1
|
Ibnidris A, Liaskos N, Eldem E, Gunn A, Streffer J, Gold M, Rea M, Teipel S, Gardiol A, Boccardi M. Facilitating the use of the target product profile in academic research: a systematic review. J Transl Med 2024; 22:693. [PMID: 39075460 PMCID: PMC11288132 DOI: 10.1186/s12967-024-05476-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The Target Product Profile (TPP) is a tool used in industry to guide development strategies by addressing user needs and fostering effective communication among stakeholders. However, they are not frequently used in academic research, where they may be equally useful. This systematic review aims to extract the features of accessible TPPs, to identify commonalities and facilitate their integration in academic research methodology. METHODS We searched peer-reviewed papers published in English developing TPPs for different products and health conditions in four biomedical databases. Interrater agreement, computed on random abstract and paper sets (Cohen's Kappa; percentage agreement with zero tolerance) was > 0.91. We interviewed experts from industry contexts to gain insight on the process of TPP development, and extracted general and specific features on TPP use and structure. RESULTS 138 papers were eligible for data extraction. Of them, 92% (n = 128) developed a new TPP, with 41.3% (n = 57) focusing on therapeutics. The addressed disease categories were diverse; the largest (47.1%, n = 65) was infectious diseases. Only one TPP was identified for several fields, including global priorities like dementia. Our analyses found that 56.5% of papers (n = 78) was authored by academics, and 57.8% of TPPs (n = 80) featured one threshold level of product performance. The number of TPP features varied widely across and within product types (n = 3-44). Common features included purpose/context of use, shelf life for drug stability and validation aspects. Most papers did not describe the methods used to develop the TPP. We identified aspects to be taken into account to build and report TPPs, as a starting point for more focused initiatives guiding use by academics. DISCUSSION TPPs are used in academic research mostly for infectious diseases and have heterogeneous features. Our extraction of key features and common structures helps to understand the tool and widen its use in academia. This is of particular relevance for areas of notable unmet needs, like dementia. Collaboration between stakeholders is key for innovation. Tools to streamline communication such as TPPs would support the development of products and services in academia as well as industry.
Collapse
Affiliation(s)
- Aliaa Ibnidris
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Neuroscience Institute, Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Nektarios Liaskos
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
| | - Ece Eldem
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
| | | | - Johannes Streffer
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Michael Gold
- AriLex Life Sciences LLC, 780 Elysian Way, Deerfield, IL, 60015, USA
| | | | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany
| | - Alejandra Gardiol
- European Infrastructure for Translational Medicine (EATRIS), Amsterdam, The Netherlands
- Queen Mary University of London, London, UK
| | - Marina Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald site, Gehlsheimer Str. 20, 18147, Rostock, Germany.
- Department of Psychosomatic Medicine and Psychotherapy, University of Medicine Rostock, Rostock, Germany.
| |
Collapse
|
2
|
Hussain A, Ramzan M, Altamimi MA, Khuroo T. HSPiP and QbD Program-Based Analytical Method Development and Validation to Quantify Ketoconazole in Dermatokinetic Study. AAPS PharmSciTech 2023; 24:231. [PMID: 37964178 DOI: 10.1208/s12249-023-02675-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023] Open
Abstract
Ketoconazole (KTZ) is the most potential azole anti-mycotic drug. The quantification of KTZ from various layers of the skin after topical application of lipidic nanocarriers is critical. We addressed a sensitive, specific, simple, rapid, reproducible, and economic analytical method to quantify KTZ from the treated skin homogenate using the Hansen solubility parameter (HSP, HSPiP software)-based modeling and experimental design. The software provided various HSP values for KTZ and solvents to compose the mobile phase. The Taguchi model identified the significant sets of factors to develop a robust bioanalytical method with reduced variability. In the optimization, acetonitrile (ACN) concentration (X1 as A) and the pH of mobile phase (X2 as B) were two factors against two responses (Y1: peak area and Y2: retention time). The HPLC (high-performance liquid chromatography) method validation was carried out based on US-FDA guidelines for the developed KTZ formulations (suspension, solid nanoparticles, and commercial product) extracted from the treated rat skin. The experimental solubility of KTZ was found to be maximum in the two solvents (ACN and ethyl acetate), based on HSP values. Surface response methodology (SRM) identified remarkable impact of ACN concentration and the mobile phase pH on the peak area and retention time. Analytical limits (0.17 and 0.50 µg/mL) were established for KTZ-SLNs (extracted from the skin). The method was implemented with high reproducibility, accuracy, and selectivity to quantify KTZ from the treated rat skin.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mohhammad Ramzan
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Jalandhar, 144411, Punjab, India.
