1
|
Ramachandran G, Chacko IA, Mishara MG, Khopade AJ, Sabitha M, Sudheesh MS. A review on design rules for formulating amorphous solid dispersions based on drug-polymer interactions in aqueous environment. Int J Pharm 2025; 675:125541. [PMID: 40164414 DOI: 10.1016/j.ijpharm.2025.125541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/09/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Amorphous solid dispersions (ASDs) are multi-component formulations in which a drug is molecularly dispersed in a carrier. ASDs undergo complex dissolution mechanisms to generate and sustain a supersaturated state of poorly soluble drugs. The link between enhanced solubility, supersaturation stability and drug-polymer interaction (DPI) is critical for the rational design of ASDs. The key mechanism responsible for a high bioavailability is the evolution of supersaturation during the dissolution of ASDs which is also the driving force for drug precipitation. A critical determinant of robust supersaturation generation and stability during dissolution is the molecular interaction between the drug and polymer. Characterization of DPI in a solution state is, however, challenging because of the poor hydrodynamic resolution of the techniques, traditionally used in solid-state analysis. Further, the dissolution conditions, such as the choice of buffer, pH and ionic strength may complicate the analyses and predictions. The role of DPI is a poorly understood aspect of ASD dissolution and therefore is an active area of research. DPI is critical for understanding the design rules for formulating an optimal ASD formulation. The review focuses on different aspects of DPI to stabilize the supersaturated state of a drug during the dissolution of ASDs.
Collapse
Affiliation(s)
- Gayathri Ramachandran
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Indhu Annie Chacko
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - M G Mishara
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Ajay Jaysingh Khopade
- Department of Formulation R&D Non-Orals, Sun Pharmaceutical Industries Ltd., Vadodara, India
| | - M Sabitha
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - M S Sudheesh
- Molecular Pharmaceutics and Biopharmaceutics Research Lab (MPBRL), Dept. of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India.
| |
Collapse
|
2
|
Macedo LDO, Masiero JF, Bou-Chacra NA. Drug Nanocrystals in Oral Absorption: Factors That Influence Pharmacokinetics. Pharmaceutics 2024; 16:1141. [PMID: 39339178 PMCID: PMC11434809 DOI: 10.3390/pharmaceutics16091141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/17/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the safety and convenience of oral administration, poorly water-soluble drugs compromise absorption and bioavailability. These drugs can exhibit low dissolution rates, variability between fed and fasted states, difficulty permeating the mucus layer, and P-glycoprotein efflux. Drug nanocrystals offer a promising strategy to address these challenges. This review focuses on the opportunities to develop orally administered nanocrystals based on pharmacokinetic outcomes. The impacts of the drug particle size, morphology, dissolution rate, crystalline state on oral bioavailability are discussed. The potential of the improved dissolution rate to eliminate food effects during absorption is also addressed. This review also explores whether permeation or dissolution drives nanocrystal absorption. Additionally, it addresses the functional roles of stabilizers. Drug nanocrystals may result in prolonged concentrations in the bloodstream in some cases. Therefore, nanocrystals represent a promising strategy to overcome the challenges of poorly water-soluble drugs, thus encouraging further investigation into unclear mechanisms during oral administration.
Collapse
Affiliation(s)
| | | | - Nádia Araci Bou-Chacra
- Faculty of Pharmaceutical Sciences, University of São Paulo, Sao Paulo 05508-000, SP, Brazil
| |
Collapse
|
3
|
Benkő BM, Tóth G, Moldvai D, Kádár S, Szabó E, Szabó ZI, Kraszni M, Szente L, Fiser B, Sebestyén A, Zelkó R, Sebe I. Cyclodextrin encapsulation enabling the anticancer repositioning of disulfiram: Preparation, analytical and in vitro biological characterization of the inclusion complexes. Int J Pharm 2024; 657:124187. [PMID: 38697585 DOI: 10.1016/j.ijpharm.2024.124187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Drug repositioning is a high-priority and feasible strategy in the field of oncology research, where the unmet medical needs are continuously unbalanced. Disulfiram is a potential non-chemotherapeutic, adjuvant anticancer agent. However, the clinical translation is limited by the drug's poor bioavailability. Therefore, the molecular encapsulation of disulfiram with cyclodextrins is evaluated to enhance the solubility and stability of the drug. The present work describes for the first time the complexation of disulfiram with randomly methylated-β-cyclodextrin. A parallel analytical andin vitrobiological comparison of disulfiram inclusion complexes with hydroxypropyl-β-cyclodextrin, randomly methylated-β-cyclodextrin and sulfobutylether-β-cyclodextrin is conducted. A significant drug solubility enhancement by about 1000-folds and fast dissolution in 1 min is demonstrated. Thein vitrodissolution-permeation studies and proliferation assays demonstrate the solubility-dependent efficacy of the drug. Throughout the different cancer cell lines' characteristics and disulfiram unspecific antitumoral activity, the inhibitory efficacy of the cyclodextrin encapsulated drug on melanoma (IC50 about 100 nM) and on glioblastoma (IC50 about 7000 nM) cell lines differ by a magnitude. This pre-formulation screening experiment serves as a proof of concept of using cyclodextrin encapsulation as a platform tool for further drug delivery development in repositioning areas.
