1
|
Ott M, Singh N, Kubicova M, Bauland F, Köppl D, Gaudl A, Geistanger A, Ceglarek U, Rauh M, Geletneky C, Taibon J. An isotope dilution-liquid chromatography-tandem mass spectrometry-based candidate reference measurement procedure for the quantification of cortisone in human serum and plasma. Clin Chem Lab Med 2025:cclm-2024-1478. [PMID: 40238628 DOI: 10.1515/cclm-2024-1478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/30/2025] [Indexed: 04/18/2025]
Abstract
OBJECTIVES Cortisone is an inert precursor/metabolite of the potent steroid hormone cortisol. Measurement of serum cortisone levels and the cortisol-cortisone ratio can be useful for the diagnosis of dysfunction in the regulation of cortisol levels (i.e., severe and subtle apparent mineralocorticoid excess, low-renin primary aldosteronism). Therefore, an isotope dilution-liquid chromatography-tandem mass spectrometry (ID-LC MS/MS)-based candidate reference measurement procedure (RMP) to quantify cortisone in human serum/plasma was developed and validated. METHODS Quantitative nuclear magnetic resonance (qNMR) was utilized to assign absolute content (g/g) and SI-traceability to reference materials used as primary calibrators. A supported liquid extraction sample preparation protocol as well as a two-dimensional heart-cut LC approach for LC-MS/MS analysis were employed to mitigate matrix effects and prevent co-elution of interferences. Selectivity was determined by analyzing a matrix sample containing the analyte, the internal standard and six potential interferents. A post-column infusion experiment and a comparison of standard line slopes were performed to evaluate matrix effects. An extensive protocol over five days was applied to determine precision, accuracy and trueness. Measurement uncertainty (MU) was evaluated in compliance with current guidelines. RESULTS This RMP is suitable for analyzing cortisone within the 0.0800-120 ng/mL (0.222-333 nmol/L) range, demonstrating selectivity, sensitivity and matrix independence. Intermediate precision was ≤3.4 %, repeatability was ≤2.9 % across all concentration levels and relative mean bias ranged from -3.7 to 2.8 % across all tested matrices and concentrations. Expanded MU (k=2) for target value assignment (n=6) ranged from 2.1 to 5.5 %, irrespective of concentration or sample type. CONCLUSIONS This RMP allows for accurate and reproducible determination of cortisone in human serum and plasma. Implementation of this method supports routine assay standardization and patient sample measurement with confirmed traceability.
Collapse
Affiliation(s)
- Myriam Ott
- Roche Diagnostics GmbH, Penzberg, Germany
| | | | | | | | - Daniel Köppl
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | - Alexander Gaudl
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | | | - Uta Ceglarek
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig Medical Center, Leipzig, Germany
| | - Manfred Rauh
- Department of Pediatrics and Adolescent Medicine, University Hospital Erlangen, Erlangen, Germany
| | | | | |
Collapse
|
2
|
Uslar T, Newman AJ, Tapia-Castillo A, Carvajal CA, Fardella CE, Allende F, Solari S, Tsai LC, Milks J, Cherney M, Stouffer DG, Auchus R, Brown JM, Baudrand R, Vaidya A. Progressive 11β-Hydroxysteroid Dehydrogenase Type 2 Insufficiency as Kidney Function Declines. J Clin Endocrinol Metab 2025; 110:1037-1043. [PMID: 39312227 PMCID: PMC11913114 DOI: 10.1210/clinem/dgae663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND It has been postulated that chronic kidney disease (CKD) is a state of relative 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) insufficiency, resulting in increased cortisol-mediated mineralocorticoid receptor (MR) activation. We hypothesized that relative 11βHSD2 insufficiency manifests across a wide spectrum of progressively declining kidney function, including within the normal range. METHODS Adult participants were recruited at 2 academic centers. A discovery cohort (n = 500) enrolled individuals with estimated glomerular filtration rate (eGFR) ranging from normal to CKD stage 5, in whom serum cortisol-to-cortisone (F/E) was measured as a biomarker of 11βHSD2 activity. A validation cohort (n = 101) enrolled only individuals with normal kidney function (eGFR ≥ 60 mL/min/1.73 m2) in whom 11βHSD2 activity was assessed via serum F/E and 11-hydroxy-to-11-keto androgen (11OH/K) ratios following multiple maneuvers: oral sodium suppression test, dexamethasone suppression test (DST), and ACTH-stimulation test (ACTHstim). RESULTS In the discovery cohort, lower eGFR was associated with higher F/E (P-trend < .001). Similarly, in the validation cohort, with normal eGFR, an inverse association between eGFR and both F/E and 11OH/K ratios was observed (P-trend < .01), which persisted following DST (P-trend < .001) and ACTHstim (P-trend < .05). The fractional excretion of potassium, a marker of renal MR activity, was higher with higher F/E (P-trend < .01) and with lower eGFR (P-trend < .0001). CONCLUSION A continuum of declining 11βHSD2 activity was observed with progressively lower eGFR in individuals spanning a wide spectrum of kidney function, including those with apparently normal kidney function. These findings implicate cortisol-mediated MR activation in the pathophysiology of hypertension and cardiovascular disease in CKD.
