1
|
Al-Suhaimi EA, Nawaz M, Khan FA, Aljafary MA, Baykal A, Homeida AM. Emerging trends in the delivery of nanoformulated oxytocin across Blood-Brain barrier. Int J Pharm 2021; 609:121141. [PMID: 34597727 DOI: 10.1016/j.ijpharm.2021.121141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/04/2021] [Accepted: 09/25/2021] [Indexed: 12/14/2022]
Abstract
Neurological diseases are related to the central nervous system disorders and considered as serious cases. Several drugs are used to treat neurological diseases; however, to date the main issue is to design a therapeutic model which can cross the blood-brain-barrier (BBB) easily. The delivery of neuropeptides into the brain lays as one of the important routes for treating neurological disorders. Neuropeptides have been demonstrated as potential therapeutics for neurological disorders. Among numerous neuropeptides, the oxytocin (OT) hormone is of particular interest as it serves as a neurotransmitter in the brain as well as its role as a hormone. OT has a wide-range of activities in the brain and has a key role in cognitive, neuroendocrine, and social functions. However, OT does not cross the BBB readily coupled with its half-life in the blood being too short. The current literature reveals that the delivery of OT by nanoparticle-based drug delivery system (DDS) improves its efficacy. Nanoparticle based DDS are considered important tools for the targeted delivery of drugs to the brain as they lower toxicity of the drug and improve the drug efficacy. Nanoparticles are advantageous candidates for biomedical applications due to their distinctive characteristics such as quantum effects, large surface area and their ability to carry and transport the drug to its target site. OT can be delivered through oral and intranasal routes, but the bioavailability of OT inside the brain can further be enhanced by the delivery using nanoparticles. The application of nano-based delivery system not only improves the penetration of OT inside brain but also increases its half-life by the application of encapsulation and extended release. The aim of current review is to provide an overview of nanoparticle-based drug-delivery systems for the delivery of OT inside brain.
Collapse
Affiliation(s)
- Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - Muhammad Nawaz
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Firdos A Khan
- Department of Stem cell Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Meneerah Abdulrahman Aljafary
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Abdulhadi Baykal
- Department of Nano-Medicine Research, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia.
| | - Abdelgadir M Homeida
- Biology Department, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
2
|
Gomaa Y, Kolluru C, Milewski M, Lee D, Zhang J, Saklatvala R, Prausnitz MR. Development of a thermostable oxytocin microneedle patch. J Control Release 2021; 337:81-89. [PMID: 34265331 DOI: 10.1016/j.jconrel.2021.07.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/10/2021] [Accepted: 07/10/2021] [Indexed: 12/12/2022]
Abstract
Oxytocin is a nonapeptide hormone used in labor to initiate uterine contractions and to prevent and treat postpartum hemorrhage. Oxytocin is currently administered by injection and requires refrigerated transport and storage, which limits access, especially during home birth in developing countries. Here, we propose a thermostable, simple-to-administer microneedle (MN) patch for rapid delivery of oxytocin suitable for use by healthcare workers with limited training, like traditional birth attendants. Oxytocin (10 IU, 16.8 μg) coated onto stainless steel MN arrays was released into skin within 1-5 min after manual insertion. Among tested excipients, polyacrylic acid was best at stabilizing oxytocin stored at 75% relative humidity, with no significant loss for up to 2 months at 40 °C. Under desiccated conditions, MNs coated with formulations containing trehalose in a mixture of citrate buffer and ethanol retained 75% oxytocin potency at 40 °C for 12 months; the commercial oxytocin product Pitocin® was reduced to 35% potency under these conditions. These findings support development of MN patches for oxytocin administration with improved ease of use, extended thermostability and simplified logistics to enable greater access to this life-saving medicine.
