1
|
Lu B, Yang Y, Li X, Cheng Q, Zhang L, Wu W, Li J. PEGylated PAMAM dendrimer nanoplatform for co-delivery of chemotherapeutic agents and inorganic nanoparticles enhancing chemo-photothermal combination therapy. Colloids Surf B Biointerfaces 2025; 252:114688. [PMID: 40222116 DOI: 10.1016/j.colsurfb.2025.114688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Chemo-photothermal combination therapy has emerged as an important approach for enhancing therapeutic efficacy against tumors. However, developing a flexible nanoplatform capable of co-encapsulating inorganic photothermal agents (PTAs) and organic antitumor drugs remains challenging. A polyethylene glycol-functionalized polyamidoamine (PAMAM) dendrimer (PAMAM-PEG) served as a template for the synthesis of copper sulfide (CuS) nanoparticles and subsequent encapsulation of doxorubicin (DOX) within its inner cavities. The multifunctional nanoplatform demonstrated high colloidal stability along with photothermal conversion efficiency upon 980 nm laser irradiation. This synergistic effect substantially improved DOX cellular uptake and tumor penetration, resulting in superior antitumor efficacy relative to chemotherapy alone. These results demonstrate that PAMAM-PEG represents a promising nanoplatform for combined chemo-photothermal therapy, providing a novel strategy to address current limitations in tumor treatment while enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Binzhong Lu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Yingying Yang
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Xiang Li
- School of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Qiuli Cheng
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Leitao Zhang
- School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China
| | - Wenlan Wu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang 471023, PR China
| | - Junbo Li
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, PR China; School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, PR China.
| |
Collapse
|
2
|
Fan Y, Zhang W, Iqbal Z, Li X, Lin Z, Wu Z, Li Q, Dong H, Zhang X, Gong P, Liu P. Rod-shaped mesoporous silica nanoparticles reduce bufalin cardiotoxicity and inhibit colon cancer by blocking lipophagy. Lipids Health Dis 2024; 23:318. [PMID: 39334257 PMCID: PMC11437918 DOI: 10.1186/s12944-024-02301-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Bufalin (BA) is a potent traditional Chinese medicine derived from toad venom. It has shown significant antitumor activity, but its use is limited by cardiotoxicity, which necessitates innovative delivery methods, such as rod-shaped mesoporous silica nanoparticles (rMSNs). rMSNs have been extensively employed for reducing drug toxicity and for controlled or targeted drug delivery in tumor therapy. However, their potential in delivering BA has not been completely elucidated. Therefore, in this study, BA-loaded rMSNs (BA-rMSNs) were developed to investigate their potential and mechanism in impairing colon cancer cells. METHODS rMSNs were developed via the sol‒gel method. Drug encapsulation efficiency and loading capacity were determined to investigate the advantages of the rMSN in loading BA. The antiproliferative activities of the BA-rMSNs were investigated via 5-ethynyl-2'-deoxyuridine and CCK-8. To evaluate cell death, Annexin V-APC/PI apoptotic and calcein-AM/PI double staining were performed. Western blotting, oil red O staining, and Nile red solution were employed to determine the ability of BA-rMSNs to regulate lipophagy. RESULTS The diameter of the BA-rMSNs was approximately 60 nm. In vitro studies demonstrated that BA-rMSNs markedly inhibited HCT 116 and HT-29 cell proliferation and induced cell death. In vivo studies revealed that BA-rMSNs reduced BA-mediated cardiotoxicity and enhanced BA tumor targeting. Mechanistic studies revealed that BA-rMSNs blocked lipophagy. CONCLUSIONS rMSNs reduced BA-mediated cardiotoxicity and impaired the growth of colon cancer cells. Mechanistically, antitumor activity depends on lipophagy.