Collapse
Affiliation(s)
- Thomas Uslar
- Department of Endocrinology, CETREN-UC, Red Salud UC-CHRISTUS, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Andrew J Newman
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, CETREN-UC, Red Salud UC-CHRISTUS, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Cristian A Carvajal
- Department of Endocrinology, CETREN-UC, Red Salud UC-CHRISTUS, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Carlos E Fardella
- Department of Endocrinology, CETREN-UC, Red Salud UC-CHRISTUS, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Fidel Allende
- Department of Clinical Laboratory, CETREN-UC, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Sandra Solari
- Department of Clinical Laboratory, CETREN-UC, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Laura C Tsai
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julia Milks
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael Cherney
- Division of Endocrinology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - David G Stouffer
- Division of Endocrinology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Richard Auchus
- Division of Endocrinology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jenifer M Brown
- Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston 02115, USA
| | - René Baudrand
- Department of Endocrinology, CETREN-UC, Red Salud UC-CHRISTUS, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
| | - Anand Vaidya
- Center for Adrenal Disorders, Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
3
|
Ding Y, Cheng M, Cao B, Liu M, Hu X, Wu D. Case report: Clinical characteristics and Genetical analysis of HSD11B2 in three Chinese children with apparent mineralocorticoid excess: a case series. Front Endocrinol (Lausanne) 2025; 15:1491825. [PMID: 39931437 PMCID: PMC11807828 DOI: 10.3389/fendo.2024.1491825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025] Open
Abstract
Background Apparent Mineralocorticoid Excess (AME) is a rare autosomal recessive disorder, characterized by a notably complex diagnostic process. To date, the majority of documented cases have been presented as individual case reports. This article aims to enhance the understanding of the course and prognosis of AME, by detailing the management protocols employed for patients with genetically confirmed diagnoses. Methods An analysis comprising three cases and a review of relevant literature were conducted to synthesize the insights and experiences derived from gathering clinical and laboratory data on patients. Results All three patients were born to non-consanguineous parents, were small for gestational age and exhibited severe hypokalemia, metabolic alkalosis, hypertension, nephrocalcinosis, and hypercalciuria. The glomerular filtration rate was normal in all cases. One patient experienced complications related to hypertension. Genetic analysis revealed biallelic recessive variations in the HSD11B2 gene in all three patients. Treatment with oral spironolactone and potassium chloride resulted in the normalization of both blood pressure and serum potassium levels in all patients. Conclusion This study presents the diagnostic and treatment experiences of three Chinese pediatric patients with AME type I. Through our analysis, four novel variants of the HSD11B2 gene were identified, thereby enhancing the genotype-phenotype spectrum associated with AME. Early genetic testing in patients suspected of having AME is beneficial for facilitating prompt diagnosis and the implementation of standardized treatment protocols. Such measures are essential for the prevention or mitigation of target organ damage, as well as for the reduction of associated morbidity and mortality.
Collapse
Affiliation(s)
- Yuan Ding
- Department of Endocrinology, Genetics, Metabolism, Beijing Children’s Hospital, Capital Medical University, National Centre for Children’s Health, Beijing, China
- Ministry of Education (MOE) Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Ming Cheng
- Department of Endocrinology, Genetics, Metabolism, Beijing Children’s Hospital, Capital Medical University, National Centre for Children’s Health, Beijing, China
- Ministry of Education (MOE) Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Bingyan Cao
- Department of Endocrinology, Genetics, Metabolism, Beijing Children’s Hospital, Capital Medical University, National Centre for Children’s Health, Beijing, China
- Ministry of Education (MOE) Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Min Liu
- Department of Endocrinology, Genetics, Metabolism, Beijing Children’s Hospital, Capital Medical University, National Centre for Children’s Health, Beijing, China
- Ministry of Education (MOE) Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Xuyun Hu
- Ministry of Education (MOE) Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Di Wu
- Department of Endocrinology, Genetics, Metabolism, Beijing Children’s Hospital, Capital Medical University, National Centre for Children’s Health, Beijing, China
- Ministry of Education (MOE) Key Laboratory of Major Diseases in Children, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Beijing Key Laboratory for Genetics of Birth Defects, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| |
Collapse
|
4
|
Wu T, Yang J, Xia J, Sun G. Effects of Licorice Functional Components Intakes on Blood Pressure: A Systematic Review with Meta-Analysis and NETWORK Toxicology. Nutrients 2024; 16:3768. [PMID: 39519602 PMCID: PMC11547873 DOI: 10.3390/nu16213768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
OBJECTIVE To investigate the effects of licorice functional ingredient intake on blood pressure, explore its potential mechanisms of action, and provide safety information for personalized nutritional interventions in special populations and for the application of licorice-derived functional foods. METHODS PubMed, Cochrane Library, Medline, Embase, EBSCO, ScienceDirect, and Web of Science databases were searched from inception to 31 August 2024. Randomized controlled trials (RCTs) investigating the intake of licorice or its functional components were included. The range of continuous variables was assessed using the weighted mean difference (WMD) with 95% confidence intervals. Genes associated with hypertension were screened using an online database. Machine learning, receiver operating characteristic(ROC) curve analysis, molecular docking, and gene set enrichment analysis (GSEA) were employed to explore the potential mechanisms underlying licorice-induced blood pressure fluctuations. RESULTS Eight RCTs (541 participants) were included in the meta-analysis, which indicated interventions containing glycyrrhizic acid (GA) as the main component increased systolic blood pressure (SBP) and diastolic blood pressure (DBP) (SBP: WMD [95% CI] = 3.48 [2.74, 4.21], p < 0.001; DBP: WMD [95% CI] = 1.27 [0.76, 1.78], p < 0.001). However, interventions dominated by licorice flavonoids(LF) had no significant effect on SBP or DBP (SBP: WMD [95% CI] = 0.58 [-1.15, 2.31], p = 0.511; DBP: WMD [95% CI] = 0.17 [-1.53, 1.88], p = 0.843). Three machine learning algorithms identified five biomarkers associated with hypertension: calmodulin 3 (CALM3), cluster of differentiation 9 (CD9), growth factor independence 1B transcriptional repressor (GFI1B), myosin light chain kinase (MYLK), and Ras suppressor-1 (RSU1). After removing biomarkers with lower validity and reliability, GFI1B, MYLK, and RSU1 were selected for subsequent analysis. The network toxicology results suggested that GA and its metabolite glycyrrhetinic acid may act on GFI1B, MYLK, and RSU1, influencing blood pressure fluctuations by modulating nitrogen metabolism signaling pathways. CONCLUSIONS There were distinct differences in the effects of licorice functional components on blood pressure. Functional constituents dominated by GA were shown to increase both SBP and DBP, whereas those dominated by LF did not exhibit significant effects on blood pressure. The hypertensive mechanism of GA may involve the modulation of GFI1B, MYLK, and RSU1 to regulate nitrogen metabolic pathways.
