1
|
Pardhi E, Tomar DS, Khemchandani R, Bazaz MR, Dandekar MP, Samanthula G, Singh SB, Mehra NK. Monophasic coamorphous sulpiride: a leap in physicochemical attributes and dual inhibition of GlyT1 and P-glycoprotein, supported by experimental and computational insights. J Biomol Struct Dyn 2025; 43:4297-4326. [PMID: 38299571 DOI: 10.1080/07391102.2024.2308048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/30/2023] [Indexed: 02/02/2024]
Abstract
Study aimed to design and development of a supramolecular formulation of sulpiride (SUL) to enhance its solubility, dissolution and permeability by targeting a novel GlyT1 inhibition mechanism. SUL is commonly used to treat gastric and duodenal ulcers, migraine, anti-emetic, anti-depressive and anti-dyspeptic conditions. Additionally, Naringin (NARI) was incorporated as a co-former to enhance the drug's intestinal permeability by targeting P-glycoprotein (P-gp) efflux inhibition. NARI, a flavonoid has diverse biological activities, including anti-apoptotic, anti-oxidant, and anti-inflammatory properties. This study aims to design and develop a supramolecular formulation of SUL with NARI to enhance its solubility, dissolution, and permeability by targeting a novel GlyT1 inhibition mechanism, extensive experimental characterization was performed using solid-state experimental techniques in conjunction with a computational approach. This approach included quantum mechanics-based molecular dynamics (MD) simulation and density functional theory (DFT) studies to investigate intermolecular interactions, phase transformation and various electronic structure-based properties. The findings of the miscibility study, radial distribution function (RDF) analysis, quantitative simulations of hydrogen/π-π bond interactions and geometry optimization aided in comprehending the coamorphization aspects of SUL-NARI Supramolecular systems. Molecular docking and MD simulation were performed for detailed binding affinity assessment and target validation. The solubility, dissolution and ex-vivo permeability studies demonstrated significant improvements with 31.88-fold, 9.13-fold and 1.83-fold increments, respectively. Furthermore, biological assessments revealed superior neuroprotective effects in the SUL-NARI coamorphous system compared to pure SUL. In conclusion, this study highlights the advantages of a drug-nutraceutical supramolecular formulation for improving the solubility and permeability of SUL, targeting novel schizophrenia treatment approaches through combined computational and experimental analyses.
Collapse
Affiliation(s)
- Ekta Pardhi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Devendra Singh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Rahul Khemchandani
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Mohd Rabi Bazaz
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Manoj P Dandekar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Gananadhamu Samanthula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Shashi Bala Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Neelesh Kumar Mehra
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
2
|
Cao Y, Su J. Bioequivalence of 200 mg Amisulpride Tablets in Healthy Chinese Volunteers under Fasting and Fed Conditions. Clin Pharmacol Drug Dev 2024; 13:32-36. [PMID: 37986678 DOI: 10.1002/cpdd.1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
In this study, we compared the pharmacokinetics and safety of a new generic product and a branded reference product of amisulpride tablets. Additionally, we assessed the bioequivalence of the 2 products in healthy Chinese volunteers to acquire sufficient evidence for the marketing approval of the generic drug. Thirty volunteers under fasting and fed conditions were randomly administered a single dose of the test or reference drug orally, followed by a 7-day washout period. The pharmacokinetic parameters were obtained by the concentration-time profiles, including the area under the plasma concentration-time curve (AUC) over the dosing interval, AUC from time zero to infinity, maximum plasma concentration, time to achieve maximum plasma concentration, and elimination half-life. AUC from time zero to infinity of amisulpride in the postprandial group was reduced by approximately 25%, suggesting that a high-fat diet can affect this parameter. In the aspect of safety, no serious adverse events occurred. This study demonstrated that generic and reference products of amisulpride tablets were bioequivalent in healthy Chinese volunteers under fasting and fed conditions.
Collapse
Affiliation(s)
- Yi Cao
- Department of Pharmacy, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Jianfen Su
- Department of Pharmacy, Guangzhou Panyu Central Hospital, Guangzhou, China
| |
Collapse
|
3
|
Sinsinwar S, Vadivel V. Development and characterization of catechin-in-cyclodextrin-in-phospholipid liposome to eradicate MRSA-mediated surgical site infection: Investigation of their anti-infective efficacy through in vitro and in vivo studies. Int J Pharm 2021; 609:121130. [PMID: 34600052 DOI: 10.1016/j.ijpharm.2021.121130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 12/18/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is one of the prime pathogens responsible for surgical site infection (SSI). Treatment of SSI remains challenging because of resistant nature of MRSA, which is a major threat in recent years. Our previous work revealed the antibacterial potential of catechin isolated from cashewnut shell against MRSA. However, the application of catechin to treat MRSA-mediated SSI is hampered because of its poor solubility and low trans-dermal delivery. Hence, the present study focused on developing catechin-in-cyclodextrin-in-phospholipid liposome (CCPL) and evaluating its physicochemical characteristics and anti-infective efficacy through in vitro and in vivo models. Encapsulation of catechin with β-cyclodextrin and soybean lecithin was confirmed through UV-Vis spectroscopy, FTIR, and XRD techniques, while TEM imaging revealed the size of CCPL (206 nm). The CCPL displayed a higher level of water solubility (25.13%) and in vitro permeability (42.14%) compared to pure catechin. A higher level of encapsulation efficiency (98.9%) and antibacterial activity (19.8 mm of ZOI and 31.25 μg/mL of MIC) were noted in CCPL compared to the catechin/cyclodextrin complex. CCPL recorded significant and dose-dependent healing of the incision, significant reduction of bacterial count, improved epithelization, and effective prevention of inflammation in skin samples of SSI-induced Balb/c mice. Data of the present work suggest that the CCPL could be considered as a novel and potential candidate to mitigate MRSA-mediated SSI after clinical trials.