Collapse
Affiliation(s)
- Yasmine Gomaa
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Chandana Kolluru
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | - Dinah Lee
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | - Robert Saklatvala
- Merck & Co., Inc., Kenilworth, NJ, USA; Currently at Kallyope, Inc., New York, NY, USA
| | - Mark R Prausnitz
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
3
|
Ghasemisarabbadieh M, Gizurarson S, Sveinbjörnsson BR. The effect of trehalose, antioxidants, and acetate buffer concentration on oxytocin stability. J Pept Sci 2021; 27:e3324. [PMID: 33768618 DOI: 10.1002/psc.3324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 11/06/2022]
Abstract
Oxytocin is a cyclic nonapeptide used to induce labor and prevent bleeding after childbirth. Due to its instability, storage and transport of oxytocin formulations can be problematic in hot/tropical climates. The aim of this study was to investigate the effect of trehalose and select antioxidants (uric acid, butylated hydroxytoluene, and l-ascorbic acid) on oxytocin stability in solution. The effect of buffer composition and acetate buffer concentration was also studied. Acetate buffer was found to work better than citrate/phosphate buffer for the oxytocin stability. Lower acetate buffer concentrations (0.025 M or less) were also found to yield improved oxytocin stability compared to higher concentrations. Although known degradation pathways of oxytocin include oxidation, the antioxidants uric acid and butylated hydroxytoluene had negligible effect on the oxytocin stability while l-ascorbic acid led to significantly faster degradation. Despite trehalose's reputation as a great stabilizer for biomolecules, it also had small to negligible effect on oxytocin stability at concentrations up to 1 M in acetate buffer. These results were surprising given the present literature on trehalose as a stabilizer for various biomolecules, including proteins and lipids.
Collapse
Affiliation(s)
- Mostafa Ghasemisarabbadieh
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Department of Chemistry, Science Institute, University of Iceland, Reykjavik, Iceland.,Calor ehf, Reykjavik, Iceland
| | - Sveinbjörn Gizurarson
- Faculty of Pharmaceutical Sciences, School of Health Sciences, University of Iceland, Reykjavik, Iceland.,Calor ehf, Reykjavik, Iceland.,Department of Pharmacy, College of Medicine, University of Malawi, Blantyre, Malawi
| | | |
Collapse
|
4
|
Carvalho N, Hoque ME, Oliver VL, Byrne A, Kermode M, Lambert P, McIntosh MP, Morgan A. Cost-effectiveness of inhaled oxytocin for prevention of postpartum haemorrhage: a modelling study applied to two high burden settings. BMC Med 2020; 18:201. [PMID: 32718336 PMCID: PMC7385867 DOI: 10.1186/s12916-020-01658-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/07/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Access to oxytocin for prevention of postpartum haemorrhage (PPH) in resource-poor settings is limited by the requirement for a consistent cold chain and for a skilled attendant to administer the injection. To overcome these barriers, heat-stable, non-injectable formulations of oxytocin are under development, including oxytocin for inhalation. This study modelled the cost-effectiveness of an inhaled oxytocin product (IHO) in Bangladesh and Ethiopia. METHODS A decision analytic model was developed to assess the cost-effectiveness of IHO for the prevention of PPH compared to the standard of care in Bangladesh and Ethiopia. In Bangladesh, introduction of IHO was modelled in all public facilities and home deliveries with or without a skilled attendant. In Ethiopia, IHO was modelled in all public facilities and home deliveries with health extension workers. Costs (costs of introduction, PPH prevention and PPH treatment) and effects (PPH cases averted, deaths averted) were modelled over a 12-month program. Life years gained were modelled over a lifetime horizon (discounted at 3%). Cost of maintaining the cold chain or effects of compromised oxytocin quality (in the absence of a cold chain) were not modelled. RESULTS In Bangladesh, IHO was estimated to avert 18,644 cases of PPH, 76 maternal deaths and 1954 maternal life years lost. This also yielded a cost-saving, with the majority of gains occurring among home deliveries where IHO would replace misoprostol. In Ethiopia, IHO averted 3111 PPH cases, 30 maternal deaths and 767 maternal life years lost. The full IHO introduction program bears an incremental cost-effectiveness ratio (ICER) of between 2 and 3 times the per-capita Gross Domestic Product (GDP) ($1880 USD per maternal life year lost) and thus is unlikely to be considered cost-effective in Ethiopia. However, the ICER of routine IHO administration considering recurring cost alone falls under 25% of per-capita GDP ($175 USD per maternal life-year saved). CONCLUSIONS IHO has the potential to expand access to uterotonics and reduce PPH-associated morbidity and mortality in high burden settings. This can facilitate reduced spending on PPH management, making the product highly cost-effective in settings where coverage of institutional delivery is lagging.
