1
|
Li J, Chen F, Zhang D, Wang Y, Kozak D, Chen K. An Accurate and Fast 31P qNMR Assay Method for Oligonucleotide Therapeutics. Anal Chem 2024; 96:16514-16519. [PMID: 39392205 DOI: 10.1021/acs.analchem.4c03693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Chemically modified nucleic acid molecules have been developed as oligonucleotide therapeutics, and its assay is critical in quality assurance. The common DNA/RNA quantification method using UV-260 nm can lack accuracy because of structure modifications and the possible formation of higher-order structure (HOS). Additionally, process-associated water and counterions affect the accuracy in gravimetric analysis. Thus, to improve accuracy, efficiency, and flexibility, in this work a fast (<1 h) externally referenced 31P quantitative-NMR (qNMR) method was developed. The qNMR assay results agreed within 1-5% of the UV-260 nm results for the single-stranded DNA standards, confirming the method accuracy. Next, an NMR and UV comparison study was performed on intact oligonucleotide drug products. The 31P qNMR method showed 7 ± 2%, 8 ± 1%, and 12 ± 1% lower concentration values compared with drug product labels for eteplirsen, inotersen, and inclisiran, respectively. Meanwhile the UV-260 nm results showed 28 ± 3%, 10 ± 3%, and 10 ± 1% lower concentrations than the label for the same three drugs. The agreement between NMR and UV for phosphorothioate (PS)-based inotersen and mostly phosphodiester (PO)-based inclisiran suggest that the labeled concentration may have been obtained using different extinction coefficients. The underestimate of UV results for eteplirsen, which has a phosphorodiamidate morpholino oligomer (PMO) structure, suggests that the UV-260 nm extinction coefficient may need to be re-established for the PMO based oligonucleotide. Therefore, the 31P qNMR method could be a primary assay method for the oligonucleotide drug and reference standard.
Collapse
Affiliation(s)
- Jiayi Li
- Division of Pharmaceutical Quality Research II, Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Fu Chen
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Deyi Zhang
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Yan Wang
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Darby Kozak
- Division of Therapeutic Performance I, Office of Research and Standards, Office of Generic Drug, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland 20993, United States
| | - Kang Chen
- Division of Pharmaceutical Quality Research II, Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland 20993, United States
| |
Collapse
|
2
|
Wang K, Dai W, Qian K, Scott B, Chen K. A Precise qNMR Method for the Rapid Quantification of Lot-to-Lot Variations in Multiple Quality Attributes of Pentosan Polysulfate Sodium. AAPS J 2023; 25:50. [PMID: 37147461 DOI: 10.1208/s12248-023-00815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
Pentosan polysulfate sodium (PPS) is an orphan drug with anticoagulant activity. PPS is prepared from the chemical processing of xylan extracted from beechwood tree to yield a mixture of 4-6 kDa polysaccharides. The chain is mainly composed of sulfated xylose (Xyl) with branched 4-O-methyl-glucuronate (MGA). During generic drug development, the quality attributes (QAs) including monosaccharide composition, modification, and length need to be comparable to those found in the reference list drug (RLD). However, the range of QA variation of the RLD PPS has not been well characterized. Here, multiple PPS RLD lots were studied using quantitative NMR (qNMR) and diffusion ordered spectroscopy (DOSY) to quantitate the components in the mixture and to probe both inter- and intra-lot precision variability. The DOSY precision assessed using coefficient of variation (CV) was 6%, comparable to PPS inter-lot CV of 5%. The QAs obtained from 1D qNMR were highly precise with a precision CV < 1%. The inter-lot MGA content was 4.8 ± 0.1%, indicating a very consistent botanical raw material source. Other process-related chemical modification including aldehyde at 0.51 ± 0.04%, acetylation at 3.3 ± 0.2% and pyridine at 2.08 ± 0.06%, varied more than MGA content. The study demonstrated that 1D qNMR is a quick and precise method to reveal ranges of variation in multiple attributes of RLD PPS which can be used to assess equivalency with generic formulations. Interestingly, the synthetic process appeared to introduce more variations to the PPS product than the botanical source of the material.
