1
|
Fandiño OE, Hutton ARJ, Zhang C, Abbate MTA, Naser YA, Li Y, Paredes AJ, Donnelly RF. Application of microarray patches for the transdermal administration of psychedelic drugs in micro-doses. Eur J Pharm Biopharm 2025; 207:114603. [PMID: 39643092 DOI: 10.1016/j.ejpb.2024.114603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/18/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Throughout history, psychedelic compounds have been used for religious, spiritual and recreational purposes. A plethora of studies have reported the use of psychedelic compounds in the treatment of various conditions, such as alcoholism, addictions, depressive state to borderline schizophrenia, personality disorder, among other mental disorders. Psychedelic microdosing, a common technique in recent years, involves the consumption of small doses of psychedelic drugs for therapeutic purposes. This study investigated the potential of hydrogel-forming microarray patches (HF-MAPs) to deliver N,N-dimethyltryptamine (DMT), 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT), and mescaline (MES) in small doses through the skin. To this purpose, HF-MAPs were prepared using poly(vinyl alcohol) (PVA) and poly(vinyl pyrrolidone) (PVP), using citric acid as the crosslinker. Two different reservoirs, containing PVP and PVA as the main components and poly(ethylene)glycol 400 (PEG400) and glycerol as plasticising agents, were used to deliver all the drugs from the HF-MAPs. Franz cells studies in excised neonatal porcine skin demonstrated that the permeation of DMT, 5-MeO-DMT and MES was better from the PEG400 reservoir, showing a permeation of 60.71 %, 59.61 % and 41.85 % respectively. Pharmacokinetic studies in rats showed that HF-MAP technology as a strategy for microdosing psychedelic compounds was also demonstrated with DMT. AUCt0-final for the HF-MAP cohort (7186 ± 1296 ng/mL*h) was significantly greater than the IM cohort (1803 ± 53.25 ng/mL*h) (p = 0.0020), with a relative bioavailability of ∼ 72 %. Considering their pharmacokinetic profile, the frequency of DMT dosing could be reduced with HF-MAP when compared to the IM route.
Collapse
Affiliation(s)
- Octavio E Fandiño
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aaron R J Hutton
- School of Pharmacy and Pharmaceutical Sciences, Ulster University, Coleraine BT52 1SA, UK
| | - Chunyang Zhang
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Marco T A Abbate
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yara A Naser
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yaocun Li
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Narita I, Todo H, Fujiwara C, Teramae H, Oshizaka T, Itakura S, Komatsu S, Takayama K, Sugibayashi K. In silico model to predict dermal absorption of chemicals in finite dose conditions. J Toxicol Sci 2025; 50:171-186. [PMID: 40175111 DOI: 10.2131/jts.50.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
The development of in silico approaches that can estimate the dermal absorption of chemicals exposed in practical conditions is highly anticipated. In the present study, an in silico model to estimate both the dermal absorption rate and dermal permeation profile was developed for the application of chemicals in finite dose conditions. Forty-three chemicals with molecular weights in the range 116-362 and logKo/w in the range 1.1-4.5 were used to develop an in silico model. A gradient boosting tree approach was applied to estimate permeation parameters for diffusion and partition coefficients of the chemicals in skin using physicochemical parameters of the chemicals such as molecular weight, lipophilicity, and the highest and lowest occupied molecular orbitals as the descriptor. In addition, 11 chemicals with different molecular weights and lipophilicities were applied on excised human skin in a finite dose condition, and dermal absorption profiles were obtained. Consideration of donor-solvent evaporation time, saturated concentrations of the chemicals, and donor-solvent coverage area on the skin surface, in addition to estimated skin permeation parameters of the chemicals, showed comparatively good dermal absorption profiles, although some cases of underestimation of dermal absorption were identified. It will be necessary to verify the accuracy of this model through experiments using more chemicals. However, the obtained results suggested that the established model may be valid to estimate the dermal absorption of chemicals in practical conditions.