Collapse
Affiliation(s)
- Tianyu Wu
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jingyi Yang
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jiayue Xia
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine and Engineering of Ministry of Education, Department of Nutrition and Food Hygiene, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
5
|
Desai NB, Hoenig MP. Potassium Homeostasis. ADVANCES IN KIDNEY DISEASE AND HEALTH 2024; 31:504-513. [PMID: 39577884 DOI: 10.1053/j.akdh.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 11/24/2024]
Abstract
Potassium homeostasis is essential for maintaining the normal resting membrane potential of excitable cells. Yet daily dietary potassium typically far exceeds total extracellular potassium, thus the body has elegant strategies to shift potassium into cells promptly after a meal and then the kidneys efficiently excrete potassium. Potassium excretion depends on adequate kidney perfusion and filtration, sodium delivery to the distal nephron and aldosterone action on the distal nephron. Both hypokalemia and hyperkalemia have been associated with an increase in mortality. In this piece, we share 5 challenging cases to explore normal potassium homeostasis and disorders that can lead to derangements in potassium balance or excretion.
Collapse
Affiliation(s)
- Niraj B Desai
- Division of Nephrology and Hypertension, Case Western Reserve University School of Medicine, Cleveland, OH
| | - Melanie P Hoenig
- Division of Nephrology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA.
| |
Collapse
|
6
|
Culver SA, Suleman N, Kavuru V, Siragy HM. Renal Hypokalemia: An Endocrine Perspective. J Clin Endocrinol Metab 2024; 109:1694-1706. [PMID: 38546505 DOI: 10.1210/clinem/dgae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Indexed: 06/18/2024]
Abstract
The majority of disorders that cause renal potassium wasting present with abnormalities in adrenal hormone secretion. While these findings frequently lead patients to seek endocrine evaluation, clinicians often struggle to accurately diagnose these conditions, delaying treatment and adversely impacting patient care. At the same time, growing insight into the genetic and molecular basis of these disorders continues to improve their diagnosis and management. In this review, we outline a practical integrated approach to the evaluation of renal hypokalemia syndromes that are seen in endocrine practice while highlighting recent advances in understanding of the genetics and pathophysiology behind them.
Collapse
Affiliation(s)
- Silas A Culver
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Nawar Suleman
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Varun Kavuru
- Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Helmy M Siragy
- Division of Endocrinology, Department of Medicine, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
7
|
Tapia-Castillo A, Carvajal CA, Pérez JA, Sandoval A, Allende F, Solari S, Fardella CE. Low Cortisone as a Novel Predictor of the Low-Renin Phenotype. J Endocr Soc 2024; 8:bvae051. [PMID: 38586159 PMCID: PMC10998281 DOI: 10.1210/jendso/bvae051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Indexed: 04/09/2024] Open
Abstract
A large proportion of patients with low-renin hypertension (LRH) correspond to primary aldosteronism (PA). However, some of these subjects have low to normal aldosterone. Since low renin is driven by excessive mineralocorticoids or glucocorticoids acting on mineralocorticoid receptors (MRs), we hypothesize that a low-cortisone condition, associated classically with 11βHSD2 deficiency, is a proxy of chronic MR activation by cortisol, which can also lead to low renin, elevated blood pressure, and renal and vascular alterations. Objective To evaluate low cortisone as a predictor of low renin activity and its association with parameters of kidney and vascular damage. Methods A cross-sectional study was carried out in 206 adult subjects. The subjects were classified according to low plasma renin activity (<1 ng/mL × hours) and low cortisone (<25th percentile). Results Plasma renin activity was associated with aldosterone (r = 0.36; P < .001) and cortisone (r = 0.22; P = .001). A binary logistic regression analysis showed that serum cortisone per ug/dL increase predicted the low-renin phenotype (OR 0.4, 95% CI 0.21-0.78). The receiver operating characteristic curves for cortisone showed an area under the curve of 0.6 to discriminate subjects with low renin activity from controls. The low-cortisone subjects showed higher albuminuria and PAI-1 and lower sodium excretion. The association study also showed that urinary cortisone was correlated with blood pressure and serum potassium (P < .05). Conclusion This is the first study showing that low cortisone is a predictor of a low-renin condition. Low cortisone also predicted surrogate markers of vascular and renal damage. Since the aldosterone to renin ratio is used in the screening of PA, low cortisone values should be considered additionally to avoid false positives in the aldosterone-renin ratio calculation.