Collapse
Affiliation(s)
- Yibao Fan
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
- International Association for Diagnosis and Treatment of Cancer, HongKong, Guangdong, 999077, China
| | - Wei Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- International Association for Diagnosis and Treatment of Cancer, HongKong, Guangdong, 999077, China
| | - Zoya Iqbal
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Xinxin Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Zhiyin Lin
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhuolin Wu
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Qianyou Li
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Hongxia Dong
- Department of Gastroenterology, General Hospital of Chinese PLA, Beijing, 100853, China
| | - Xianbin Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
- International Association for Diagnosis and Treatment of Cancer, HongKong, Guangdong, 999077, China
| | - Peng Gong
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| | - Peng Liu
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors and Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
3
|
Zhang D, Zhai B, Sun J, Cheng J, Zhang X, Guo D. Advances on Delivery System of Active Ingredients of Dried Toad Skin and Toad Venom. Int J Nanomedicine 2024; 19:7273-7305. [PMID: 39050871 PMCID: PMC11268768 DOI: 10.2147/ijn.s469742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/29/2024] [Indexed: 07/27/2024] Open
Abstract
Dried toad skin (TS) and toad venom (TV) are the dried skin of the Bufo bufo gargarizans Cantor and the Bufo melanostictus Schneider, which remove the internal organs and the white secretions of the skin and retroauricular glands. Since 2005, cinobufacini preparations have been approved by the State Food and Drug Administration for use as adjuvant therapies in the treatment of various advanced cancers. Meanwhile, bufalenolides has been identified as the main component of TS/TV, exhibiting antitumor activity, inducing apoptosis of cancer cells and inhibiting cancer cell proliferation or metastasis through a variety of signaling pathways. However, clinical agents frequently face limitations such as inherent toxicity at high concentrations and insufficient tumor targeting. Additionally, the development and utilization of these active ingredients are hindered by poor water solubility, low bioavailability, and rapid clearance from the bloodstream. To address these challenges, the design of a targeted drug delivery system (TDDS) aims to enhance drug bioavailability, improve targeting within the body, increase drug efficacy, and reduce adverse reactions. This article reviews the TDDS for TS/TV, and their active components, including passive, active, and stimuli-responsive TDDS, to provide a reference for advancing their clinical development and use.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Bingtao Zhai
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jing Sun
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Jiangxue Cheng
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Xiaofei Zhang
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| | - Dongyan Guo
- State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi University of Chinese Medicine, Xi’an, 712046, People’s Republic of China
| |
Collapse
|
4
|
Liu Q, Chen X, Tan Y, Liu J, Zhu M, Li D, Zhou Y, Zhang T, Yin QZ. Natural products as glycolytic inhibitors for cervical cancer treatment: A comprehensive review. Biomed Pharmacother 2024; 175:116708. [PMID: 38723515 DOI: 10.1016/j.biopha.2024.116708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024] Open
Abstract
Cervical cancer, a prevalent gynaecological malignancy, presents challenges in late-stage treatment efficacy. Aerobic glycolysis, a prominent metabolic trait in cervical cancer, emerges as a promising target for novel drug discovery. Natural products, originating from traditional medicine, represent a significant therapeutic avenue and primary source for new drug development. This review explores the regulatory mechanisms of glycolysis in cervical cancer and summarises natural compounds that inhibit aerobic glycolysis as a therapeutic strategy. The glycolytic phenotype in cervical cancer is regulated by classical molecules such as HIF-1, HPV virulence factors and specificity protein 1, which facilitate the Warburg effect in cervical cancer. Various natural products, such as artemisinin, shikonin and kaempferol, exert inhibitory effects by downregulating key glycolytic enzymes through signalling pathways such as PI3K/AKT/HIF-1α and JAK2/STAT3. Despite challenges related to drug metabolism and toxicity, these natural compounds provide novel insights and promising avenues for cervical cancer treatment.
Collapse
Affiliation(s)
- Qun Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Xiuhan Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yurong Tan
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Jiao Liu
- Nantong University, Nantong 226019, China
| | - Mingya Zhu
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Delin Li
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| | - Yijie Zhou
- Anyue County Traditional Chinese Medicine Hospital, Ziyang 610072, China.
| | - Tiane Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| | - Qiao Zhi Yin
- Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China.