Collapse
Affiliation(s)
- Ibuki Narita
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Chihiro Fujiwara
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | | | - Takeshi Oshizaka
- Faculty of Pharmaceutical Sciences, Josai International University
| | - Shoko Itakura
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Syuuhei Komatsu
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Kozo Takayama
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | | |
Collapse
|
3
|
Lv W, Zhang Y, Luo H, Xu Q, Quan W, Yang J, Zeng M, Hu N, Yang Z. Wide Remote-Range and Accurate Wireless LC Temperature-Humidity Sensor Enabled by Efficient Mutual Interference Mitigation. ACS Sens 2023; 8:4531-4541. [PMID: 38006356 DOI: 10.1021/acssensors.3c01200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2023]
Abstract
Inductor-capacitor wireless integrated sensors (LCWISs) featuring untethered and multitarget measurements are promising in health monitoring and human-machine interfaces. However, the lack of a profound understanding of the internal interference hinders the design of the LCWIS, which has a wide remote sensing range and high accuracy. Herein, a mutually exclusive effect of the mutual inductance interferences in LCWIS was revealed and quantified, enabling a design with a wide range of remote sensing (working distance comparable to the single-target device, working radius: 4 mm) and 16% reduced area. As a key to accurate multitarget measurement, a quantified target interference model based on interference decomposition was proposed to understand the target interferences, providing profound guidance for the design of ultra-accurate LCWIS. As a proof, we designed a cellulose-polyacrylate-cellulose LCWIS (CPC-LCWIS) with ultrahigh accuracies (∼1.2% RH and ∼0.18 °C) beyond commercial wired gauges. The CPC-LCWIS with full-coil sensing structures achieved exceptionally high sensitivities (0.36 MHz/°C and 0.25 MHz/% RH). The CPC-LCWIS was validated for health monitoring and human-machine interfaces. The concept studied in this work provides profound guidance for designing a high-performance flexible LCWIS for advanced wearable electronics.
Collapse
Affiliation(s)
- Wen Lv
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yongwei Zhang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hanyu Luo
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qingda Xu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wenjing Quan
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
4
|
Abrantes DC, Rogerio CB, Campos EVR, Germano-Costa T, Vigato AA, Machado IP, Sepulveda AF, Lima R, de Araujo DR, Fraceto LF. Repellent active ingredients encapsulated in polymeric nanoparticles: potential alternative formulations to control arboviruses. J Nanobiotechnology 2022; 20:520. [PMID: 36496396 PMCID: PMC9741802 DOI: 10.1186/s12951-022-01729-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
Dengue, yellow fever, Chinkungunya, Zika virus, and West Nile fever have infected millions and killed a considerable number of humans since their emergence. These arboviruses are transmitted by mosquito bites and topical chemical repellents are the most commonly used method to protect against vector arthropod species. This study aimed to develop a new generation of repellent formulations to promote improved arboviruses transmission control. A repellent system based on polycaprolactone (PCL)-polymeric nanoparticles was developed for the dual encapsulation of IR3535 and geraniol and further incorporation into a thermosensitive hydrogel. The physicochemical and morphological parameters of the prepared formulations were evaluated by dynamic light scattering (DLS), nano tracking analysis (NTA), atomic force microscopy (AFM). In vitro release mechanisms and permeation performance were evaluated before and after nanoparticles incorporation into the hydrogels. FTIR analysis was performed to evaluate the effect of formulation epidermal contact. Potential cytotoxicity was evaluated using the MTT reduction test and disc diffusion methods. The nanoparticle formulations were stable over 120 days with encapsulation efficiency (EE) of 60% and 99% for IR3535 and geraniol, respectively. AFM analysis revealed a spherical nanoparticle morphology. After 24 h, 7 ± 0.1% and 83 ± 2% of the GRL and IR3535, respectively, were released while the same formulation incorporated in poloxamer 407 hydrogel released 11 ± 0.9% and 29 ± 3% of the loaded GRL and IR3535, respectively. GRL permeation from PCL nanoparticles and PCL nanoparticles in the hydrogel showed similar profiles, while IR3535 permeation was modulated by formulation compositions. Differences in IR3535 permeated amounts were higher for PCL nanoparticles in the hydrogels (36.9 ± 1.1 mg/cm2) compared to the IR3535-PCL nanoparticles (29.2 ± 1.5 mg/cm2). However, both active permeation concentrations were low at 24 h, indicating that the formulations (PCL nanoparticles and PCL in hydrogel) controlled the bioactive percutaneous absorption. Minor changes in the stratum corneum (SC) caused by interaction with the formulations may not represent a consumer safety risk. The cytotoxicity results presented herein indicate the carrier systems based on poly-epsilon caprolactone (PCL) exhibited a reduced toxic effect when compared to emulsions, opening perspectives for these systems to be used as a tool to prolong protection times with lower active repellent concentrations.
