1
|
Brito Nunes C, Borges MC, Freathy RM, Lawlor DA, Qvigstad E, Evans DM, Moen GH. Understanding the Genetic Landscape of Gestational Diabetes: Insights into the Causes and Consequences of Elevated Glucose Levels in Pregnancy. Metabolites 2024; 14:508. [PMID: 39330515 PMCID: PMC11434570 DOI: 10.3390/metabo14090508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Background/Objectives: During pregnancy, physiological changes in maternal circulating glucose levels and its metabolism are essential to meet maternal and fetal energy demands. Major changes in glucose metabolism occur throughout pregnancy and consist of higher insulin resistance and a compensatory increase in insulin secretion to maintain glucose homeostasis. For some women, this change is insufficient to maintain normoglycemia, leading to gestational diabetes mellitus (GDM), a condition characterized by maternal glucose intolerance and hyperglycaemia first diagnosed during the second or third trimester of pregnancy. GDM is diagnosed in approximately 14.0% of pregnancies globally, and it is often associated with short- and long-term adverse health outcomes in both mothers and offspring. Although recent studies have highlighted the role of genetic determinants in the development of GDM, research in this area is still lacking, hindering the development of prevention and treatment strategies. Methods: In this paper, we review recent advances in the understanding of genetic determinants of GDM and glycaemic traits during pregnancy. Results/Conclusions: Our review highlights the need for further collaborative efforts as well as larger and more diverse genotyped pregnancy cohorts to deepen our understanding of the genetic aetiology of GDM, address research gaps, and further improve diagnostic and treatment strategies.
Collapse
Affiliation(s)
- Caroline Brito Nunes
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
| | - Maria Carolina Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Rachel M. Freathy
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4PY, UK;
| | - Deborah A. Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 2PS, UK
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - David M. Evans
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 1QU, UK
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
| | - Gunn-Helen Moen
- Institute for Molecular Bioscience, The University of Queensland, Brisbane 4067, Australia
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway
- Frazer Institute, University of Queensland, Brisbane 4102, Australia
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, 7491 Trondheim, Norway
| |
Collapse
|
2
|
Goode RA, Hum JM, Kalwat MA. Therapeutic Strategies Targeting Pancreatic Islet β-Cell Proliferation, Regeneration, and Replacement. Endocrinology 2022; 164:6836713. [PMID: 36412119 PMCID: PMC9923807 DOI: 10.1210/endocr/bqac193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022]
Abstract
Diabetes results from insufficient insulin production by pancreatic islet β-cells or a loss of β-cells themselves. Restoration of regulated insulin production is a predominant goal of translational diabetes research. Here, we provide a brief overview of recent advances in the fields of β-cell proliferation, regeneration, and replacement. The discovery of therapeutic targets and associated small molecules has been enabled by improved understanding of β-cell development and cell cycle regulation, as well as advanced high-throughput screening methodologies. Important findings in β-cell transdifferentiation, neogenesis, and stem cell differentiation have nucleated multiple promising therapeutic strategies. In particular, clinical trials are underway using in vitro-generated β-like cells from human pluripotent stem cells. Significant challenges remain for each of these strategies, but continued support for efforts in these research areas will be critical for the generation of distinct diabetes therapies.