Collapse
Affiliation(s)
- Natalie Carvalho
- Centre for Health Policy & Global Burden of Disease Group, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, 3010, Australia.
| | - Mohammad Enamul Hoque
- Agency for Clinical Innovation, NSW Ministry of Health, Sydney, NSW, 2067, Australia
| | - Victoria L Oliver
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Abbey Byrne
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Michelle Kermode
- Nossal Institute for Global Health, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| | - Pete Lambert
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Michelle P McIntosh
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Alison Morgan
- Nossal Institute for Global Health, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Optimization of supercritical CO2-assisted spray drying technology for the production of inhalable composite particles using quality-by-design principles. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2019.08.090] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Mah PT, O'Connell P, Focaroli S, Lundy R, O'Mahony TF, Hastedt JE, Gitlin I, Oscarson S, Fahy JV, Healy AM. The use of hydrophobic amino acids in protecting spray dried trehalose formulations against moisture-induced changes. Eur J Pharm Biopharm 2019; 144:139-153. [PMID: 31536784 DOI: 10.1016/j.ejpb.2019.09.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/13/2019] [Accepted: 09/15/2019] [Indexed: 11/18/2022]
Abstract
Trehalose is commonly used as a protein stabilizer in spray dried protein formulations delivered via the pulmonary route. Spray dried trehalose formulations are highly hygroscopic, which makes them prone to deliquescence and recrystallization when exposed to moisture, leading to impairment in aerosolization performance. The main aim of this study was to investigate and compare the effect of hydrophobic amino acids (i.e. L-leucine and L-isoleucine) in enhancing aerosolization performance and in mitigating moisture-induced changes in spray dried trehalose formulations. Trehalose was spray dried with 20-60% w/w of amino acid (i.e. L-leucine or L-isoleucine). The spray dried formulations were stored at 25 °C/50% RH for 28 days. Solid state characterization and in vitro aerosolization performance studies were performed on the spray dried formulations before and after storage. The addition of 20-60% w/w of amino acid (i.e. L-leucine or L-isoleucine) improved the emitted fractions of spray dried trehalose formulations from a dry powder inhaler. However, ≥ 40% w/w of L-leucine/L-isoleucine was needed to prevent recrystallization of trehalose in the formulations when exposed to 25 °C/50% RH for 28 days. X-ray photoelectron spectroscopy (XPS) demonstrated that samples with 40-60% w/w L-isoleucine had more amino acid on the surfaces of the particles compared to their L-leucine counterparts. This may explain the greater ability of the L-isoleucine (40-60% w/w) samples to cope with elevated humidity compared to L-leucine samples of the same concentrations, as observed in the dynamic vapour sorption (DVS) studies. In conclusion, this study demonstrated that both L-leucine and L-isoleucine were effective in enhancing aerosolization performance and mitigating moisture-induced reduction in aerosolization performance in spray dried trehalose formulations. L-isoleucine proved to be superior to L-leucine in terms of its moisture protectant effect when incorporated at the same concentration in the formulations.
Collapse
Affiliation(s)
- Pei T Mah
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Peter O'Connell
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Stefano Focaroli
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland
| | - Ross Lundy
- Advanced Materials and BioEngineering Research (AMBER), Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland
| | - Tom F O'Mahony
- Advanced Materials and BioEngineering Research (AMBER), Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Ireland
| | | | - Irina Gitlin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, CA, United States
| | - Stefan Oscarson
- Centre for Synthesis and Chemical Biology, University College Dublin, Ireland
| | - John V Fahy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine and Cardiovascular Research Institute, University of California San Francisco, CA, United States
| | - Anne Marie Healy
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Ireland; Synthesis and Solid State Pharmaceutical Centre (SSPC), Ireland.
| |
Collapse
|
7
|
Vass P, Démuth B, Hirsch E, Nagy B, Andersen SK, Vigh T, Verreck G, Csontos I, Nagy ZK, Marosi G. Drying technology strategies for colon-targeted oral delivery of biopharmaceuticals. J Control Release 2019; 296:162-178. [PMID: 30677436 DOI: 10.1016/j.jconrel.2019.01.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022]
Abstract
In chronic intestinal diseases like inflammatory bowel disease, parenteral administration of biopharmaceuticals is associated with numerous disadvantages including immune reactions, infections, low patient compliance, and toxicity caused by high systemic bioavailability. One alternative that can potentially overcome these limitations is oral administration of biopharmaceuticals, where the local delivery will reduce the systemic exposure and furthermore the manufacturing costs will be lower. However, the development of oral dosage forms that deliver the biologically active form to the intestines is one of the greatest challenges for pharmaceutical technologists due to the sensitive nature of biopharmaceuticals. The present article discusses the various drug delivery technologies used to produce orally administered solid dosage forms of biopharmaceuticals with an emphasis on colon-targeted delivery. Solid oral dosage compositions containing different types of colon-targeting biopharmaceuticals are compiled followed by a review of currently applied and emerging drying technologies for biopharmaceuticals. The different drying technologies are compared in terms of their advantages, limitations, costs and their effect on product stability.