| | - Mohammad A Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Tahir Khuroo
- Department of Pharmaceutics, Irma Lerma College of Pharmacy, Texas A & M University, College Station, Texas, USA
| |
Collapse
|
3
|
Kaur R, Gorki V, Singh G, Kaur R, Katare O, Nirmalan N, Singh B. Intranasal delivery of polymer-anchored lipid nanoconstructs of artemether-lumefantrine in Plasmodium berghei ANKA murine model. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Beg S, Kaur R, Khurana RK, Rana V, Sharma T, Singh B. QbD-Based Development of Cationic Self-nanoemulsifying Drug Delivery Systems of Paclitaxel with Improved Biopharmaceutical Attributes. AAPS PharmSciTech 2019; 20:118. [PMID: 30790136 DOI: 10.1208/s12249-019-1319-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 01/23/2019] [Indexed: 12/16/2022] Open
Abstract
The present studies describe quality-by-design-based design and characterization of cationic self-nanoemulsifying formulations of paclitaxel for improving its biopharmaceutical attributes. Solubility and phase titration experiments were designed to select the lipidic and emulsifying excipients. Two different types of lipidic nanoformulations were developed using medium-chain triglycerides (MCTs) and long-chain triglycerides (LCTs). The nanoformulations were optimized by mixture designs and subjected to evaluation for globule size, zeta potential, drug release, and intestinal permeability. Following apt mathematical modeling, the optimum nanoformulation was earmarked using numerical optimization. Further, cationic formulations were developed for both LCT- and MCT-containing formulations and subjected to performance evaluation. The optimized formulations were extensively evaluated, where an in vitro drug release study indicated 2.7-fold improvement in dissolution rate from optimized cationic nanoformulations over powder pure drug. Ex vivo and in situ evaluation performed on Wistar rats exhibited nearly six- to eightfold enhancement in permeation and absorption parameters of the drug for the optimized cationic nanoformulation as compared to the pure paclitaxel. Pharmacokinetic studies indicated nearly 13.4-fold improvement in AUC and Cmax, along with 1.8-fold reduction in Tmax of the drug from cationic nanoformulations as compared to the pure drug suspension. Moreover, nanoformulation containing long-chain lipids exhibited superior performance (1.18-fold improvement in drug absorption) over medium-chain lipids. Cytotoxicity evaluation of cationic nanoformulations on MCF-7 cells revealed significant reduction in growth vis-à-vis the pure drug. Overall, the current paper reports successful systematic development of paclitaxel-loaded cationic self-nanoemulsifying systems with distinctly improved biopharmaceutical performance.
Collapse
|
5
|
Improving the biopharmaceutical attributes of mangiferin using vitamin E-TPGS co-loaded self-assembled phosholipidic nano-mixed micellar systems. Drug Deliv Transl Res 2018; 8:617-632. [PMID: 29637488 PMCID: PMC5937873 DOI: 10.1007/s13346-018-0498-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The current research work encompasses the development, characterization, and evaluation of self-assembled phospholipidic nano-mixed miceller system (SPNMS) of a poorly soluble BCS Class IV xanthone bioactive, mangiferin (Mgf) functionalized with co-delivery of vitamin E TPGS. Systematic optimization using I-optimal design yielded self-assembled phospholipidic nano-micelles with a particle size of < 60 nm and > 80% of drug release in 15 min. The cytotoxicity and cellular uptake studies performed using MCF-7 and MDA-MB-231 cell lines demonstrated greater kill and faster cellular uptake. The ex vivo intestinal permeability revealed higher lymphatic uptake, while in situ perfusion and in vivo pharmacokinetic studies indicated nearly 6.6- and 3.0-folds augmentation in permeability and bioavailability of Mgf. In a nutshell, vitamin E functionalized SPNMS of Mgf improved the biopharmaceutical performance of Mgf in rats for enhanced anticancer potency.