| |
Collapse
|
5
|
Tang D, Feng Y, Lu J, Jia L, Shen D, Shang J, Chen T, Yin P, Chen J, Wang J. Global trends in bufalin application research for cancer from 2003 to 2022: A bibliometric and visualised analysis. Heliyon 2024; 10:e24395. [PMID: 38268819 PMCID: PMC10803919 DOI: 10.1016/j.heliyon.2024.e24395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 12/17/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024] Open
Abstract
Background Bufalin, the main active ingredient of the traditional Chinese medicine huachansu, is used in the clinical treatment of colorectal cancer and has multiple effects, including the inhibition of migratory invasion, reversal of multi-drug resistance, induction of apoptosis and differentiation, and inhibition of angiogenesis. Methods We collected relevant articles on bufalin from 2003 to 2022 using the Web Science platform, and analysed the information using VOSviewer, CiteSpace, and Microsoft Excel to categorise and summarise the publications over the past 20 years. Results We collected 371 papers, with a steady increase in the number of articles published globally. China has the highest number of published articles, whereas Japan has the highest number of citations. Currently, there is considerable enthusiasm for investigating the anti-tumour mechanism of bufalin and optimising drug delivery systems for its administration. Conclusion For the first time, we present a comprehensive overview of papers published worldwide on bufalin over the past two decades and the progress of its application in tumour therapy. We summarised the key authors, institutions, and countries that have contributed to the field and the potential of bufalin for the treatment of cancer. This will help other researchers obtain an overview of progress in the field, enhance collaboration and knowledge sharing, and promote future research on bufalin.
Collapse
Affiliation(s)
- Donghao Tang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Yuejiao Feng
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jiahao Lu
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Linlin Jia
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Dongxiao Shen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jing Shang
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Teng Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Peihao Yin
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jinbao Chen
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jie Wang
- Shanghai Putuo Central School of Clinical Medicine, Anhui Medical University, Shanghai, 200062, China
- The Fifth Clinical Medical College, Anhui Medical University, Anhui, 230022, China
- Department of General Surgery, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| |
Collapse
|
6
|
Tian Z, Wu X, Peng L, Yu N, Gou G, Zuo W, Yang J. pH-responsive bufadienolides nanocrystals decorated by chitosan quaternary ammonium salt for treating colon cancer. Int J Biol Macromol 2023; 242:124819. [PMID: 37178894 DOI: 10.1016/j.ijbiomac.2023.124819] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Due to its poor prognosis and propensity for metastasizing, colon cancer, a frequent cancer of the gastrointestinal system, has a high morbidity and mortality rate. However, the harsh physiological conditions of the gastrointestinal tract can cause the anti-cancer medicine bufadienolides (BU) to lose some of its structure, impairing its ability to fight cancer. In this study, pH-responsive bufadienolides nanocrystals decorated by chitosan quaternary ammonium salt (HE BU NCs) were successfully constructed by a solvent evaporation method to improve the bioavailability, release characteristics and intestinal transport ability of BU. In vitro, studies have shown that HE BU NCs could improve BU internalization, significantly induce apoptosis, decrease mitochondrial membrane potential, and increase ROS levels in tumour cells. In vivo, experiments showed that HE BU NCs effectively targeted intestinal sites, increased their retention time, and exerted antitumor activity through Caspase-3 and Bax/Bcl-2 ratio pathways. In conclusion, pH-responsive bufadienolides nanocrystals decorated by chitosan quaternary ammonium salt could protect bufadienolides from the destruction of an acidic environment, achieve synergistic release in the intestinal site, improve oral bioavailability, and ultimately exert anti-colon cancer effects, which is a promising strategy for the treatment of colon cancer.
Collapse
Affiliation(s)
- Zonghua Tian
- Departmert of Pharmaceutics, School of Phammacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Xia Wu
- Departmert of Pharmaceutics, School of Phammacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Li Peng
- Department of Hospital Pharmacy, General Hospital of Ningxia Medical University, No. 804 Shengli South Street, Yinchuan 750004, PR China
| | - Na Yu
- Department of Medical Chemistry, School of Basic Medicine, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Guojing Gou
- Departmert of Pharmaceutics, School of Phammacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China
| | - Wenbao Zuo
- Departmert of Pharmaceutics, School of Phammacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
| | - Jianhong Yang
- Departmert of Pharmaceutics, School of Phammacy, Ningxia Medical University, No. 1160 Shengli South Street, Yinchuan 750004, PR China.