Collapse
Affiliation(s)
- Roy A Goode
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Julia M Hum
- Division of Biomedical Sciences, College of Osteopathic Medicine, Marian University, Indianapolis, IN, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd, Suite 2000, Indianapolis, IN 46202, USA. or
| |
Collapse
|
3
|
Lee HA, Park H, Hong YS. Sex Differences in the Effects of CDKAL1 Variants on Glycemic Control in Diabetic Patients: Findings from the Korean Genome and Epidemiology Study. Diabetes Metab J 2022; 46:879-889. [PMID: 35130687 PMCID: PMC9723206 DOI: 10.4093/dmj.2021.0265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Using long-term data from the Korean Genome and Epidemiology Study, we defined poor glycemic control and investigated possible risk factors, including variants related to type 2 diabetes mellitus (T2DM). In addition, we evaluated interaction effects among risk factors for poor glycemic control. METHODS Among 436 subjects with newly diagnosed diabetes, poor glycemic control was defined based on glycosylated hemoglobin trajectory patterns by group-based trajectory modeling. For the variants related to T2DM, genetic risk scores (GRSs) were calculated and divided into quartiles. Risk factors for poor glycemic control were assessed using a logistic regression model. RESULTS Of the subjects, 43% were in the poor-glycemic-control group. Body mass index (BMI) and triglyceride (TG) were associated with poor glycemic control. The risk for poor glycemic control increased by 11.0% per 1 kg/m2 increase in BMI and by 3.0% per 10 mg/dL increase in TG. The risk for GRS with poor glycemic control was sex-dependent (Pinteraction=0.07), and a relationship by GRS quartiles was found in females but not in males. Moreover, the interaction effect was found to be significant on both additive and multiplicative scales. The interaction effect was evident in the variants of cyclin-dependent kinase 5 regulatory subunit-associated protein 1-like (CDKAL1). CONCLUSION Females with risk alleles of variants in CDKAL1 associated with T2DM had a higher risk for poor glycemic control than males.
Collapse
Affiliation(s)
- Hye Ah Lee
- Clinical Trial Center, Ewha Womans University Mokdong Hospital, Seoul, Korea
- Corresponding author: Hye Ah Lee https://orcid.org/0000-0002-4051-0350 Clinical Trial Center, Ewha Womans University Mokdong Hospital, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Korea E-mail:
| | - Hyesook Park
- Department of Preventive Medicine, Ewha Womans University College of Medicine, Seoul, Korea
- Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, Korea
| | - Young Sun Hong
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Michałowska J, Miller-Kasprzak E, Seraszek-Jaros A, Mostowska A, Bogdański P. The Link between Three Single Nucleotide Variants of the GIPR Gene and Metabolic Health. Genes (Basel) 2022; 13:genes13091534. [PMID: 36140702 PMCID: PMC9498707 DOI: 10.3390/genes13091534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022] Open
Abstract
Single nucleotide variants (SNVs) of the GIPR gene have been associated with BMI and type 2 diabetes (T2D), suggesting the role of the variation in this gene in metabolic health. To increase our understanding of this relationship, we investigated the association of three GIPR SNVs, rs11672660, rs2334255 and rs10423928, with anthropometric measurements, selected metabolic parameters, and the risk of excessive body mass and metabolic syndrome (MS) in the Polish population. Normal-weight subjects (n = 340, control group) and subjects with excessive body mass (n = 600, study group) participated in this study. For all participants, anthropometric measurements and metabolic parameters were collected, and genotyping was performed using the high-resolution melting curve analysis. We did not find a significant association between rs11672660, rs2334255 and rs10423928 variants with the risk of being overweight. Differences in metabolic and anthropometric parameters were found for investigated subgroups. An association between rs11672660 and rs10423928 with MS was identified. Heterozygous CT genotype of rs11672660 and AT genotype of rs10423928 were significantly more frequent in the group with MS (OR = 1.38, 95%CI: 1.03–1.85; p = 0.0304 and OR = 1.4, 95%CI: 1.05–1.87; p = 0.0222, respectively). Moreover, TT genotype of rs10423928 was less frequent in the MS group (OR = 0.72, 95%CI: 0.54–0.95; p = 0.0221).