Collapse
Affiliation(s)
- Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago 8330033, Chile
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago 8330033, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago 8330033, Chile
| | - Alejandra Sandoval
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago 8330033, Chile
| | - Fidel Allende
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Sandra Solari
- Department of Clinical Laboratories, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330077, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago 8330033, Chile
| |
Collapse
|
8
|
Charoensri S, Auchus RJ. Therapeutic management of congenital forms of endocrine hypertension. Eur J Endocrinol 2023; 189:R11-R22. [PMID: 37847213 DOI: 10.1093/ejendo/lvad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 08/15/2023] [Accepted: 09/19/2023] [Indexed: 10/18/2023]
Abstract
Congenital forms of endocrine hypertension are rare and potentially life-threatening disorders, primarily caused by genetic defects affecting adrenal steroid synthesis and activation pathways. These conditions exhibit diverse clinical manifestations, which can be distinguished by their unique molecular mechanisms and steroid profiles. Timely diagnosis and customized management approach are crucial to mitigate unfavorable outcomes associated with uncontrolled hypertension and other related conditions. Treatment options for these disorders depend on the distinct underlying pathophysiology, which involves specific pharmacological therapies or surgical adrenalectomy in some instances. This review article summarizes the current state of knowledge on the therapeutic management of congenital forms of endocrine hypertension, focusing on familial hyperaldosteronism (FH), congenital adrenal hyperplasia, apparent mineralocorticoid excess, and Liddle syndrome. We provide an overview of the genetic and molecular pathogenesis underlying each disorder, describe the clinical features, and discuss the various therapeutic approaches available and their risk of adverse effects, aiming to improve outcomes in patients with these rare and complex conditions.
Collapse
Affiliation(s)
- Suranut Charoensri
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, United States
- Endocrinology & Metabolism Section, Medicine Service, LTC Charles S. Kettles VA Medical Center, Ann Arbor, MI 48104, United States
| |
Collapse
|
9
|
Fernandez CJ, Nagendra L, Alkhalifah M, Pappachan JM. Endocrine Hypertension: The Urgent Need for Greater Global Awareness. TOUCHREVIEWS IN ENDOCRINOLOGY 2023; 19:31-41. [PMID: 38187076 PMCID: PMC10769474 DOI: 10.17925/ee.2023.19.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/04/2023] [Indexed: 01/09/2024]
Abstract
Hypertension affects about 1.28 billion adults globally, and significantly increases the risk of chronic morbidity and mortality among sufferers. About 15% of these individuals have secondary hypertension, the majority of whom have dysfunction of one or more endocrine systems as the cause of hypertension. Although adrenal disorders are often identified as the cause of endocrine hypertension, extra-adrenal disease and pituitary disorders also can cause the disease. Timely diagnosis is of paramount importance, because of the potential for a surgical cure or optimal disease control with pharmacotherapy to prevent hypertensive complications. Even with its relatively high prevalence compared with many other chronic illnesses, the diagnosis of endocrine hypertension is often delayed or never made because of poor awareness about the disease among physicians. This review attempts to provide an overview of the disease, with some practical aspects of diagnosis and management of a few of the important disorders causing endocrine hypertension.
Collapse
Affiliation(s)
- Cornelius J Fernandez
- Department of Endocrinology and Metabolism, Pilgrim Hospital, United Lincolnshire Hospitals NHS Trust, Boston, UK
| | - Lakshmi Nagendra
- Department of Endocrinology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, India
| | - Mohammed Alkhalifah
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston, UK
- Department of Family Medicine & Diabetes, King Saud University Medical City, Riyad, Saudi Arabia
| | - Joseph M Pappachan
- Department of Endocrinology and Metabolism, Lancashire Teaching Hospitals NHS Trust, Preston, UK
- Faculty of Science, Manchester Metropolitan University, Manchester, UK
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|
10
|
Jäger MC, Kędzierski J, Gell V, Wey T, Kollár J, Winter DV, Schuster D, Smieško M, Odermatt A. Virtual screening and biological evaluation to identify pharmaceuticals potentially causing hypertension and hypokalemia by inhibiting steroid 11β-hydroxylase. Toxicol Appl Pharmacol 2023; 475:116638. [PMID: 37499767 DOI: 10.1016/j.taap.2023.116638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/21/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Several drugs were found after their market approval to unexpectedly inhibit adrenal 11β-hydroxylase (CYP11B1)-dependent cortisol synthesis. Known side-effects of CYP11B1 inhibition include hypertension and hypokalemia, due to a feedback activation of adrenal steroidogenesis, leading to supraphysiological concentrations of 11-deoxycortisol and 11-deoxycorticosterone that can activate the mineralocorticoid receptor. This results in potassium excretion and sodium and water retention, ultimately causing hypertension. With the risk known but usually not addressed in preclinical evaluation, this study aimed to identify drugs and drug candidates inhibiting CYP11B1. Two conceptually different virtual screening methods were combined, a pharmacophore based and an induced fit docking approach. Cell-free and cell-based CYP11B1 activity measurements revealed several inhibitors with IC50 values in the nanomolar range. Inhibitors include retinoic acid metabolism blocking agents (RAMBAs), azole antifungals, α2-adrenoceptor ligands, and a farnesyltransferase inhibitor. The active compounds share a nitrogen atom embedded in an aromatic ring system. Structure activity analysis identified the free electron pair of the nitrogen atom as a prerequisite for the drug-enzyme interaction, with its pKa value as an indicator of inhibitory potency. Another important parameter is drug lipophilicity, exemplified by etomidate. Changing its ethyl ester moiety to a more hydrophilic carboxylic acid group dramatically decreased the inhibitory potential, most likely due to less efficient cellular uptake. The presented work successfully combined different in silico and in vitro methods to identify several previously unknown CYP11B1 inhibitors. This workflow facilitates the identification of compounds that inhibit CYP11B1 and therefore pose a risk for inducing hypertension and hypokalemia.