Collapse
Affiliation(s)
- Panna Vass
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Balázs Démuth
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Edit Hirsch
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Sune K Andersen
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium.
| | - Tamás Vigh
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - Geert Verreck
- Oral Solids Development, Janssen R&D, B-2340 Beerse, Turnhoutseweg 30, Belgium
| | - István Csontos
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| | - Zsombor K Nagy
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary.
| | - György Marosi
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics (BME), H-1111 Budapest, Műegyetem rakpart 3, Hungary
| |
Collapse
|
8
|
Leachable diphenylguanidine from rubber closures used in pre-filled syringes: A case study to understand solid and solution interactions with oxytocin. Int J Pharm 2017; 532:491-501. [PMID: 28935251 DOI: 10.1016/j.ijpharm.2017.09.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 08/30/2017] [Accepted: 09/16/2017] [Indexed: 11/20/2022]
Abstract
Leachables derived from multi-component drug-device syringe systems can result in changes to the quality of drug products. Diphenylguanidine (DPG), a leachable released from styrene butadiene rubber syringe plungers, interacts with Oxytocin to form protein-adducts. This study investigated the mechanism and kinetics of this interaction in both solid and solution states through in-vitro tests and spectroscopic methods For solid state interaction, the protein-adducts with DPG were characterized using SEM, XRD, DSC, FTIR, 13C ss NMR, and dissolution analysis. For solution state interaction, LC-HRMS was used to assess stability of Oxytocin solutions in presence of various concentrations of DPG at 25°C and 40°C for 4 weeks. Moreover, molecular docking analysis was used to identify possible molecular configurations of the interaction.Results were consistent with the formation of a new solid state with distorted surface morphology for oxytocin-DPG adducts, in which the oxytocin carbonyl group(s) and the secondary amine groups of DPG interact. This interaction was also confirmed by molecular docking analysis through hydrogen bonding (2.31Å) and Van der Waal attraction (3.14Å). Moreover, LC-HRMS analysis revealed an increase in Oxytocin stability and suppression of Oxytocin dimerization by DPG. A potential reduction in the rate of Oxytocin dissolution from the formed adducts was indicative of its strong association with DPG. Hence, the leaching potential of DPG from rubber closures and plungers should be monitored and controlled to maintain the quality and stability of the pharmaceutical product.
Collapse
|
9
|
Fernando D, Siederer S, Singh S, Schneider I, Gupta A, Powell M, Richards D, McIntosh MP, Lambert P, Fowles S. Safety, Tolerability and Pharmacokinetics of Single Doses of Oxytocin Administered via an Inhaled Route in Healthy Females: Randomized, Single-blind, Phase 1 Study. EBioMedicine 2017; 22:249-255. [PMID: 28781129 PMCID: PMC5552226 DOI: 10.1016/j.ebiom.2017.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/06/2017] [Accepted: 07/20/2017] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The utility of intramuscular (IM) oxytocin for the prevention of postpartum hemorrhage in resource-poor settings is limited by the requirement for temperature-controlled storage and skilled staff to administer the injection. We evaluated the safety, tolerability and pharmacokinetics (PK) of a heat-stable, inhaled (IH) oxytocin formulation. METHODS This phase 1, randomized, single-center, single-blind, dose-escalation, fixed-sequence study (NCT02542813) was conducted in healthy, premenopausal, non-pregnant, non-lactating women aged 18-45years. Subjects initially received IM oxytocin 10 international units (IU) on day 1, IH placebo on day 2, and IH oxytocin 50μg on day 3. Subjects were then randomized 4:1 using validated GSK internal software to IH placebo or ascending doses of IH oxytocin (200, 400, 600μg). PK was assessed by comparing systemic exposure (maximum observed plasma concentration, area under the concentration-time curve, and plasma concentrations at 10 and 30min post dose) for IH versus IM oxytocin. Adverse events (AEs), spirometry, laboratory tests, vital signs, electrocardiograms, physical examinations, and cardiac telemetry were assessed. FINDINGS Subjects were recruited between September 14, 2015 and October 12, 2015. Of the 16 subjects randomized following initial dosing, 15 (IH placebo n=3; IH oxytocin n=12) completed the study. IH (all doses) and IM oxytocin PK profiles were comparable in shape. However, systemic exposure with IH oxytocin 400μg most closely matched IM oxytocin 10IU. Systemic exposure was approximately dose proportional for IH oxytocin. No serious AEs were reported. No clinically significant findings were observed for any safety parameters. INTERPRETATION These data suggest that similar oxytocin systemic exposure can be achieved with IM and IH administration routes, and no safety concerns were identified with either route. The inhalation route may offer the opportunity to increase access to oxytocin for women giving birth in resource-poor settings.