Collapse
|
6
|
Mahmoud DB, Shukr MH, ElMeshad AN. Gastroretentive Cosolvent-Based In Situ Gel as a Promising Approach for Simultaneous Extended Delivery and Enhanced Bioavailability of Mitiglinide Calcium. J Pharm Sci 2018; 108:897-906. [PMID: 30267785 DOI: 10.1016/j.xphs.2018.09.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 08/27/2018] [Accepted: 09/17/2018] [Indexed: 01/19/2023]
Abstract
Ion cross-linking in situ gels are novel liquid sustained-release drug delivery systems. These systems are unsuitable for poorly water-soluble drugs such as the novel antidiabetic drug mitiglinide calcium (MTG). Thus, our goal was to assess the possibility of using cosolvency approach in formulating gastroretentive in situ gel of the short half-life MTG to simultaneously enhance its bioavailability and sustain its release. MTG in situ gel formulations were developed using propylene glycol as a cosolvent to dissolve MTG in the polymer solution, followed by characterization of viscosity, gel strength, floating ability, and in vitro MTG release and phramacokinetics evaluation. The optimized formulation (composition: 1% gellan gum, 0.75% sodium alginate, 0.75% calcium carbonate, and 7.5% propylene glycol) exhibited reasonable viscosity but on introduction into simulated gastric fluid, it formed firm gel that floated within seconds over the surface and remained buoyant for 24 h. The formula exhibited in vivo sustained release manner of MTG over 24 h and improved the bioavailability of the drug. Thus, cosolvency presents a promising approach to deliver hydrophobic drugs in sustained-release liquid formulations. These formulations will improve diabetic patients' compliance by eliminating the necessity of frequent dosing with a better disease management.
Collapse
Affiliation(s)
- Dina B Mahmoud
- Department of Pharmaceutics, National Organization for Drug Control and Research, Giza, Egypt.
| | - Marwa H Shukr
- Department of Pharmaceutics, National Organization for Drug Control and Research, Giza, Egypt
| | - Aliaa N ElMeshad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
7
|
Javed MN, Kohli K, Amin S. Risk Assessment Integrated QbD Approach for Development of Optimized Bicontinuous Mucoadhesive Limicubes for Oral Delivery of Rosuvastatin. AAPS PharmSciTech 2018; 19:1377-1391. [PMID: 29388027 DOI: 10.1208/s12249-018-0951-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/02/2018] [Indexed: 01/31/2023] Open
Abstract
Statins are widely prescribed for hyperlipidemia, cancer, and Alzheimer's disease but are facing some inherent challenges such as low solubility and drug loading, higher hepatic metabolism, as well as instability at gastric pH. So, relatively higher circulating dose, required for exerting the therapeutic benefits, leads to dose-mediated severe toxicity. Furthermore, due to low biocompatibility, high toxicity, and other regulatory caveats such as product conformity, reproducibility, and stability of conventional formulations as well as preferentially higher bioabsorption of lipids in their favorable cuboidal geometry, enhancement in in vivo biopharmaceutical performance of Rosuvastatin could be well manifested in Quality by Design (QbD) integrated cuboidal-shaped mucoadhesive microcrystalline delivery systems (Limicubes). Here, quality-target-product-profile (QTPPs), critical quality attributes (CQAs), Ishikawa fishbone diagram, and integration of risk management through risk assessment matrix for failure mode and effects analysis (FMEA) followed by processing of Plackett-Burman design matrix using different statistical test for the first time established an approach to substantiate the claims that controlling levels of only these three screened out independent process variables, i.e., Monoolein (B = 800-1100 μL), Poloxamer (C = 150-200 mg), and stirring speed (F = 700-1000 rpm) were statistically significant to modulate and improve the biopharmaceutical performance affecting key attributes, viz., average particle size (Y1 = 1.40-2.70 μ), entrapment efficiency (Y2 = 62.60-88.80%), and drug loading (Y3 = 0.817-1.15%), in QbD-enabled process. The optimal performance of developed Limicubes exhibited an average particle size of 1.8 ± 0.2 μ, entrapment efficiency 80.32 ± 2.88%, and drug loading 0.93 ± 0.08% at the level of 1100 μL (+ 1), 200 mg (+ 1), and 700 rpm (- 1) for Monoolein, Poloxamer, and stirring speed, respectively.