Collapse
Affiliation(s)
- Kai Wang
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Maryland, 20993, Silver Spring, USA
| | - Weixiang Dai
- Division of Lifecycle API, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Keduo Qian
- Division of Lifecycle API, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Barbara Scott
- Division of Lifecycle API, Office of New Drug Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Kang Chen
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Maryland, 20993, Silver Spring, USA.
| |
Collapse
|
3
|
Yilmaz H, Ahmed S, Rodriguez JD, Willett DR. Scanning Electron-Raman Cryomicroscopy for Characterization of Nanoparticle-Albumin Drug Products. Anal Chem 2023; 95:2633-2638. [PMID: 36693238 DOI: 10.1021/acs.analchem.2c03826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nanomaterials have expanded the use of active pharmaceutical ingredients by improving efficacy, decreasing toxicity, and facilitating targeted delivery. To systematically achieve this goal, nanomaterial-containing drugs need to be manufactured with precision in attributes such as size, morphology, surface chemistry, and composition. Their physicochemical characterization is essential as their attributes govern pharmacokinetics yet can be challenging due to the nature of many nanomaterial-based formulations unless advanced sample fixation and in vitro characterization methods are utilized. Here, different cryogenic and other fixation strategies were assessed, and a novel physicochemical characterization method was developed using scanning electron Raman cryo-microscopy (SERCM). A complex nanoparticle albumin bound paclitaxel (nab-paclitaxel) formulation was chosen as a model drug. Plunge freezing (PF), high pressure freezing (HPF), freeze substitution (FS), and membrane filtration were compared for their influence on size and morphology measurements, and formulation-based variations were quantified. SERCM was introduced as a multiattribute physicochemical characterization platform, and the composition of nanoparticles was confirmed as albumin-paclitaxel complexes. By coupling image-based quantitative analysis with chemical analysis, SERCM has the potential to pave the way for the development of comprehensive tools for assessing injectable and ophthalmic nanomaterial-containing drugs in their native-like state.
Collapse
Affiliation(s)
- Huzeyfe Yilmaz
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis 63110, Missouri, United States
| | - Snober Ahmed
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis 63110, Missouri, United States
| | - Jason D Rodriguez
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis 63110, Missouri, United States
| | - Daniel R Willett
- Division of Complex Drug Analysis, Office of Testing and Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, St. Louis 63110, Missouri, United States
| |
Collapse
|
4
|
Sabatelle RC, Liu R, Hung YP, Bressler E, Neal EJ, Martin A, Ekladious I, Grinstaff MW, Colson YL. Ultra-high drug loading improves nanoparticle efficacy against peritoneal mesothelioma. Biomaterials 2022; 285:121534. [PMID: 35487067 PMCID: PMC9881475 DOI: 10.1016/j.biomaterials.2022.121534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 01/31/2023]
Abstract
Peritoneal mesothelioma is an aggressive disease with a median survival of under three years, due to a lack of effective treatment options. Mesothelioma is traditionally considered a "chemoresistant" tumor; however, low intratumoral drug levels coupled with the inability to administer high systemic doses suggests that therapeutic resistance may be due to poor drug delivery rather than inherent biology. While patient survival may improve with repetitive local intraperitoneal infusions of chemotherapy throughout the perioperative period, these regimens carry associated toxicities and significant peri-operative morbidity. To circumvent these issues, we describe ultra-high drug loaded nanoparticles (NPs) composed of a unique poly(1,2-glycerol carbonate)-graft-succinate-paclitaxel (PGC-PTX + PTX) conjugate. PGC-PTX + PTX NPs are cytotoxic, localize to tumor in vivo, and improve survival in a murine model of human peritoneal mesothelioma after a single intraperitoneal (IP) injection compared to multiple weekly doses of the clinically utilized formulation PTX-C/E. Given their unique pharmacokinetics, a second intraperitoneal dose of PGC-PTX + PTX NPs one month later more than doubles the overall survival compared to the clinical control (122 versus 58 days). These results validate the clinical potential of prolonged local paclitaxel to treat intracavitary malignancies such as mesothelioma using a tailored polymer-mediated nanoparticle formulation.