Collapse
Affiliation(s)
- Daniele Carvalho Abrantes
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Carolina Barbara Rogerio
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Estefânia Vangelie Ramos Campos
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| | - Tais Germano-Costa
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Aryane Alves Vigato
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Ian Pompermeyer Machado
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Anderson Ferreira Sepulveda
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Renata Lima
- grid.442238.b0000 0001 1882 0259Laboratory of Bioactivity Assessment and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo Brazil
| | - Daniele Ribeiro de Araujo
- grid.412368.a0000 0004 0643 8839Human and Natural Sciences Center, Federal University of ABC, Santo André, São Paulo 09210-580 Brazil
| | - Leonardo Fernandes Fraceto
- grid.410543.70000 0001 2188 478XSão Paulo State University (UNESP), Institute of Science and Technology, Avenida Três de Março 511, Alto da Boa Vista, Sorocaba, São Paulo 18087-180 Brazil
| |
Collapse
|
5
|
Sano T, Okada A, Kawasaki K, Kume T, Fukui M, Todo H, Sugibayashi K. Self-Assembled Structure of α-Isostearyl Glyceryl Ether Affects Skin Permeability-a Lamellar with 70-nm Spaces and L3 Phase Enhanced the Transdermal Delivery of a Hydrophilic Model Drug. AAPS PharmSciTech 2022; 23:296. [PMID: 36369392 DOI: 10.1208/s12249-022-02452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Self-assembled surfactant structures, such as liquid crystals, have the potential to enhance transdermal drug delivery. In the present study, the pseudo-ternary system of GET (composed of α-Isostearyl glyceryl ether (GEIS) and polysorbate 60)/1,3 butanediol (BG)/water) was shown to exhibit a complex phase diagram. Small- and wide-angle X-ray scattering (SWAXS) and freeze-fracture transmission electron microscopy (FF-TEM) revealed that GET6BG60 (6%GET/60%BG/34%Water) formed a lamellar phase with a repeated distance of approximately 72 nm. Such a long-repeated distance of the lamellar phase was unique in the surfactant system. Moreover, the various structures, such as multilamellar vesicles and branched-like layers, were observed, which suggested that they might be deformable. On the other hand, only core-shell particles were observed in GET6BG20, the core of which was an L3 phase. GET6BG20 and GET6BG60 significantly enhanced the skin permeation of the hydrophilic model drug, antipyrine (ANP) (log Ko/w, - 1.51). However, their permeation profiles were distinct. Liquid chromatography-tandem mass spectrometry revealed that epidermal accumulation of GEIS was significantly higher with GET6BG60 than GET6BG20 after 1.5 h of permeation, which might be attributed to differences in their deformable properties. Furthermore, GEIS was reported to affect intercellular lipids. Accumulated GEIS in the epidermis may have interacted with intercellular lipids and enhanced the transdermal delivery of ANP. The difference in the permeation profiles of ANP may be attributed to the penetration process of GEIS in the epidermis. This study suggests that GET6BG20 and GET6BG60 are unique carriers to enhance the permeation of hydrophilic drugs, such as ANP.
