1
|
Giordani S, Marassi V, Zattoni A, Roda B, Reschiglian P. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols. J Pharm Biomed Anal 2023; 236:115751. [PMID: 37778202 DOI: 10.1016/j.jpba.2023.115751] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 10/03/2023]
Abstract
Liposomes are nano-sized lipid-based vesicles widely studied for their drug delivery capabilities. Compared to standard carries they exhibit better properties such as improved site-targeting and drug release, protection of drugs from degradation and clearance, and lower toxic side effects. At present, scientific literature is rich of studies regarding liposomes-based systems, while 14 types of liposomal products have been authorized to the market by EMA and FDA and many others have been approved by national agencies. Although the interest in nanodevices and nanomedicine has steadily increased in the last two decades the development of documentation regulating and standardizing all the phases of their development and quality control still suffers from major inadequacy due to the intrinsic complexity of nano-systems characterization. Many generic documents (Type 1) discussing guidelines for the study of nano-systems (lipidic and not) have been proposed while there is a lack of robust and standardized methods (Type 2 documents). As a result, a widespread of different techniques, approaches and methodologies are being used, generating results of variable quality and hard to compare with each other. Additionally, such documents are often subject to updates and rewriting further complicating the topic. Within this context the aim of this work is focused on bridging the gap in liposome characterization: the most recent standardized methodologies suitable for liposomes characterization are here reported (with the corresponding Type 2 documents) and revised in a short and pragmatical way focused on providing the reader with a practical background of the state of the art. In particular, this paper will put the accent on the methodologies developed to evaluate the main critical quality attributes (CQAs) necessary for liposomes market approval.
Collapse
Affiliation(s)
- Stefano Giordani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy
| | - Valentina Marassi
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Andrea Zattoni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| | - Barbara Roda
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy.
| | - Pierluigi Reschiglian
- Department of Chemistry "Giacomo Ciamician", University of Bologna, 40126 Bologna, Italy; byFlow srl, 40129 Bologna, Italy
| |
Collapse
|
2
|
Liu T, Tian Y, Zheng A, Cui C. Design Strategies for and Stability of mRNA-Lipid Nanoparticle COVID-19 Vaccines. Polymers (Basel) 2022; 14:4195. [PMID: 36236141 PMCID: PMC9572882 DOI: 10.3390/polym14194195] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/25/2022] Open
Abstract
Messenger RNA (mRNA) vaccines have shown great preventive potential in response to the novel coronavirus (COVID-19) pandemic. The lipid nanoparticle (LNP), as a non-viral vector with good safety and potency factors, is applied to mRNA delivery in the clinic. Among the recently FDA-approved SARS-CoV-2 mRNA vaccines, lipid-based nanoparticles have been shown to be well-suited to antigen presentation and enhanced immune stimulation to elicit potent humoral and cellular immune responses. However, a design strategy for optimal mRNA-LNP vaccines has not been fully elaborated. In this review, we comprehensively and systematically discuss the research strategies for mRNA-LNP vaccines against COVID-19, including antigen and lipid carrier selection, vaccine preparation, quality control, and stability. Meanwhile, we also discuss the potential development directions for mRNA-LNP vaccines in the future. We also conduct an in-depth review of those technologies and scientific insights in regard to the mRNA-LNP field.
Collapse
Affiliation(s)
- Ting Liu
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| | - Yang Tian
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Aiping Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Beijing 100850, China
| | - Chunying Cui
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
3
|
Parashar P, Mazhar I, Kanoujia J, Yadav A, Kumar P, Saraf SA, Saha S. Appraisal of anti-gout potential of colchicine-loaded chitosan nanoparticle gel in uric acid-induced gout animal model. Arch Physiol Biochem 2022; 128:547-557. [PMID: 31852265 DOI: 10.1080/13813455.2019.1702702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Present study is aimed at transdermal delivery of colchicine-loaded chitosan nanoparticles. The nanoformulations were prepared utilising spontaneous emulsification method and optimised through 23 factorial designs. The optimised formulation (CHNP-OPT) displayed an average particle size of 294 ± 3.75 nm, entrapment efficiency 92.89 ± 1.1% and drug content 83.45 ± 2.5%, respectively. In vitro release study demonstrated 89.34 ± 2.90% release over a period of 24 h. Further, CHNP-OPT incorporated into HPMC-E4M (hydroxypropyl methylcellulose) to form transdermal gel. CHNPgel displayed 74.65 ± 1.90% permeation and stability over a period of 90 days. The anti-gout potential of CHNPgel formulation was evaluated in vivo against monosodium urate (MSU) crystal-induced gout in animal model. There was significant reduction in uric acid level, during MSU administration, when compared with the conventional gel of colchicine. The enhanced therapeutic potential was witnessed through X-ray. The study revealed that colchicine-loaded CHNPgel proved their supremacy over plain colchicine and can be an efficient delivery system for gout treatment.