| |
Collapse
|
7
|
Bufalin-Mediated Regulation of Cell Signaling Pathways in Different Cancers: Spotlight on JAK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R, and Non-Coding RNAs. Molecules 2023; 28:molecules28052231. [PMID: 36903477 PMCID: PMC10004807 DOI: 10.3390/molecules28052231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 03/04/2023] Open
Abstract
The renaissance of research into natural products has unequivocally and paradigmatically shifted our knowledge about the significant role of natural products in cancer chemoprevention. Bufalin is a pharmacologically active molecule isolated from the skin of the toad Bufo gargarizans or Bufo melanostictus. Bufalin has characteristically unique properties to regulate multiple molecular targets and can be used to harness multi-targeted therapeutic regimes against different cancers. There is burgeoning evidence related to functional roles of signaling cascades in carcinogenesis and metastasis. Bufalin has been reported to regulate pleiotropically a myriad of signal transduction cascades in various cancers. Importantly, bufalin mechanistically regulated JAK/STAT, Wnt/β-Catenin, mTOR, TRAIL/TRAIL-R, EGFR, and c-MET pathways. Furthermore, bufalin-mediated modulation of non-coding RNAs in different cancers has also started to gain tremendous momentum. Similarly, bufalin-mediated targeting of tumor microenvironments and tumor macrophages is an area of exciting research and we have only started to scratch the surface of the complicated nature of molecular oncology. Cell culture studies and animal models provide proof-of-concept for the impetus role of bufalin in the inhibition of carcinogenesis and metastasis. Bufalin-related clinical studies are insufficient and interdisciplinary researchers require detailed analysis of the existing knowledge gaps.
Collapse
|
8
|
Soumoy L, Ghanem GE, Saussez S, Journe F. Bufalin for an innovative therapeutic approach against cancer. Pharmacol Res 2022; 184:106442. [PMID: 36096424 DOI: 10.1016/j.phrs.2022.106442] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022]
Abstract
Bufalin is an endogenous cardiotonic steroid, first discovered in toad venom but also found in the plasma of healthy humans, with anti-tumour activities in different cancer types. The current review is focused on its mechanisms of action and highlights its very large spectrum of effects both in vitro and in vivo. All leads to the conclusion that bufalin mediates its effects by affecting all the hallmarks of cancer and seems restricted to cancer cells avoiding side effects. Bufalin decreases cancer cell proliferation by acting on the cell cycle and inducing different mechanisms of cell death including apoptosis, necroptosis, autophagy and senescence. Bufalin also moderates metastasis formation by blocking migration and invasion as well as angiogenesis and by inducing a phenotype switch towards differentiation and decreasing cancer cell stemness. Regarding its various mechanisms of action in cancer cells, bufalin blocks overactivated signalling pathways and modifies cell metabolism. Moreover, bufalin gained lately a huge interest in the field of drug resistance by both reversing various drug resistance mechanisms and affecting the immune microenvironment. Together, these data support bufalin as a quite promising new anti-cancer drug candidate.
Collapse
Affiliation(s)
- Laura Soumoy
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium.
| | - Ghanem E Ghanem
- Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium
| | - Sven Saussez
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium
| | - Fabrice Journe
- Laboratory of Human Anatomy & Experimental Oncology, Faculty of Medicine and Pharmacy, University of Mons (UMONS), 7000 Mons, Belgium; Laboratory of Clinical and Experimental Oncology, Institut Jules Bordet, Université Libre de Bruxelles (ULB), 1000 Brussels, Belgium.