Collapse
Affiliation(s)
- Tomohiko Sano
- Faculty of Life & Health Science, Teikyo University of Science, 2-2-1, Senjyu-Sakuragi Adachi-Ku, Tokyo, 121-0045, Japan.
| | - Akie Okada
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kazunori Kawasaki
- Biomedical Research Institute, AIST, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Takuji Kume
- R&D-Development Research, Kao Corporation, 1334 Minato, Wakayama, 640-8580, Japan
| | - Minoru Fukui
- Research and Innovation Promotion Headquarter, AIST, 1-8-31 Midorigaoka, Ikeda, Osaka, 563-8577, Japan
| | - Hiroaki Todo
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Kenji Sugibayashi
- Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan.,Faculty of Pharmaceutical Sciences, Josai International University, 1 Gumyu Togane, Chiba, 283-8555, Japan
| |
Collapse
|
6
|
Silva IR, Lima FA, Reis ECO, Ferreira LAM, Goulart GAC. Stepwise Protocols for Preparation and Use of Porcine Ear Skin for in Vitro Skin Permeation Studies Using Franz Diffusion Cells. Curr Protoc 2022; 2:e391. [PMID: 35290730 DOI: 10.1002/cpz1.391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The skin, the largest organ of the body, is an attractive route of topical and systemic drug administration. During the development of topical formulations, in vitro skin permeation studies using biological membranes mounted in Franz diffusion cells are a useful tool to assess the permeation of substances through the skin, and are recommended by the Organization for Economic Cooperation and Development (OECD). Among the types of biological membranes used in such studies, porcine ear skin has been identified as the most promising, due to its similarities to human skin and its greater accessibility as compared to human skin. To standardize techniques for the preparation and use of porcine ear skin as biological membrane, here we present systematic procedures for the selection of porcine ears, their cleaning, the removal of skin from cartilage, its transformation into membranes, and its use for the in vitro assessment of the permeation of drugs from topical formulations. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Obtaining porcine ear membranes Basic Protocol 2: Preparation of membranes from porcine ear skin and use of membranes for in vitro skin permeation studies.
Collapse
Affiliation(s)
- Izabela R Silva
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Brazil
| | - Flávia A Lima
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Brazil
| | - Eduardo C O Reis
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Brazil
| | - Lucas A M Ferreira
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Brazil
| | - Gisele A C Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Brazil
| |
Collapse
|
7
|
Čuříková-Kindlová BA, Vovesná A, Nováčková A, Zbytovská J. In Vitro Modeling of Skin Barrier Disruption and its Recovery by Ceramide-Based Formulations. AAPS PharmSciTech 2021; 23:21. [PMID: 34907505 DOI: 10.1208/s12249-021-02154-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/27/2021] [Indexed: 11/30/2022] Open
Abstract
Disrupted skin barrier, one of the severe attributes of inflammatory skin diseases, is caused by lower content and pathological changes of lipids in the uppermost skin layer-stratum corneum (SC). Restoring skin barrier with native skin lipids, especially ceramides (Cers), appears to be a promising therapy with minimum side effects. For testing the efficiency of these formulations, suitable in vitro models of the skin with disrupted barriers are needed. For the similarity with the human tissue, our models were based on the pig ear skin. Three different ways of skin barrier disruption were tested and compared: tape stripping, lipid extraction with organic solvents, and barrier disruption by sodium lauryl sulfate. The level of barrier disruption was investigated by permeation studies, and parameters of each method were modified to reach significant changes between the non-disrupted skin and our model. Fourier transform infrared (FTIR) spectroscopy was employed to elucidate the changes of the skin permeability on the molecular scale. Further, the potential of the developed models to be restored by skin barrier repairing agents was evaluated by the same techniques. We observed a significant decrease in permeation characteristics through our in vitro models treated with the lipid mixtures compared to the untreated damaged skin, which implied that the skin barrier was substantially restored. Taken together, the results suggest that our in vitro models are suitable for the screening of potential barrier repairing agents.