Collapse
Affiliation(s)
- Marie-Christin Jäger
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Jacek Kędzierski
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Victoria Gell
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Tim Wey
- Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Jakub Kollár
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| | - Denise V Winter
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| | - Daniela Schuster
- Institute of Pharmacy, Department of Pharmaceutical and Medicinal Chemistry, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria.
| | - Martin Smieško
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Computational Pharmacy, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Missionsstrasse 64, 4055 Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
| |
Collapse
|
11
|
Metwalley KA, Farghaly HS. Overview of endocrine hypertension in children. PROGRESS IN PEDIATRIC CARDIOLOGY 2022. [DOI: 10.1016/j.ppedcard.2022.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
12
|
Tapia-Castillo A, Carvajal CA, Pérez JA, Fardella CE. Clinical, biochemical, and miRNA profile of subjects with positive screening of primary aldosteronism and nonclassic apparent mineralocorticoid excess. Endocrine 2022; 77:380-391. [PMID: 35676467 DOI: 10.1007/s12020-022-03103-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/27/2022] [Indexed: 12/15/2022]
Abstract
Primary aldosteronism (PA) and nonclassic apparent mineralocorticoid excess (NCAME) have been recognized as endocrine-related conditions having a broad clinical-biochemical spectrum, spanning from normotension to severe arterial hypertension (AHT). However, the coexistence of both phenotypes have not been reported to date. AIM To identify and characterize clinical and biochemical parameters of subjects with both PA and NCAME conditions (NCAME&PA) and study the miRNA cargo in their urinary extracellular vesicles as potential biomarkers for this novel condition. METHODS We performed a cross-sectional study of 206 Chilean adult subjects from a primary care cohort. We measured blood pressure (BP), cortisol (F), cortisone (E), aldosterone, plasma renin activity (PRA), microalbuminuria (MAC), plasma NGAL, MMP9, fractional-potassium-excretion (FEK). Subjects were classified as NCAME&PA, PA, NCAME, essential hypertensives (EH), or healthy controls (CTL). EV-miRNAs were quantified by Taqman-qPCR. RESULTS We found that 30.6% subjects had an abnormal endocrine phenotype: NCAME&PA (6.8%), PA (11.2%) or NCAME (12.6%), and the prevalence of AHT was 92.9%, 82.6%, and 65%, respectively. NCAME&PA subjects had both lower cortisone (p < 0.05) and lower PRA (p < 0.0001), higher FEK (p = 0.02) and higher MAC (p = 0.01) than EH or CTL. NCAME&PA subjects had also higher NGAL levels than CTL and PA (p < 0.05). Exosome miR-192, miR-133a and miR-21 expression decreased with phenotype severity and correlated with BP and PRA (p < 0.05). CONCLUSION We identified adult subjects with a combined condition of NCAME and PA associated with higher BP, increased renal and endothelial damage markers than control and EH. Additionally, we observed a differential expression of a specific miRNAs, suggesting a potential role of these miRNAs associated to this novel combined phenotype.
Collapse
Affiliation(s)
- Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge A Pérez
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.
- Centro Traslacional de Endocrinología UC (CETREN-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
13
|
Gulhan B, Ünsal Y, Baltu D, Çelik Ertaş NB, Özdemir G, Utine E, Ozcan HN, Duzova A, Gönç N. Apparent mineralocorticoid excess: A diagnosis beyond classical causes of severe hypertension in a child. Blood Press Monit 2022; 27:208-211. [PMID: 35044984 DOI: 10.1097/mbp.0000000000000583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
A genetic defect of 11 β-hydroxysteroid dehydrogenase causes apparent mineralocorticoid excess syndrome. Since 50 days of life, our patient was hospitalized several times for various reasons including hypokalemia. At the age of 3.3 years, she was diagnosed with severe hypertension (160/120 mmHg). She also had left ventricular hypertrophy and hypertensive retinopathy and referred to our center. Her renal function and electrolytes were normal except for hypokalemia. She was on captopril treatment; nifedipine and propranolol were added. Plasma renin and aldosterone concentrations were 1.13 pg/ml (1-8.2 pg/ml) and 12.2 ng/dl (35-300 ng/dl), respectively. Severe hypertension, hypokalemia, low renin and aldosterone levels pointed to the diagnosis of apparent mineralocorticoid excess syndrome. Strict salt-restricted diet and potassium citrate were ordered. Genetic analysis of the HSD11B2 gene showed c.623G>A (p.Arg208His). Spironolactone was initiated. On follow-up, amiloride was added and her blood pressure was controlled. In patients with severe HSD11B2 mutation, combination therapy of spironolactone with amiloride could be effective in controlling blood pressure.
