drug
Development and Analysis Lab, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
- School
of
Pharmacy, Arka Jain University, Mohanpur, Jharkhand 832108, India
| | - Tathagata Mukherjee
- School
of Biological Sciences, National Institute
of Science Education and Research, HBNI, 752050 Bhubaneswar, India
| | - Soumyajit Ghosh
- Infectious
Disease Biology, Institute of Life Sciences, NALCO square, Bhubaneswar 751023,Odisha, India
- Regional
Centre for Biotechnology, 121001 Faridabad, India
| | - Subhasis Chattopadhyay
- School
of Biological Sciences, National Institute
of Science Education and Research, HBNI, 752050 Bhubaneswar, India
| | - Bharat B Subudhi
- Drug
Development and Analysis Lab, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Kalinga Nagar, Bhubaneswar 751003, Odisha, India
| | - Soma Chattopadhyay
- Infectious
Disease Biology, Institute of Life Sciences, NALCO square, Bhubaneswar 751023,Odisha, India
| |
Collapse
|
4
|
Behera A, Pradhan SP, Tejaswani P, Sa N, Pattnaik S, Sahu PK. Ameliorative and Neuroprotective Effect of Core-Shell Type Se@Au Conjugated Hesperidin Nanoparticles in Diabetes-Induced Cognitive Impairment. Mol Neurobiol 2023; 60:7329-7345. [PMID: 37561235 DOI: 10.1007/s12035-023-03539-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 07/14/2023] [Indexed: 08/11/2023]
Abstract
Diabetes mellitus is the most chronic metabolic ailment characterized by insulin deficiency leading to aberrant cognitive dysfunction in later stages. Hesperidin is a bioflavonoid, having different pharmacological activities, but its poor water solubility and short plasma half-life restrict its applications in the clinical field. So, the hesperidin was conjugated with gold, selenium, and core-shell bimetallic nanoparticles of gold and selenium. Different spectroscopic methods characterized the synthesized monometallic and bimetallic nanoparticles. The rats were injected with streptozotocin to induce cognitive dysfunction, followed by administering HSP, HSP-Au NPs, HSP-Se NPs, and Se@Au-HSP NPs daily for 21 days. Then, the neurobehavioral studies, oxidative stress parameters, AChE and nitrite levels, the content of amyloid-β42, and inflammatory mediators were accessed to evaluate the effect of the nanoparticles against the STZ rat model. The results showed a significant increase in oxidative stress, AChE activity, amyloid-β42, nitrite levels, and neuroinflammation by upregulating the inflammatory cytokines in the streptozotocin-administered rat brain. The HSP, HSP-Au NPs, HSP-Se NPs, and Se@Au-HSP NPs effectively reversed all these effects of streptozotocin. However, the bimetallic nanoparticle Se@Au-HSP NPs revealed better neuroprotective action than HSP-Au NPs and HSP-Se NPs. Hesperidin-conjugated bimetallic nanoparticles improved learning and memory in the STZ rat model and may be an alternative approach for neurodegenerative diseases, including Alzheimer's disease.
Collapse
Affiliation(s)
- Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus - II, Kalinga Nagar, Bhubaneswar, Odisha, India.
| | - Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus - II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - P Tejaswani
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus - II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus - II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Swagata Pattnaik
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus - II, Kalinga Nagar, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Campus - II, Kalinga Nagar, Bhubaneswar, Odisha, India
| |
Collapse
|
5
|
Ramsay E, Lajunen T, Bhattacharya M, Reinisalo M, Rilla K, Kidron H, Terasaki T, Urtti A. Selective drug delivery to the retinal cells: Biological barriers and avenues. J Control Release 2023; 361:1-19. [PMID: 37481214 DOI: 10.1016/j.jconrel.2023.07.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 06/09/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Retinal drug delivery is a challenging, but important task, because most retinal diseases are still without any proper therapy. Drug delivery to the retina is hampered by the anatomical and physiological barriers resulting in minimal bioavailability after topical ocular and systemic administrations. Intravitreal injections are current method-of-choice in retinal delivery, but these injections show short duration of action for small molecules and low target bioavailability for many protein, gene based drugs and nanomedicines. State-of-art delivery systems are based on prolonged retention, controlled drug release and physical features (e.g. size and charge). However, drug delivery to the retina is not cell-specific and these approaches do not facilitate intracellular delivery of modern biological drugs (e.g. intracellular proteins, RNA based medicines, gene editing). In this focused review we highlight biological factors and mechanisms that form the basis for the selective retinal drug delivery systems in the future. Therefore, we are presenting current knowledge related to retinal membrane transporters, receptors and targeting ligands in relation to nanomedicines, conjugates, extracellular vesicles, and melanin binding. These issues are discussed in the light of retinal structure and cell types as well as future prospects in the field. Unlike in some other fields of targeted drug delivery (e.g. cancer research), selective delivery technologies have been rarely studied, even though cell targeted delivery may be even more feasible after local administration into the eye.
Collapse
Affiliation(s)
- Eva Ramsay
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Tatu Lajunen
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Madhushree Bhattacharya
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Mika Reinisalo
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Kirsi Rilla
- School of Medicine, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Heidi Kidron
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland
| | - Tetsuya Terasaki
- School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland
| | - Arto Urtti
- Drug Research Programme, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 University of Helsinki, Finland; School of Pharmacy, University of Eastern Finland, Yliopistonranta 1 C, 70211 Kuopio, Finland.
| |
Collapse
|
6
|
Huttunen KM, Terasaki T, Urtti A, Montaser AB, Uchida Y. Pharmacoproteomics of Brain Barrier Transporters and Substrate Design for the Brain Targeted Drug Delivery. Pharm Res 2022; 39:1363-1392. [PMID: 35257288 PMCID: PMC9246989 DOI: 10.1007/s11095-022-03193-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 12/12/2022]
Abstract
One of the major reasons why central nervous system (CNS)-drug development has been challenging in the past, is the barriers that prevent substances entering from the blood circulation into the brain. These barriers include the blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), blood-cerebrospinal fluid barrier (BCSFB), and blood-arachnoid barrier (BAB), and they differ from each other in their transporter protein expression and function as well as among the species. The quantitative expression profiles of the transporters in the CNS-barriers have been recently revealed, and in this review, it is described how they affect the pharmacokinetics of compounds and how these expression differences can be taken into account in the prediction of brain drug disposition in humans, an approach called pharmacoproteomics. In recent years, also structural biology and computational resources have progressed remarkably, enabling a detailed understanding of the dynamic processes of transporters. Molecular dynamics simulations (MDS) are currently used commonly to reveal the conformational changes of the transporters and to find the interactions between the substrates and the protein during the binding, translocation in the transporter cavity, and release of the substrate on the other side of the membrane. The computational advancements have also aided in the rational design of transporter-utilizing compounds, including prodrugs that can be actively transported without losing potency towards the pharmacological target. In this review, the state-of-art of these approaches will be also discussed to give insights into the transporter-mediated drug delivery to the CNS.
Collapse
Affiliation(s)
- Kristiina M Huttunen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Tetsuya Terasaki
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Arto Urtti
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| | - Yasuo Uchida
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai, 980-8578, Japan
| |
Collapse
|