Collapse
|
8
|
Thors L, Wästerby P, Wigenstam E, Larsson A, Öberg L, Bucht A. Do cold weather temperatures affect the efficacy of skin decontamination? J Appl Toxicol 2021; 42:961-969. [PMID: 34850419 DOI: 10.1002/jat.4265] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 01/06/2023]
Abstract
Skin decontamination in cold weather temperatures might be challenging due to the aggravating circumstances. However, no information is available on the efficacy of commonly used procedures in winter conditions. Therefore, the efficacy of the reactive skin decontamination lotion (RSDL) and soapy water decontamination following skin exposure to the nerve agent VX was evaluated at three ambient air temperatures (-5°C, -15°C and room temperature). Experiments were performed in vitro using human dermatomed skin. The ability of RSDL to degrade VX at the three different air temperatures was separately evaluated. The ambient air temperature in experiments without decontamination did not influence the penetration rate of VX through skin. RSDL decontamination was highly efficient in removing VX from skin when performed in all three ambient temperatures, despite the slower agent degradation rate of VX at the lower temperatures. Decontamination with soapy water at RT resulted in an increased skin penetration of VX compared with the control without decontamination; however, in colder temperatures the VX skin penetration was similar to the corresponding control without decontamination. At RT, dry removal prior to washing with soapy water did not improve decontamination of VX compared with washing solely with soapy water. This study demonstrated high efficacy of RSDL decontamination following skin exposure to VX also at cold temperatures. The previously reported 'wash-in' effect of soapy water on VX skin penetration was reduced at cold temperatures. Altogether, this study found a scientific basis to establish guidelines for skin decontamination of chemical casualties at cold weather temperatures.
Collapse
Affiliation(s)
- Lina Thors
- Swedish Defence Research Agency, CBRN Defence and security, Umeå, Sweden
| | - Pär Wästerby
- Swedish Defence Research Agency, CBRN Defence and security, Umeå, Sweden
| | | | - Andreas Larsson
- Swedish Defence Research Agency, CBRN Defence and security, Umeå, Sweden
| | - Linda Öberg
- Swedish Defence Research Agency, CBRN Defence and security, Umeå, Sweden
| | - Anders Bucht
- Swedish Defence Research Agency, CBRN Defence and security, Umeå, Sweden
| |
Collapse
|
9
|
Abrantes DC, Rogerio CB, de Oliveira JL, Campos EVR, de Araújo DR, Pampana LC, Duarte MJ, Valadares GF, Fraceto LF. Development of a Mosquito Repellent Formulation Based on Nanostructured Lipid Carriers. Front Pharmacol 2021; 12:760682. [PMID: 34707504 PMCID: PMC8542870 DOI: 10.3389/fphar.2021.760682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Arboviral diseases are a threat to global public health systems, with recent data suggesting that around 40% of the world's population is at risk of contracting arboviruses. The use of mosquito repellents is an appropriate strategy to avoid humans coming into contact with vectors transmitting these viruses. However, the cost associated with daily applications of repellents can make their use unfeasible for the low-income populations that most need protection. Therefore, the development of effective formulations offers a way to expand access to this means of individual protection. Consequently, research efforts have focused on formulations with smaller quantities of active agents and sustained release technology, aiming to reduce re-applications, toxicity, and cost. The present study investigates the development of nanostructured lipid carriers (NLCs) loaded with a mixture of the compounds icaridin (synthetic) and geraniol (natural), incorporated in cellulose hydrogel. The NLCs were prepared by the emulsion/solvent evaporation method and were submitted to physicochemical characterization as a function of time (at 0, 15, 30, and 60 days). The prepared system presented an average particle size of 252 ± 5 nm, with encapsulation efficiency of 99% for both of the active compounds. The stability profile revealed that the change of particle size was not significant (p > 0.05), indicating high stability of the system. Rheological characterization of the gels containing NLCs showed that all formulations presented pseudoplastic and thixotropic behavior, providing satisfactory spreadability and long shelf life. Morphological analysis using atomic force microscopy (AFM) revealed the presence of spherical nanoparticles (252 ± 5 nm) in the cellulose gel matrix. Permeation assays showed low fluxes of the active agents through a Strat-M® membrane, with low permeability coefficients, indicating that the repellents would be retained on the surface to which they are applied, rather than permeating the tissue. These findings open perspectives for the use of hybrid formulations consisting of gels containing nanoparticles that incorporate repellents effective against arthropod-borne virus. These systems could potentially provide improvements considering the issues of effectiveness, toxicity, and safety.