Collapse
Affiliation(s)
- Simran Sinsinwar
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India
| | - Vellingiri Vadivel
- Chemical Biology Lab (ASK-II-409), School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamilnadu, India.
| |
Collapse
|
4
|
Rajendran R, Menon KN, Nair SC. Nanotechnology Approaches for Enhanced CNS Drug Delivery in the Management of Schizophrenia. Adv Pharm Bull 2021; 12:490-508. [PMID: 35935056 PMCID: PMC9348538 DOI: 10.34172/apb.2022.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 11/09/2022] Open
Abstract
Schizophrenia is a neuropsychiatric disorder mainly affecting the central nervous system, presented with auditory and visual hallucinations, delusion and withdrawal from society. Abnormal dopamine levels mainly characterise the disease; various theories of neurotransmitters explain the pathophysiology of the disease. The current therapeutic approach deals with the systemic administration of drugs other than the enteral route, altering the neurotransmitter levels within the brain and providing symptomatic relief. Fluid biomarkers help in the early detection of the disease, which would improve the therapeutic efficacy. However, the major challenge faced in CNS drug delivery is the blood-brain barrier. Nanotherapeutic approaches may overcome these limitations, which will improve safety, efficacy, and targeted drug delivery. This review article addresses the main challenges faced in CNS drug delivery and the significance of current therapeutic strategies and nanotherapeutic approaches for a better understanding and enhanced drug delivery to the brain, which improve the quality of life of schizophrenia patients.
Collapse
Affiliation(s)
| | - Krishnakumar Neelakandha Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Science and Research Centre, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | | |
Collapse
|
5
|
Applications of innovative technologies to the delivery of antipsychotics. Drug Discov Today 2021; 27:401-421. [PMID: 34601123 DOI: 10.1016/j.drudis.2021.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Psychosis is a high-incidence pathology associated with a profound alteration in the perception of reality. The limitations of drugs available on the market have stimulated the search for alternative solutions to achieve effective antipsychotic therapies. In this review, we evaluate innovative formulations of antipsychotic drugs developed through the application of modern pharmaceutical technologies, including classes of micro and nanocarriers, such as lipid formulations, polymeric nanoparticles (NPs), solid dispersions, and cyclodextrins (CDs). We also consider alternative routes of administration to the oral and parenteral ones currently used. Improved solubility, stability of preparations, and pharmacokinetic (PK) and pharmacodynamic (PD) parameters confirm the potential of these new formulations in the treatment of psychotic disorders.
Collapse
|
6
|
Sun F, Yu F, Gao Z, Ren Z, Jin W. Study on the relationship among dose, concentration and clinical response in Chinese schizophrenic patients treated with Amisulpride. Asian J Psychiatr 2021; 62:102694. [PMID: 34052710 DOI: 10.1016/j.ajp.2021.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/12/2021] [Accepted: 05/07/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVE To provide therapeutic window of amisulpride dose and serum concentration. METHODS 194 schizophrenics were assessed with PANSS. The concentration of Amisulpride in blood was tested. And relationship with concentration was analyzed. RESULTS The dose of amisulpride was 100mg∼1200 mg/d(555+/-218), plasma concentration was 20∼1280 ng/mL(349+/-223) and C/D ratio was 0.07∼1.65 (0.63+/-0.34). The correlation of dose and concentration was significantly correlated (r = 0.55; P < 0.05).It was found that concentration(P < 0.001), C/D ratio(r = 0.383, P < 0.001), rather than dose (-0.042,p > 0.05) related to age significantly.It was found no differences in dose(p > 0.05), concentration (p > 0.05) and C/D ratio(p > 0.05) between male and female patients. The change ratio of positive symptom was 10 %∼90 %, negative symptom was 5∼80 %, general symptoms was 5∼90 %, PANSS was 5∼90 %.The correlation between change ratio of positive symptom, general symptom and PANSS and dose, concentration were significant(P < 0.01), but not related with the change ratio of negative symptom(p>0.05).The both dose and concentration of amisulpride were higher significantly in effective group than that in ineffective group according to change ratio of positive symptom, negative symptom, general symptom and PANSS(P < 0.01). CONCLUSION The correlation of dose and concentration of amisulpride was significantly correlated. The recommended range 457∼637 ng/mL was suggested as average therapeutic window.