Collapse
Affiliation(s)
- Bora Gulhan
- Division of Pediatric Nephrology, Department of Pediatrics
| | - Yağmur Ünsal
- Division of Pediatric Endocrinology, Department of Pediatrics
| | - Demet Baltu
- Division of Pediatric Nephrology, Department of Pediatrics
| | | | - Gülşah Özdemir
- Division of Pediatric Nephrology, Department of Pediatrics
| | - Eda Utine
- Division of Pediatric Genetics, Department of Pediatrics, Hacettepe University School of Medicine and Hacettepe University School of Medicine, Department of Radiology, Ankara, Turkey
| | - H Nursun Ozcan
- Division of Pediatric Nephrology, Department of Pediatrics
| | - Ali Duzova
- Division of Pediatric Nephrology, Department of Pediatrics
| | - Nazli Gönç
- Division of Pediatric Endocrinology, Department of Pediatrics
| |
Collapse
|
14
|
Kater CE, Giorgi RB, Costa-Barbosa FA. Classic and current concepts in adrenal steroidogenesis: a reappraisal. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2022; 66:77-87. [PMID: 35263051 PMCID: PMC9991025 DOI: 10.20945/2359-3997000000438] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Adrenal steroid biosynthesis and its related pathology are constant evolving disciplines. In this paper, we review classic and current concepts of adrenal steroidogenesis, plus control mechanisms of steroid pathways, distribution of unique enzymes and cofactors, and major steroid families. We highlight the presence of a "mineralocorticoid (MC) pathway of zona fasciculata (ZF)", where most circulating corticosterone and deoxycorticosterone (DOC) originate together with 18OHDOC, under ACTH control, a claim based on functional studies in normal subjects and in patients with 11β-, and 17α-hydroxylase deficiencies. We emphasize key differences between CYP11B1 (11β-hydroxylase) and CYP11B2 (aldosterone synthase) and the onset of a hybrid enzyme - CYP11B1/CYP11B2 -, responsible for aldosterone formation in ZF under ACTH control, in "type I familial hyperaldosteronism" (dexamethasone suppressible). In "apparent MC excess syndrome", peripheral conversion of cortisol to cortisone is impaired by lack of 11β-hydroxysteroid dehydrogenase type 2, permitting free cortisol access to MC receptors resulting in severe hypertension. We discuss two novel conditions involving the synthesis of adrenal androgens: the "backdoor pathway", through which dihydrotestosterone is formed directly from androsterone, being relevant for the fetoplacental setting and sexual differentiation of male fetuses, and the rediscovery of C19 11-oxygenated steroids (11-hydroxyandrostenedione and 11-ketotestosterone), active androgens and important markers of virilization in 21-hydroxylase deficiency and polycystic ovaries syndrome. Finally, we underline two enzyme cofactor deficiencies: cytochrome P450 oxidoreductase which partially affects 21- and 17α-hydroxylation, producing a combined clinical/hormonal picture and causing typical skeletal malformations (Antley-Bixler syndrome), and PAPSS2, coupled to SULT2A1, that promotes sulfation of DHEA to DHEAS, preventing active androgens to accumulate. Its deficiency results in reduced DHEAS and elevated DHEA and androgens with virilization. Future and necessary studies will shed light on remaining issues and questions on adrenal steroidogenesis.
Collapse
Affiliation(s)
- Claudio E Kater
- Unidade de Adrenal e Hipertensão; Laboratório de Esteroides, Divisão de Endocrinologia e Metabolismo, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, SP, Brasil,
| | - Rafael B Giorgi
- Divisão de Endocrinologia e Metabolismo, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-Unifesp); Ambulatório de Adrenal, Divisão de Endocrinologia, Faculdade de Ciências Médicas e da Saúde, Pontifícia Universidade Católica de Sorocaba (PUC-Sorocaba), Sorocaba, SP, Brasil
| | - Flavia A Costa-Barbosa
- Divisão de Clínica Médica e Divisão de Endocrinologia e Metabolismo, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-Unifesp), São Paulo, SP, Brasil
| |
Collapse
|
15
|
Pastén V, Tapia-Castillo A, Fardella CE, Leiva A, Carvajal CA. Aldosterone and renin concentrations were abnormally elevated in a cohort of normotensive pregnant women. Endocrine 2022; 75:899-906. [PMID: 34826118 DOI: 10.1007/s12020-021-02938-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/02/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND During pregnancy, the renin-angiotensin-aldosterone system (RAAS) undergoes major changes to preserve normal blood pressure (BP) and placental blood flow and to ensure a good pregnancy outcome. Abnormal aldosterone-renin metabolism is a risk factor for arterial hypertension and cardiovascular risk, but its association with pathological conditions in pregnancy remains unknown. Moreover, potential biomarkers associated with these pathological conditions should be identified. AIM To study a cohort of normotensive pregnant women according to their serum aldosterone and plasma renin levels and assay their small extracellular vesicles (sEVs) and a specific protein cargo (LCN2, AT1R). METHODS A cohort of 54 normotensive pregnant women at term gestation was included. We determined the BP, serum aldosterone, and plasma renin concentrations. In a subgroup, we isolated their plasma sEVs and semiquantitated two EV proteins (AT1R and LCN2). RESULTS We set a normal range of aldosterone and renin based on the interquartile range. We identified 5/54 (9%) pregnant women with elevated aldosterone and low renin levels and 5/54 (9%) other pregnant women with low aldosterone and elevated renin levels. No differences were found in sEV-LCN2 or sEV-AT1R. CONCLUSION We found that 18% of normotensive pregnant women had either high aldosterone or high renin levels, suggesting a subclinical status similar to primary aldosteronism or hyperreninemia, respectively. Both could evolve to pathological conditions by affecting the maternal vascular and renal physiology and further the BP. sEVs and their specific cargo should be further studied to clarify their role as potential biomarkers of RAAS alterations in pregnant women.