Collapse
Affiliation(s)
| | | | - Jhones L de Oliveira
- Faculty of Agronomy and Veterinary Sciences, São Paulo State University (UNESP), São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
10
|
Soares GODN, Lima FA, Goulart GAC, Oréfice RL. Physicochemical characterization of the gelatin/polycaprolactone nanofibers loaded with diclofenac potassium for topical use aiming potential anti-inflammatory action. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2021.1962875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
| | - Flávia Alves Lima
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gisele Assis Castro Goulart
- Department of Pharmaceutics, Faculty of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo Lambert Oréfice
- Department of Metallurgical, Materials and Mining Engineering, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
11
|
Todo H, Hasegawa Y, Okada A, Itakura S, Sugibayashi K. Improvement of Skin Permeation of Caffeine, a Hydrophilic Drug, by the Application of Water Droplets Provided by a Novel Humidifier Device. Chem Pharm Bull (Tokyo) 2021; 69:727-733. [PMID: 34334516 DOI: 10.1248/cpb.c21-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recently, a novel humidifier that sprays water fine droplets equipped with a copolymer, poly(3,4-ethylene dioxythiophene)-poly(styrene sulfonate) (PEDOT/PSS) was developed. PEDOT/PSS in the humidifier absorbs water from the environment and releases fine water droplets by heating. In the present study, the effect of hydration on the skin barrier, stratum corneum, was first determined by the application of fine water droplets using the humidifier. The skin-penetration enhancement effect of a model hydrophilic drug, caffeine, was also investigated using the humidifier and compared with a conventional water-evaporative humidifier. More prolonged skin hydration effect was observed after application of the fine water droplet release humidifier using PEDOT/PSS than that using a conventional humidifier. In addition, markedly higher skin permeation of caffeine was observed in both infinite and finite dose conditions. Furthermore, higher skin permeation of caffeine from oil/water emulsion containing caffeine was observed in finite dose conditions by pretreatment with the humidifier using PEDOT/PSS. This device can provide water droplets without replenishing water, so it is more convenient for enhancing the skin permeation of chemical compounds from topical drugs and cosmetic formulations.