Collapse
Affiliation(s)
- Disala Fernando
- GSK Clinical Unit Cambridge, Addenbrooke's Hospital NHS Trust, Cambridge, UK.
| | - Sarah Siederer
- Clinical Pharmacology Modelling and Simulation Department, GSK, Stevenage, Herts, UK.
| | | | - Ian Schneider
- GSK Clinical Unit Cambridge, Addenbrooke's Hospital NHS Trust, Cambridge, UK.
| | | | - Marcy Powell
- Clinical Safety, GSK, Research Triangle Park, NC, USA.
| | - Duncan Richards
- Alternative Discovery and Development, GSK, Stevenage, Herts, UK.
| | - Michelle P McIntosh
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia.
| | - Peter Lambert
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia.
| | - Susan Fowles
- Alternative Discovery and Development, GSK, Stevenage, Herts, UK
| |
Collapse
|
10
|
Zbacnik TJ, Holcomb RE, Katayama DS, Murphy BM, Payne RW, Coccaro RC, Evans GJ, Matsuura JE, Henry CS, Manning MC. Role of Buffers in Protein Formulations. J Pharm Sci 2016; 106:713-733. [PMID: 27894967 DOI: 10.1016/j.xphs.2016.11.014] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 10/25/2016] [Accepted: 11/17/2016] [Indexed: 12/19/2022]
Abstract
Buffers comprise an integral component of protein formulations. Not only do they function to regulate shifts in pH, they also can stabilize proteins by a variety of mechanisms. The ability of buffers to stabilize therapeutic proteins whether in liquid formulations, frozen solutions, or the solid state is highlighted in this review. Addition of buffers can result in increased conformational stability of proteins, whether by ligand binding or by an excluded solute mechanism. In addition, they can alter the colloidal stability of proteins and modulate interfacial damage. Buffers can also lead to destabilization of proteins, and the stability of buffers themselves is presented. Furthermore, the potential safety and toxicity issues of buffers are discussed, with a special emphasis on the influence of buffers on the perceived pain upon injection. Finally, the interaction of buffers with other excipients is examined.
Collapse
Affiliation(s)
| | - Ryan E Holcomb
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Derrick S Katayama
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Brian M Murphy
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Robert W Payne
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | | | | | | | - Charles S Henry
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
| | - Mark Cornell Manning
- LegacyBioDesign LLC, Johnstown, Colorado 80534; Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523.
| |
Collapse
|
11
|
Milewski M, Goodey A, Lee D, Rimmer E, Saklatvala R, Koyama S, Iwashima M, Haruta S. Rapid Absorption of Dry-Powder Intranasal Oxytocin. Pharm Res 2016; 33:1936-44. [DOI: 10.1007/s11095-016-1929-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/18/2016] [Indexed: 11/29/2022]
|
12
|
Chen L, Okuda T, Lu XY, Chan HK. Amorphous powders for inhalation drug delivery. Adv Drug Deliv Rev 2016; 100:102-15. [PMID: 26780404 DOI: 10.1016/j.addr.2016.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/23/2015] [Accepted: 01/02/2016] [Indexed: 11/25/2022]
Abstract
For inhalation drug delivery, amorphous powder formulations offer the benefits of increased bioavailability for poorly soluble drugs, improved biochemical stability for biologics, and expanded options of using various drugs and their combinations. However, amorphous formulations usually have poor physicochemical stability. This review focuses on inhalable amorphous powders, including the production methods, the active pharmaceutical ingredients and the excipients with a highlight on stabilization of the particles.
Collapse
|