Collapse
Affiliation(s)
- Fengli Sun
- Zhejiang Province Mental Health Center, Department of Psychiatry, Zhejiang Province Tongde Hospital, Hangzhou, Zhejiang, 310012, China.
| | - Fang Yu
- Zhejiang Province Mental Health Center, Department of Psychiatry, Zhejiang Province Tongde Hospital, Hangzhou, Zhejiang, 310012, China; Tongde Hospital Affiliated to Zhejiang Chinese Medicine University, Huzhou, Zhejiang, 313000, China
| | - Zhihan Gao
- Depart of Clinical Psychology, Hangzhou Geriatric Hospital, 216 Pinghai Rd, Hangzhou, 310008, China
| | - Zhibin Ren
- Zhejiang Province Mental Health Center, Department of Psychiatry, Zhejiang Province Tongde Hospital, Hangzhou, Zhejiang, 310012, China
| | - Weidong Jin
- Zhejiang Province Mental Health Center, Department of Psychiatry, Zhejiang Province Tongde Hospital, Hangzhou, Zhejiang, 310012, China; Tongde Hospital Affiliated to Zhejiang Chinese Medicine University, Huzhou, Zhejiang, 313000, China; Zhejiang Chinese Medicine University, Hangzhou, Zhejiang, 311200, China.
| |
Collapse
|
7
|
Annu, Baboota S, Ali J. Combination antipsychotics therapy for schizophrenia and related psychotic disorders interventions: Emergence to nanotechnology and herbal drugs. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Bayat F, Hosseinpour-Moghadam R, Mehryab F, Fatahi Y, Shakeri N, Dinarvand R, Ten Hagen TLM, Haeri A. Potential application of liposomal nanodevices for non-cancer diseases: an update on design, characterization and biopharmaceutical evaluation. Adv Colloid Interface Sci 2020; 277:102121. [PMID: 32092487 DOI: 10.1016/j.cis.2020.102121] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022]
Abstract
Liposomes, lipid-based vesicular systems, have attracted major interest as a means to improve drug delivery to various organs and tissues in the human body. Recent literature highlights the benefits of liposomes for use as drug delivery systems, including encapsulating of both hydrophobic and hydrophilic cargos, passive and active targeting, enhanced drug bioavailability and therapeutic effects, reduced systemic side effects, improved cargo penetration into the target tissue and triggered contents release. Pioneering work of liposomes researchers led to introduction of long-circulating, ligand-targeted and triggered release liposomes, as well as, liposomes containing nucleic acids and vesicles containing combination of cargos. Altogether, these findings have led to widespread application of liposomes in a plethora of areas from cancer to conditions such as cardiovascular, neurologic, respiratory, skin, autoimmune and eye disorders. There are numerous review articles on the application of liposomes in treatment of cancer, which seems the primary focus, whereas other diseases also benefit from liposome-mediated treatments. Therefore, this article provides an illustrated detailed overview of liposomal formulations, in vitro characterization and their applications in different disorders other than cancer. Challenges and future directions, which must be considered to obtain the most benefit from applications of liposomes in these disorders, are discussed.
Collapse
Affiliation(s)
- Fereshteh Bayat
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Hosseinpour-Moghadam
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Mehryab
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Yousef Fatahi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niayesh Shakeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Timo L M Ten Hagen
- Laboratory Experimental Surgical Oncology, Section Surgical Oncology, Department of Surgery, Erasmus MC Cancer Center, Rotterdam, the Netherlands.
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Fernández MA, Silva OF, Vico RV, de Rossi RH. Complex systems that incorporate cyclodextrins to get materials for some specific applications. Carbohydr Res 2019; 480:12-34. [PMID: 31158527 DOI: 10.1016/j.carres.2019.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/06/2019] [Accepted: 05/15/2019] [Indexed: 12/14/2022]
Abstract
Cyclodextrins (CDs) are a family of biodegradable cyclic hydrocarbons composed of α-(1,4) linked glucopyranose subunits, the more common containing 6, 7 or 8 glucose units are named α, β and γ-cyclodextrins respectively. Since the discovery of CDs, they have attracted interest among scientists and the first studies were about the properties of the native compounds and in particular their use as catalysts of organic reactions. Characteristics features of different types of cyclodextrins stimulated investigation in different areas of research, due to its non-toxic and non-inmunogenic properties and also to the development of an improved industrial production. In this way, many materials with important properties have been developed. This mini-review will focus on chemical systems that use cyclodextrins, whatever linked covalently or mediated by the non covalent interactions, to build complex systems developed mainly during the last five years.
Collapse
Affiliation(s)
- Mariana A Fernández
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina.
| | - O Fernando Silva
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Raquel V Vico
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| | - Rita H de Rossi
- Instituto de Investigaciones en Fisicoquímica de Córdoba, CONICET y Dpto. de Química Orgánica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba. Ciudad Universitaria, X5000HUA, Córdoba, Argentina
| |
Collapse
|