Collapse
Affiliation(s)
- Beáta-Mária Benkő
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Dorottya Moldvai
- Tumor Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Szabina Kádár
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary; Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary.
| | - Edina Szabó
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest 1111, Hungary.
| | - Zoltán-István Szabó
- Faculty of Pharmacy Department of Drugs Industry and Pharmaceutical Management, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, Gheorghe Marinescu Str. 38, Târgu Mureș 540142, Romania.
| | - Márta Kraszni
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - Lajos Szente
- CycloLab Cyclodextrin Research & Development Laboratory Ltd., Illatos út 7, Budapest 1097, Hungary.
| | - Béla Fiser
- Institute of Chemistry, Faculty of Materials Science and Chemical Engineering, University of Miskolc, Egyetemváros, Miskolc 3515, Hungary; Department of Physical Chemistry, Faculty of Chemistry, University of Lodz, 90-236 Lodz, Poland; Ferenc Rakoczi II Transcarpathian Hungarian College of Higher Education, 90200 Beregszász, Transcarpathia, Ukraine.
| | - Anna Sebestyén
- Tumor Biology, Cell and Tissue Culture Laboratory, 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllői út 26., Budapest 1085, Hungary.
| | - Romána Zelkó
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary.
| | - István Sebe
- University Pharmacy Department of Pharmacy Administration, Semmelweis University, Hőgyes Endre Str. 7-9., Budapest 1092, Hungary; Egis Pharmaceuticals Plc., R&D Directorate, P.O. Box 100, Budapest 1475, Hungary.
| |
Collapse
|
4
|
Chacko IA, Ramachandran G, Sudheesh MS. Unmet technological demands in orodispersible films for age-appropriate paediatric drug delivery. Drug Deliv Transl Res 2024; 14:841-857. [PMID: 37957474 DOI: 10.1007/s13346-023-01451-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/11/2023] [Indexed: 11/15/2023]
Abstract
Age-appropriateness of a formulation is the ability to deliver variable but accurate doses to the paediatric population in a safe and acceptable manner to improve medical adherence and reduce medication errors. Paediatric drug delivery is a challenging area of formulation research due to the existing gap in knowledge. This includes the unknown safety of excipients in the paediatric population, the need for an age-appropriate formulation, the lack of an effective taste-masking method and the lack of paediatric pharmacokinetic data and patient acceptability. It is equally important to establish methods for predicting the biopharmaceutical performance of a paediatric formulation as a function of age. Overcoming the challenges of existing technologies and providing custom-made solutions for the development of age-appropriate formulation is, therefore, a daunting task. Orodispersible films (ODF) are promising as age-appropriate formulations, an unmet need in paediatric drug delivery. New technological improvements in taste masking, improving solubility and rate of dissolution of insoluble drugs, the flexibility of dosing and extemporaneous preparation of these films in a hospital good manufacturing practises (GMP) setup using 3D printing can increase its acceptance among clinicians, patients and caregivers. The current review discusses the problems and possibilities in ODF technology to address the outstanding issues of age-appropriateness, which is the hallmark of patient acceptance and medical adherence in paediatrics.
Collapse
Affiliation(s)
- Indhu Annie Chacko
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India
| | - Gayathri Ramachandran
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India
| | - M S Sudheesh
- Department of Pharmaceutics, Amrita School of Pharmacy, AIMS Health Sciences Campus, Amrita Vishwa Vidyapeetham, 682041, Ponekkara, Kochi, India.