Collapse
Affiliation(s)
- Poonam Parashar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Ifrah Mazhar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Abhishek Yadav
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Pranesh Kumar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Sudipta Saha
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
4
|
Qader AB, Kumar S, Kohli K, Hussein AA. Garlic oil loaded rosuvastatin solid self-nanoemulsifying drug delivery system to improve level of high-density lipoprotein for ameliorating hypertriglyceridemia. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.1929604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Adnan Burhan Qader
- Department of Pharmaceutics, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Shobhit Kumar
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology (MIET), Meerut, India
| | - Kanchan Kohli
- Lloyd Institute of Management and Technology (Pharm.), Greater Noida, India
| | - Ahmed Abbas Hussein
- Department of Pharmaceutics, College of Pharmacy, Baghdad University, Baghdad, Iraq
| |
Collapse
|
5
|
Fan Y, Marioli M, Zhang K. Analytical characterization of liposomes and other lipid nanoparticles for drug delivery. J Pharm Biomed Anal 2020; 192:113642. [PMID: 33011580 DOI: 10.1016/j.jpba.2020.113642] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 09/11/2020] [Accepted: 09/13/2020] [Indexed: 12/14/2022]
Abstract
Lipid nanoparticles, especially liposomes and lipid/nucleic acid complexed nanoparticles have shown great success in the pharmaceutical industry. Their success is attributed to stable drug loading, extended pharmacokinetics, reduced off-target side effects, and enhanced delivery efficiency to disease targets with formidable blood-brain or plasma membrane barriers. Therefore, they offer promising formulation options for drugs limited by low therapeutic indexes in traditional dosage forms and current "undruggable" targets. Recent development of siRNA, antisense oligonucleotide, or the CRISPR complex-loaded lipid nanoparticles and liposomal vaccines also shed light on their potential in enabling versatile formulation platforms for new pharmaceutical modalities. Analytical characterization of these nanoparticles is critical to drug design, formulation development, understanding in vivo performance, as well as quality control. The multi-lipid excipients, unique core-bilayer structure, and nanoscale size all underscore their complicated critical quality attributes, including lipid species, drug encapsulation efficiency, nanoparticle characteristics, product stability, and drug release. To address these challenges and facilitate future applications of lipid nanoparticles in drug development, we summarize available analytical approaches for physicochemical characterizations of lipid nanoparticle-based pharmaceutical modalities. Furthermore, we compare advantages and challenges of different techniques, and highlight the promise of new strategies for automated high-throughput screening and future development.
Collapse
Affiliation(s)
- Yuchen Fan
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA
| | - Maria Marioli
- Pharma Technical Development Europe Analytics, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Kelly Zhang
- Research and Early Development, Genentech Inc., 1 DNA Way, South San Francisco, CA, 94080, USA.
| |
Collapse
|
6
|
Response surface optimization of self nano-emulsifying drug delivery system of rosuvastatin calcium for hepatocellular carcinoma. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2020. [DOI: 10.1007/s40005-020-00497-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Tripathi CB, Parashar P, Arya M, Singh M, Kanoujia J, Kaithwas G, Saraf SA. Biotin anchored nanostructured lipid carriers for targeted delivery of doxorubicin in management of mammary gland carcinoma through regulation of apoptotic modulator. J Liposome Res 2020; 30:21-36. [PMID: 30741049 DOI: 10.1080/08982104.2019.1579839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 02/01/2023]
Abstract
Mammary gland tumour has the highest incidence rate and mortality in women, worldwide. The present study envisaged a molecularly targeted nanostructured lipid carrier (NLCs) for doxorubicin (Dox) delivery capable of inducing cellular apoptosis in mammary gland tumour. NLCs were prepared utilizing Perilla frutescens oil (54-69% ω3-fatty acid) as liquid lipid to enhance entrapment of Dox through molecular ion pairing. Biotin decorated NLCs (b-Dox-NLCs) were evaluated in vitro and in vivo. The b-Dox-NLCs showed particle size of 105.2 ± 3.5 nm, zeta potential -35 ± 2 mV, entrapment 99.15 ± 1.71%, drug content 19.67 ± 2.6 mg.g-1, biotin content 5.85 ± 0.64 µg.g-1 and drug release 98.67 ± 2.43% (facilitated by acidic microenvironment) respectively. MTT assay and Flow cytometric analysis revealed higher anti-proliferative capability of b-Dox-NLCs to force apoptosis in MCF-7 cell line vis-à-vis marketed Dox, evidenced by reactive oxygen species level and mitochondrial membrane potential mediated apoptosis. Enhanced antitumor targeting, therapeutic safety and efficacy was exhibited by b-Dox-NLCs, as investigated through tumour volume, animal survival, weight variation, cardiotoxicity and biodistribution studies in 7,12-Dimethylbenz[a]anthracene induced mammary gland tumour. Immunoblotting assay demonstrated b-Dox-NLCs downregulated anti-apoptotic proteins, i.e. bcl-2, MMP-9 while upregulated pro-apoptotic proteins, i.e. caspase-9, p16 and BAX. The experimental results suggest that biotinylated ω3-fatty acid augmented NLCs loaded with Dox are capable of inducing programmed cell death in mammary tumour and can be utilized as safe and effective delivery system with enhanced potential for mammary gland carcinoma therapy.
Collapse
Affiliation(s)
- Chandra B Tripathi
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Poonam Parashar
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Malti Arya
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Mahendra Singh
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Gaurav Kaithwas
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Shubhini A Saraf
- Department of Pharmaceutical Sciences, School of Biosciences & Biotechnology, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| |
Collapse
|
8
|
Pal RR, Parashar P, Singh I, Saraf SA. Tamanu oil potentiated novel sericin emulgel of levocetirizine: repurposing for topical delivery against DNCB-induced atopic dermatitis, QbD based development and in vivo evaluation. J Microencapsul 2019; 36:432-446. [DOI: 10.1080/02652048.2019.1637474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ravi Raj Pal
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Poonam Parashar
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| | - Indu Singh
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
- Amity Institute of Pharmacy, Amity University, Noida, India
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, India
| |
Collapse
|