Collapse
Affiliation(s)
- Valentina Pastén
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN), Santiago, Chile
| | - Andrea Leiva
- Division of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile.
| | - Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.
- Centro Traslacional de Endocrinología UC (CETREN), Santiago, Chile.
| |
Collapse
|
16
|
Ji HH, Tang XW, Zhang N, Huo BN, Liu Y, Song L, Jia YT. Antifungal Therapy with Azoles Induced the Syndrome of Acquired Apparent Mineralocorticoid Excess: a Literature and Database Analysis. Antimicrob Agents Chemother 2022; 66:e0166821. [PMID: 34662186 PMCID: PMC8765306 DOI: 10.1128/aac.01668-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022] Open
Abstract
We aimed to estimate the risk of varied antifungal therapy with azoles causing the syndrome of acquired apparent mineralocorticoid excess (AME) in real-world practice. First, we conducted a disproportionality analysis based on data from the FDA Adverse Event Reporting System (FAERS) database to characterize the signal differences of triazoles-related AME. Second, a systematic review was conducted, and clinical features of AME cases reported in clinical practice were described. In the FAERS database, we identified 27 cases of triazoles-AME, posaconazole [ROR = 865.37; 95%CI (464.14; 1613.45)], and itraconazole [ROR = 556.21; 95% (303.05; 1020.85)] significantly increased the risk of AME events, while fluconazole, voriconazole, and isavuconazole did not affect any of the mineralocorticoid excess targets. Eighteen studies with 39 cases raised evidence of AME following posaconazole and itraconazole treatment, and another 27 cases were identified by analysis of the description of clinical features in the FAERS database. The average age of 66 patients was 55.5 years (6-87 years). AME mainly occurs in patients with posaconazole concentrations above 3 μg/mL (mean = 4.4 μg/mL, range 1.8∼9.5 μg/mL), and is less likely to occur when levels are below 2 μg/mL (6%). The median time to event onset was 11.5 weeks, and 50% of the adverse events occurred within 3 months for posaconazole. The presented study supports very recent findings that posaconazole and itraconazole, but not the other three azole antifungals investigated, are associated with AME and that the effects are dose-dependent, which allows for a dose de-escalation strategy and for substitution with fluconazole, isavuconazole, or voriconazole to resolve the adverse effects.
Collapse
Affiliation(s)
- Huan-huan Ji
- Department of Pharmacy, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Xue-wen Tang
- Chengdu Shuchuang Linyan Technology Co., Ltd, Chengdu, China
| | - Ni Zhang
- Department of Pharmacy, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ben-nian Huo
- Department of Pharmacy, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Ying Liu
- Department of Pharmacy, National Center for Children‘s Health, Beijing Children’s Hospital, Capital Medical University, Beijing, China
| | - Lin Song
- Department of Pharmacy, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yun-tao Jia
- Department of Pharmacy, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
17
|
Borchers J, Mäkitie O, Jääskeläinen J, Laakso S. Recurrent Hypokalemia and Adrenal Steroids in Patients With APECED. Front Endocrinol (Lausanne) 2022; 13:904507. [PMID: 35813662 PMCID: PMC9256963 DOI: 10.3389/fendo.2022.904507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
CONTEXT Hypokalemia is a common finding in patients with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) but its exact cause often remains unknown. OBJECTIVE To explore the prevalence and etiology of hypokalemia and the role of adrenal steroids therein in a cohort of patients with APECED. METHODS We performed a cross-sectional assessment and retrospective data collection on 44 Finnish patients with APECED to identify subjects with episodes of hypokalemia. Also 68 healthy matched controls attended the cross-sectional evaluation. Factors associating with a tendency for hypokalemia were analyzed by reviewing medical records during 1960-2021 and performing a cross-sectional analysis of serum adrenal steroids. RESULTS In total 14 of the 44 APECED patients (32%) had episodes of hypokalemia; 2 presented with hypokalemia at cross-sectional evaluation and 12 had a history of hypokalemia before the cross-sectional evaluation. Hypokalemic episodes started at the median age of 14.1 years; 12/14 (86%) had primary adrenal insufficiency (PAI). The median number of hypokalemic periods per year was 0.3 (range 0.04-2.2); the frequency correlated positively with the number of clinical APECED manifestations at the time of cross-sectional evaluation (r=0.811, p<0.001). Etiologies of hypokalemia varied but episodes often occurred when new clinical manifestations developed and during hospitalizations. Three patients had kidney defects, also associated with electrolyte imbalances. Severity of hypokalemia varied (range 2.2-3.2 mmol/L), but no severe complications were observed. At cross-sectional evaluation, patients with PAI (n = 30) had significantly lower median plasma potassium and higher sodium concentration than controls, suggesting that fludrocortisone treatment contributed to hypokalemia. Detailed analysis of adrenal steroids provided no conclusive differences between patients with and without episodes of hypokalemia. CONCLUSIONS In APECED, hypokalemia is common and varies in terms of frequency, etiology, and severity. PAI and kidney disease predispose to hypokalemia. In addition, hypokalemic periods seem to be more common in patients with more severe phenotype of APECED.