Collapse
Affiliation(s)
- Joanna Michałowska
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
- Correspondence:
| | - Ewa Miller-Kasprzak
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Agnieszka Seraszek-Jaros
- Department of Bioinformatics and Computational Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Adrianna Mostowska
- Department of Biochemistry and Molecular Biology, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| | - Paweł Bogdański
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, 61-701 Poznan, Poland
| |
Collapse
|
5
|
Wu C, Liu J, Li Y, Wang N, Yan Q, Jiang Z. Manno-oligosaccharides from cassia seed gum ameliorate inflammation and improve glucose metabolism in diabetic rats. Food Funct 2022; 13:6674-6687. [PMID: 35647651 DOI: 10.1039/d1fo03057d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional oligosaccharides show anti-diabetic effects through inflammation regulation with improved glucose metabolism. In this study, novel prebiotics of manno-oligosaccharides from cassia seed gum (CMOS) were incorporated into the diet of streptozotocin (STZ) plus high-fat and high-sugar diet (HFSD)-induced rats. After feeding for 8 weeks, CMOS (300-1200 mg per kg b.w. per d) significantly ameliorated the fasting blood glucose level (7.1-8.2 mmol L-1) as compared with that of the model group (14.2 mmol L-1), where the area under the oral glucose tolerance test curve was decreased by 20.0%-24.5%. Meanwhile, CMOS prevented STZ plus HFSD-induced damage to islet tissue with a clear and integrated morphology and reduced the glucagon/insulin area ratio (by 97.9% for 300 mg per kg b.w. per d CMOS). CMOS also reduced metabolic endotoxemia and maintained intestinal integrity with recovered mRNA expression of Zo-1 and occludin to the normal comparable level. Upon 16S rDNA sequencing, it was found that CMOS regulated the microbiota composition in the cecum with an increased relative abundance of Bifidobacteria, while that of Shigella was decreased. The molecular mechanisms involved in the anti-diabetic effects of CMOS were further studied. CMOS reduced the mRNA expression of Tlr2 and Tlr4 in the intestines of STZ plus HFSD-induced rats. Meanwhile, Nlrp3 associated inflammasome activation in the intestine and liver with glucose metabolism disorder was inhibited by CMOS, resulting in reduced interleukin-1β secretion (by 38.8-46.4% for CMOS of 300-1200 mg per kg b.w. per d) and inflammation. Furthermore, CMOS regulated the AKT/IRS/AMPK signaling pathway and improved glucose metabolism in the liver. Findings obtained here implicated that CMOS could modulate metabolic-inflammation as a functional dietary supplement.
Collapse
Affiliation(s)
- Chenxuan Wu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Jun Liu
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Yanxiao Li
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Nannan Wang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Qiaojuan Yan
- Department of Nutrition and Health, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
6
|
Shah N, Abdalla MA, Deshmukh H, Sathyapalan T. Therapeutics for type-2 diabetes mellitus: a glance at the recent inclusions and novel agents under development for use in clinical practice. Ther Adv Endocrinol Metab 2021; 12:20420188211042145. [PMID: 34589201 PMCID: PMC8474306 DOI: 10.1177/20420188211042145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 08/06/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetes mellitus (DM) is a chronic, progressive, and multifaceted illness resulting in significant physical and psychological detriment to patients. As of 2019, 463 million people are estimated to be living with DM worldwide, out of which 90% have type-2 diabetes mellitus (T2DM). Over the years, significant progress has been made in identifying the risk factors for developing T2DM, understanding its pathophysiology and uncovering various metabolic pathways implicated in the disease process. This has culminated in the implementation of robust prevention programmes and the development of effective pharmacological agents, which have had a favourable impact on the management of T2DM in recent times. Despite these advances, the incidence and prevalence of T2DM continue to rise. Continuing research in improving efficacy, potency, delivery and reducing the adverse effect profile of currently available formulations is required to keep pace with this growing health challenge. Moreover, new metabolic pathways need to be targeted to produce novel pharmacotherapy to restore glucose homeostasis and address metabolic sequelae in patients with T2DM. We searched PubMed, MEDLINE, and Google Scholar databases for recently included agents and novel medication under development for treatment of T2DM. We discuss the pathophysiology of T2DM and review how the emerging anti-diabetic agents target the metabolic pathways involved. We also look at some of the limiting factors to developing new medication and the introduction of unique methods, including facilitating drug delivery to bypass some of these obstacles. However, despite the advances in the therapeutic options for the treatment of T2DM in recent years, the industry still lacks a curative agent.
Collapse
Affiliation(s)
- Najeeb Shah
- Hull University Teaching Hospitals NHS Trust,
Hull, UK
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Brocklehurst
Building, 220-236 Anlaby Road, Hull, HU3 2RW, UK
| | - Mohammed Altigani Abdalla
- Department of Academic Diabetes, Endocrinology
& Metabolism, Hull York Medical School, University of Hull, Hull,
UK
| | - Harshal Deshmukh
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| | - Thozhukat Sathyapalan
- University Teaching Hospitals NHS Trust and
Department of Academic Diabetes, Endocrinology & Metabolism, Hull York
Medical School, University of Hull, Hull, UK
| |
Collapse
|