Collapse
Affiliation(s)
- Md Noushad Javed
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kanchan Kohli
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Saima Amin
- Department of Pharmaceutics, Faculty of Pharmacy, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
8
|
Wang Y, Zhang XY, Luo YL, Xu F, Chen YS, Su YY. Dual stimuli-responsive Fe 3O 4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) copolymer micromicelles: surface RAFT synthesis, self-assembly and drug release applications. J Nanobiotechnology 2017; 15:76. [PMID: 29078797 PMCID: PMC5658962 DOI: 10.1186/s12951-017-0309-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 10/14/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Stimuli-responsive polymer materials are a new kind of intelligent materials based on the concept of bionics, which exhibits more significant changes in physicochemical properties upon triggered by tiny environment stimuli, hence providing a good carrier platform for antitumor drug delivery. RESULTS Dual stimuli-responsive Fe3O4 graft poly(acrylic acid)-block-poly(2-methacryloyloxyethyl ferrocenecarboxylate) block copolymers (Fe3O4-g-PAA-b-PMAEFC) were engineered and synthesized through a two-step sequential reversible addition-fragmentation chain transfer polymerization route. The characterization was performed by FTIR, 1H NMR, SEC, XRD and TGA techniques. The self-assembly behavior in aqueous solution upon triggered by pH, magnetic and redox stimuli was investigated via zeta potentials, vibration sample magnetometer, cyclic voltammetry, fluorescent spectrometry, dynamic light scattering, XPS, TEM and SEM measurements. The experimental results indicated that the Fe3O4-g-PAA-b-PMAEFC copolymer materials could spontaneously assemble into hybrid magnetic copolymer micromicelles with core-shell structure, and exhibited superparamagnetism, redox and pH stimuli-responsive features. The hybrid copolymer micromicelles were stable and nontoxic, and could entrap hydrophobic anticancer drug, which was in turn swiftly and effectively delivered from the drug-loaded micromicelles at special microenvironments such as acidic pH and high reactive oxygen species. CONCLUSION This class of stimuli-responsive copolymer materials is expected to find wide applications in medical science and biology, etc., especially in drug delivery system.
Collapse
Affiliation(s)
- Yuan Wang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - Xue-Yin Zhang
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - Yan-Ling Luo
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - Feng Xu
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - Ya-Shao Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| | - Yu-Yu Su
- Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an, 710062 People’s Republic of China
| |
Collapse
|
9
|
Systematic development of a gastroretentive fixed dose combination of lamivudine and zidovudine for increased patient compliance. J Drug Deliv Sci Technol 2017. [DOI: 10.1016/j.jddst.2016.12.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
10
|
Enhancing biopharmaceutical attributes of phospholipid complex-loaded nanostructured lipidic carriers of mangiferin: Systematic development, characterization and evaluation. Int J Pharm 2017; 518:289-306. [DOI: 10.1016/j.ijpharm.2016.12.044] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 12/12/2022]
|
11
|
Bansal S, Beg S, Garg B, Asthana A, Asthana GS, Singh B. QbD-Oriented Development and Characterization of Effervescent Floating-Bioadhesive Tablets of Cefuroxime Axetil. AAPS PharmSciTech 2016; 17:1086-99. [PMID: 26527606 DOI: 10.1208/s12249-015-0431-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 10/07/2015] [Indexed: 11/30/2022] Open
Abstract
The objective of the present studies was systematic development of floating-bioadhesive gastroretentive tablets of cefuroxime axetil employing rational blend of hydrophilic polymers for attaining controlled release drug delivery. As per the QbD-based approach, the patient-centric target product profile and quality attributes of tablet were earmarked, and preliminary studies were conducted for screening the suitability of type of polymers, polymer ratio, granulation technique, and granulation time for formulation of tablets. A face-centered cubic design (FCCD) was employed for optimization of the critical material attributes, i.e., concentration of release controlling polymers, PEO 303 and HPMC K100 LV CR, and evaluating in vitro buoyancy, drug release, and ex vivo mucoadhesion strength. The optimized formulation was embarked upon through numerical optimization, which yield excellent floatation characteristic with drug release control (i.e., T 60% > 6 h) and bioadhesion strength. Drug-excipient compatibility studies through FTIR and P-XRD revealed the absence of any interaction between the drug and polymers. In vivo evaluation of the gastroretentive characteristics through X-ray imaging and in vivo pharmacokinetic studies in rabbits revealed significant extension in the rate of drug absorption (i.e., T max, K a, and MRT) from the optimized tablet formulation as compared to the marketed formulation. Successful establishment of various levels of in vitro/in vivo correlations (IVIVC) substantiated high degree of prognostic ability of in vitro dissolution conditions in predicting the in vivo performance. In a nutshell, the studies demonstrate successful development of the once-a-day gastroretentive formulations of cefuroxime axetil with controlled drug release profile and improved compliance.
Collapse
|