| |
Collapse
|
9
|
Progress of albumin-polymer conjugates as efficient drug carriers. PURE APPL CHEM 2022. [DOI: 10.1515/pac-2021-2006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Albumin is a protein that has garnered wide attention in nanoparticle-based drug delivery of cancer therapeutics due to its natural abundance and unique cancer-targeting ability. The propensity of albumin to naturally accumulate in tumours, further augmented by the incorporation of targeting ligands, has made the field of albumin-polymer conjugate development a much pursued one. Polymerization techniques such as RAFT and ATRP have paved the path to incorporate various polymers in the design of albumin-polymer hybrids, indicating the advancement of the field since the first instance of PEGylated albumin in 1977. The synergistic combination of albumin and polymer endows manifold features to these macromolecular hybrids to evolve as next generation therapeutics. The current review is successive to our previously published review on drug delivery vehicles based on albumin-polymer conjugates and aims to provide an update on the progress of albumin-polymer conjugates. This review also highlights the alternative of exploring albumin-polymer conjugates formed via supramolecular, non-covalent interactions. Albumin-based supramolecular polymer systems provide a versatile platform for functionalization, thereby, holding great potential in enhancing cytotoxicity and controlled delivery of therapeutic agents.
Collapse
|
10
|
Zhang L, Hu S, Zhang L, wu W, Cheng Q, Li J, Narain R. Synergistic Size and Charge Conversions of Functionalized PAMAM Dendrimers under Acidic Tumor Microenvironment. Biomater Sci 2022; 10:4271-4283. [DOI: 10.1039/d2bm00643j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Developing nanomedicine with highly adaptive behaviors has presented great effectiveness in cancer treatment. However, the multi-functional integration of nano-therapeutic system inevitably leads to the complexity in structure and impairs the...
Collapse
|
11
|
Shao H, Li B, Li H, Gao L, Zhang C, Sheng H, Zhu L. Novel Strategies for Solubility and Bioavailability Enhancement of Bufadienolides. Molecules 2021; 27:51. [PMID: 35011278 PMCID: PMC8746454 DOI: 10.3390/molecules27010051] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023] Open
Abstract
Toad venom contains a large number of bufadienolides, which have a variety of pharmacological activities, including antitumor, cardiovascular, anti-inflammatory, analgesic and immunomodulatory effects. The strong antitumor effect of bufadienolides has attracted considerable attention in recent years, but the clinical application of bufadienolides is limited due to their low solubility and poor bioavailability. In order to overcome these shortcomings, many strategies have been explored, such as structural modification, solid dispersion, cyclodextrin inclusion, microemulsion and nanodrug delivery systems, etc. In this review, we have tried to summarize the pharmacological activities and structure-activity relationship of bufadienolides. Furthermore, the strategies for solubility and bioavailability enhancement of bufadienolides also are discussed. This review can provide a basis for further study on bufadienolides.
Collapse
Affiliation(s)
| | | | | | | | | | - Huagang Sheng
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| | - Liqiao Zhu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, 4655 Daxue Road, Jinan 250355, China; (H.S.); (B.L.); (H.L.); (L.G.); (C.Z.)
| |
Collapse
|
12
|
Chen P, Lu S, Pan B, Xu Y. Development, Optimization, and Pharmacokinetics Study of Bufalin/Nintedanib Co-loaded Modified Albumin Sub-microparticles Fabricated by Coaxial Electrostatic Spray Technology. AAPS PharmSciTech 2021; 23:13. [PMID: 34888752 DOI: 10.1208/s12249-021-02163-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Coaxial electrostatic spray technology has received extensive attention in fabricating micro/nanoparticles for drug delivery. However, there are few reports on applying this technology in preparing albumin nanoparticles. In this study, the bufalin (BF) and nintedanib (NDNB) co-loaded ursodeoxycholic acid and p-biguanides benzoic acid decorated albumin sub-microparticles (BN-DUB subMPs) were fabricated by coaxial electrostatic spray technology and optimized by central composite design. Five percent of albumin (contained 0.7% polyethylene oxide) solution was selected as the shell solution which ejected through outer axis with the flow rate of 0.07 mm/min, while the core solution which contained by BF and NDNB ethanol solution was ejected through inner axis with the flow rate of 0.05 mm/min. In vitro cell studies revealed that the modified albumin possessed good biocompatibility. What's more, the BN-DUB subMPs enhanced the inhibitory effect on the growth of LLC cells efficiently. The pharmacokinetics study showed that the t1/2 and AUC0-t of BN-DUB subMPs increased significantly compared with that of the drug solution, which indicated the improved in vivo stability of modified albumin nanoparticles. Thus, this study provided a novel and simple technical platform for the development of albumin-based drug carriers.
Collapse
|