| |
Collapse
|
5
|
Kumar V, R NK, Aswin D, Nair SC. Propranolol HCL-loaded liposomes for intranasal delivery: in vitro and ex vivo evaluation of optimized formulation using design of experiments. Ther Deliv 2023; 14:705-720. [PMID: 38014488 DOI: 10.4155/tde-2023-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023] Open
Abstract
Aim: To develop a propranolol HCL-loaded liposomal nasal formulation for migraine prophylaxis. Materials & methods: Formulated the liposomes through thin layer hydration method and optimized via design of experiments (DOE). The prepared liposomes were characterized for particle size, zeta potential, PDI, drug entrapment and drug loading. Assessed for in vitro release kinetics, ex vivo permeability, histopathology and stability. Results: Optimized liposomes: 135.52 ± 5.87 nm, -19.9 ± 0.075 mV, 95.41 ± 0.05% entrapment, 43.37 ± 0.02% loading. Showed immediate (30.07 ± 2.09%) and sustained release (95.69 ± 4.58%) over 10 h. Enhanced permeation compared with controls; well-tolerated histopathologically. Conclusion: Liposomal formulation offers promise for intranasal propranolol HCL delivery in migraine prophylaxis, with stability under refrigeration.
Collapse
Affiliation(s)
- Vishal Kumar
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Nethish Kumaar R
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - D Aswin
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| | - Sreeja C Nair
- Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, Kochi-682041, Kerala, India
| |
Collapse
|
6
|
Zhang J, Guo M, Luo M, Cai T. Advances in the development of amorphous solid dispersions: The role of polymeric carriers. Asian J Pharm Sci 2023; 18:100834. [PMID: 37635801 PMCID: PMC10450425 DOI: 10.1016/j.ajps.2023.100834] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Amorphous solid dispersion (ASD) is one of the most effective approaches for delivering poorly soluble drugs. In ASDs, polymeric materials serve as the carriers in which the drugs are dispersed at the molecular level. To prepare the solid dispersions, there are many polymers with various physicochemical and thermochemical characteristics available for use in ASD formulations. Polymer selection is of great importance because it influences the stability, solubility and dissolution rates, manufacturing process, and bioavailability of the ASD. This review article provides a comprehensive overview of ASDs from the perspectives of physicochemical characteristics of polymers, formulation designs and preparation methods. Furthermore, considerations of safety and regulatory requirements along with the studies recommended for characterizing and evaluating polymeric carriers are briefly discussed.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- College of Biological and Chemical Engineering, Changsha University, Changsha 410022, China
| | - Minshan Guo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Minqian Luo
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ting Cai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
7
|
Zhao P, Han W, Shu Y, Li M, Sun Y, Sui X, Liu B, Tian B, Liu Y, Fu Q. Liquid-liquid phase separation drug aggregate: Merit for oral delivery of amorphous solid dispersions. J Control Release 2023; 353:42-50. [PMID: 36414193 DOI: 10.1016/j.jconrel.2022.11.033] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
As a promising strategy, amorphous solid dispersion has been extensively employed in improving the oral bioavailability of insoluble drugs. Despite the numerous advantages, the problems associated with supersaturation stability limit its further application. Recently, the formation and stability of the liquid-liquid phase separation drug aggregate (LLPS-DA) have been found to be vital for supersaturation maintenance. An in-depth review of LLPS-DA was required to further explore the supersaturation maintenance mechanism in vivo. Hence, this study aimed to present a short review to introduce the LLPS-DA, highlight the in vivo advantages for oral administration, and discuss the prospects to help understand the in vivo behavior of LLPS-DA.
Collapse
Affiliation(s)
- Peixu Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wen Han
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Yecheng Shu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Yichi Sun
- School of Pharmacy, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Xiaofan Sui
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Baocheng Tian
- School of Pharmacy, Binzhou Medical University, No. 346, Guanhai Road, Yantai 264003, China
| | - Yanhua Liu
- Department of Pharmaceutics, Ningxia Medical University, 1160 Shengli Street, Yinchuan 750004, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
8
|
Thermodynamic Correlation between Liquid-Liquid Phase Separation and Crystalline Solubility of Drug-Like Molecules. Pharmaceutics 2022; 14:pharmaceutics14122560. [PMID: 36559054 PMCID: PMC9782016 DOI: 10.3390/pharmaceutics14122560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
The purpose of the present study was to experimentally confirm the thermodynamic correlation between the intrinsic liquid−liquid phase separation (LLPS) concentration (S0LLPS) and crystalline solubility (S0c) of drug-like molecules. Based on the thermodynamic principles, the crystalline solubility LLPS concentration melting point (Tm) equation (CLME) was derived (log10S0C=log10S0LLPS−0.0095Tm−310 for 310 K). The S0LLPS values of 31 drugs were newly measured by simple bulk phase pH-shift or solvent-shift precipitation tests coupled with laser-assisted visual turbidity detection. To ensure the precipitant was not made crystalline at <10 s, the precipitation tests were also performed under the polarized light microscope. The calculated and observed log10S0C values showed a good correlation (root mean squared error: 0.40 log unit, absolute average error: 0.32 log unit).
Collapse
|