Collapse
Affiliation(s)
- Robert C. Sabatelle
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA
| | - Rong Liu
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Yin P. Hung
- Department of Pathology, Massachusetts General Hospital, Boston, MA
| | - Eric Bressler
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA
| | - Eliza J. Neal
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA
| | - Andrew Martin
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA
| | - Iriny Ekladious
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA
| | - Mark W. Grinstaff
- Departments of Biomedical Engineering and Chemistry, Boston University, Boston, MA,Corresponding Authors: Mark W. Grinstaff, , Yolonda L. Colson,
| | - Yolonda L. Colson
- Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA,Corresponding Authors: Mark W. Grinstaff, , Yolonda L. Colson,
| |
Collapse
|
5
|
Hsu FT, Tsai CL, Chiang IT, Lan KH, Yueh PF, Liang WY, Lin CS, Chao Y, Lan KL. Synergistic effect of Abraxane that combines human IL15 fused with an albumin-binding domain on murine models of pancreatic ductal adenocarcinoma. J Cell Mol Med 2022; 26:1955-1968. [PMID: 35174623 PMCID: PMC8980892 DOI: 10.1111/jcmm.17220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 11/29/2022] Open
Abstract
Nab‐paclitaxel (Abraxane), which is a nanoparticle form of albumin‐bound paclitaxel, is one of the standard chemotherapies for pancreatic ductal adenocarcinoma (PDAC). This study determined the effect of Abraxane in combination with a fusion protein, hIL15‐ABD, on subcutaneous Panc02 and orthotopic KPC C57BL/6 murine PDAC models. Abraxane combined with hIL15‐ABD best suppressed tumour growth and produced a 40%–60% reduction in the tumour size for Panc02 and KPC, compared to the vehicle group. In the combination group, the active form of interferon‐γ (IFN‐γ)‐secreting CD8+ T cells and CD11b+CD86+ M1 macrophages in tumour infiltrating lymphocytes (TILs) were increased. In the tumour drainage lymph nodes (TDLNs) of the combination group, there was a 18% reduction in CD8+IFN‐γ+ T cells and a 0.47% reduction in CD4+CD25+FOXP3+ regulatory T cells, as opposed to 5.0% and 5.1% reductions, respectively, for the control group. Superior suppression of CD11b+GR‐1+ myeloid‐derived suppressor cells (MDSCs) and the induction of M1 macrophages in the spleen and bone marrow of mice were found in the combination group. Abraxane and hIL15‐ABD effectively suppressed NF‐κB‐mediated immune suppressive markers, including indoleamine 2,3‐dioxygenase (IDO), Foxp3 and VEGF. In conclusion, Abraxane combined with hIL15‐ABD stimulates the anticancer activity of effector cells, inhibits immunosuppressive cells within the tumour microenvironment (TME) of PDAC, and produces a greater inhibitory effect than individual monotherapies.
Collapse
Affiliation(s)
- Fei-Ting Hsu
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chang Liang Tsai
- Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - I-Tsang Chiang
- Medical administrative center, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Radiation Oncology, Show Chwan Memorial Hospital, Changhua, Taiwan.,Department of Radiation Oncology, Chang Bing Show Chwan Memorial Hospital, Lukang, Taiwan.,Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | - Keng-Hsueh Lan
- Department of Oncology, National Taiwan University Hospital, Taipei, Taiwan.,Cancer Research Center, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Po-Fu Yueh
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan.,Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Yi Liang
- Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chi-Shuo Lin
- Department of Radiation Oncology, National Yang Ming Chiao Tung University Hospital, Yilan, Taiwan
| | - Yee Chao
- Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Keng-Li Lan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Oncology, Taipei Veterans General Hospital, Taipei, Taiwan
| |
Collapse
|
6
|
NMR Spectroscopy for Protein Higher Order Structure Similarity Assessment in Formulated Drug Products. Molecules 2021; 26:molecules26144251. [PMID: 34299526 PMCID: PMC8307401 DOI: 10.3390/molecules26144251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/21/2022] Open
Abstract
Peptide and protein drug molecules fold into higher order structures (HOS) in formulation and these folded structures are often critical for drug efficacy and safety. Generic or biosimilar drug products (DPs) need to show similar HOS to the reference product. The solution NMR spectroscopy is a non-invasive, chemically and structurally specific analytical method that is ideal for characterizing protein therapeutics in formulation. However, only limited NMR studies have been performed directly on marketed DPs and questions remain on how to quantitively define similarity. Here, NMR spectra were collected on marketed peptide and protein DPs, including calcitonin-salmon, liraglutide, teriparatide, exenatide, insulin glargine and rituximab. The 1D 1H spectral pattern readily revealed protein HOS heterogeneity, exchange and oligomerization in the different formulations. Principal component analysis (PCA) applied to two rituximab DPs showed consistent results with the previously demonstrated similarity metrics of Mahalanobis distance (DM) of 3.3. The 2D 1H-13C HSQC spectral comparison of insulin glargine DPs provided similarity metrics for chemical shift difference (Δδ) and methyl peak profile, i.e., 4 ppb for 1H, 15 ppb for 13C and 98% peaks with equivalent peak height. Finally, 2D 1H-15N sofast HMQC was demonstrated as a sensitive method for comparison of small protein HOS. The application of NMR procedures and chemometric analysis on therapeutic proteins offer quantitative similarity assessments of DPs with practically achievable similarity metrics.
Collapse
|