Collapse
Affiliation(s)
- Hiroaki Todo
- Graduate School of Pharmaceutical Sciences, Josai University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Yuya Hasegawa
- Graduate School of Pharmaceutical Sciences, Josai University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Akie Okada
- Graduate School of Pharmaceutical Sciences, Josai University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Shoko Itakura
- Graduate School of Pharmaceutical Sciences, Josai University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| | - Kenji Sugibayashi
- Graduate School of Pharmaceutical Sciences, Josai University.,Faculty of Pharmacy and Pharmaceutical Sciences, Josai University
| |
Collapse
|
12
|
Defraeye T, Bahrami F, Rossi RM. Inverse Mechanistic Modeling of Transdermal Drug Delivery for Fast Identification of Optimal Model Parameters. Front Pharmacol 2021; 12:641111. [PMID: 33995047 PMCID: PMC8117338 DOI: 10.3389/fphar.2021.641111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/18/2021] [Indexed: 11/13/2022] Open
Abstract
Transdermal drug delivery systems are a key technology to administer drugs with a high first-pass effect in a non-invasive and controlled way. Physics-based modeling and simulation are on their way to become a cornerstone in the engineering of these healthcare devices since it provides a unique complementarity to experimental data and additional insights. Simulations enable to virtually probe the drug transport inside the skin at each point in time and space. However, the tedious experimental or numerical determination of material properties currently forms a bottleneck in the modeling workflow. We show that multiparameter inverse modeling to determine the drug diffusion and partition coefficients is a fast and reliable alternative. We demonstrate this strategy for transdermal delivery of fentanyl. We found that inverse modeling reduced the normalized root mean square deviation of the measured drug uptake flux from 26 to 9%, when compared to the experimental measurement of all skin properties. We found that this improved agreement with experiments was only possible if the diffusion in the reservoir holding the drug was smaller than the experimentally measured diffusion coefficients suggested. For indirect inverse modeling, which systematically explores the entire parametric space, 30,000 simulations were required. By relying on direct inverse modeling, we reduced the number of simulations to be performed to only 300, so a factor 100 difference. The modeling approach's added value is that it can be calibrated once in-silico for all model parameters simultaneously by solely relying on a single measurement of the drug uptake flux evolution over time. We showed that this calibrated model could accurately be used to simulate transdermal patches with other drug doses. We showed that inverse modeling is a fast way to build up an accurate mechanistic model for drug delivery. This strategy opens the door to clinically ready therapy that is tailored to patients.
Collapse
Affiliation(s)
- Thijs Defraeye
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| | - Flora Bahrami
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland.,University of Bern, ARTORG Center for Biomedical Engineering Research, Bern, Switzerland
| | - René M Rossi
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Biomimetic Membranes and Textiles, St. Gallen, Switzerland
| |
Collapse
|
13
|
Maharao N, Antontsev V, Hou H, Walsh J, Varshney J. Scalable in silico Simulation of Transdermal Drug Permeability: Application of BIOiSIM Platform. Drug Des Devel Ther 2020; 14:2307-2317. [PMID: 32606600 PMCID: PMC7296558 DOI: 10.2147/dddt.s253064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Transdermal drug delivery is gaining popularity as an alternative to traditional routes of administration. It can increase patient compliance because of its painless and noninvasive nature, aid compounds in bypassing presystemic metabolic effects, and reduce the likelihood of adverse effects through decreased systemic exposure. In silico physiological modeling is critical to predicting dermal exposure for a therapeutic and assessing the impact of different formulations on transdermal disposition. METHODS The present study aimed at developing a physiologically based transdermal platform, "BIOiSIM", that could be globally applied to a wide variety of compounds to predict their transdermal disposition. The platform integrates a 16-compartment model of compound pharmacokinetics and was used to simulate and predict drug exposure of three chemically and biologically distinct drug-like compounds. Machine learning optimization was composed of two components: exhaustive search algorithm (coarse-tuning) and descent (fine-tuning) integrated with the platform used to quantitatively determine parameters influencing pharmacokinetics (eg permeability, kperm) of test compounds. RESULTS The model successfully predicted drug exposure (AUC, Cmax and Tmax) following transdermal application of morphine, buprenorphine and nicotine in human subjects, mostly with less than two-fold absolute average fold error (AAFE). The model was further able to successfully characterize the relationship between observed systemic exposure and intended pharmacological effect. The predicted systemic concentration of morphine and plasma levels of endogenous pain biomarkers were used to estimate the effectiveness of a given therapeutic regimen. CONCLUSION BIOiSIM marks a novel approach to in silico prediction that will enable leveraging of machine learning technology in the pharmaceutical space. The approach to model development outlined results in scalable, accurate models and enables the generation of large parameter/coefficient datasets from in vivo clinical data that can be used in future work to train quantitative structure activity relationship (QSAR) models for predicting likelihood of compound utility as a transdermally administered therapeutic.
Collapse
|