Collapse
Affiliation(s)
- Joonatan Borchers
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- *Correspondence: Joonatan Borchers,
| | - Outi Mäkitie
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Molecular Medicine and Surgery, Karolinska Institutet, and Clinical Genetics, Karolinska University Hospital, Stockholm, Sweden
| | - Jarmo Jääskeläinen
- Kuopio Pediatric Research Unit, University of Eastern Finland and Kuopio University Hospital, Kuopio, Finland
| | - Saila Laakso
- Children’s Hospital, Pediatric Research Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Folkhälsan Research Center, Folkhälsan Institute of Genetics, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Carvajal CA, Tapia-Castillo A, Fardella CE. Extending the endocrine hypertension spectrum: novel nonclassic apparent mineralocorticoid excess. Endocrine 2021; 74:437-439. [PMID: 34101110 DOI: 10.1007/s12020-021-02783-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/29/2021] [Indexed: 12/12/2022]
Affiliation(s)
- Cristian A Carvajal
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago, Chile.
| | - Alejandra Tapia-Castillo
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago, Chile
| | - Carlos E Fardella
- Department of Endocrinology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
- Millennium Institute on Immunology and Immunotherapy (IMII-ICM), Santiago, Chile.
- Centro Traslacional de Endocrinología UC (CETREN-UC), Santiago, Chile.
| |
Collapse
|
19
|
Novel metabolomic profile of subjects with non-classic apparent mineralocorticoid excess. Sci Rep 2021; 11:17156. [PMID: 34433879 PMCID: PMC8387493 DOI: 10.1038/s41598-021-96628-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 08/06/2021] [Indexed: 01/22/2023] Open
Abstract
Nonclassic apparent mineralocorticoid excess (NC-AME) is proposed as a novel clinical condition with a mild phenotypic spectrum that ranges from normotension to severe hypertension. This condition is mainly characterized by a high serum cortisol to cortisone ratio (F/E) and concomitant low cortisone (E), however further metabolic changes in NC-AME have not been studied. A cross-sectional study was performed in a primary-care cohort of 396 Chilean subjects, which were classified in two groups: NC-AME (n = 28) and healthy controls (n = 27). A discovery study based in untargeted metabolomics assay in serum samples from both groups was performed by UPLC-Q-TOF/MS. Global metabolomic variations were assayed by principal component analysis and further compared by orthogonal partial least-squares discriminant analysis (OPLS-DA). NC-AME subjects exhibited higher values of blood pressure, fractional excretion of potassium, and lower plasma renin activity and urinary sodium to potassium ratio. Metabolomic analyses showed 36 differentially regulated metabolites between NC-AME and control subjects. A ROC curve analyses identified eight metabolites with high discriminatory capacity between NC-AME and control subjects. Moreover, gamma-l-glutamyl-l-methionine sulfoxide and 5-sulfoxymethylfurfural, exhibited significant association with cortisone, which are potential biomarkers of NC-AME, however further assays should elucidate its biological role in setup and progression of this phenotype.
Collapse
|
20
|
Beck KR, Odermatt A. Antifungal therapy with azoles and the syndrome of acquired mineralocorticoid excess. Mol Cell Endocrinol 2021; 524:111168. [PMID: 33484741 DOI: 10.1016/j.mce.2021.111168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The syndromes of mineralocorticoid excess describe a heterogeneous group of clinical manifestations leading to endocrine hypertension, typically either through direct activation of mineralocorticoid receptors or indirectly by impaired pre-receptor enzymatic regulation or through disturbed renal sodium homeostasis. The phenotypes of these disorders can be caused by inherited gene variants and somatic mutations or may be acquired upon exposures to exogenous substances. Regarding the latter, the symptoms of an acquired mineralocorticoid excess have been reported during treatment with azole antifungal drugs. The current review describes the occurrence of mineralocorticoid excess particularly during the therapy with posaconazole and itraconazole, addresses the underlying mechanisms as well as inter- and intra-individual differences, and proposes a therapeutic drug monitoring strategy for these two azole antifungals. Moreover, other therapeutically used azole antifungals and ongoing efforts to avoid adverse mineralocorticoid effects of azole compounds are shortly discussed.
Collapse
Affiliation(s)
- Katharina R Beck
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Alex Odermatt
- Swiss Centre for Applied Human Toxicology and Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland.
| |
Collapse
|
21
|
De Santis D, Castagna A, Danese E, Udali S, Martinelli N, Morandini F, Veneri M, Bertolone L, Olivieri O, Friso S, Pizzolo F. Detection of Urinary Exosomal HSD11B2 mRNA Expression: A Useful Novel Tool for the Diagnostic Approach of Dysfunctional 11β-HSD2-Related Hypertension. Front Endocrinol (Lausanne) 2021; 12:681974. [PMID: 34497581 PMCID: PMC8419411 DOI: 10.3389/fendo.2021.681974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 07/29/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Apparent mineralocorticoid excess (AME) is an autosomal recessive disorder caused by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2) enzyme deficiency, traditionally assessed by measuring either the urinary cortisol metabolites ratio (tetrahydrocortisol+allotetrahydrocortisol/tetrahydrocortisone, THF+5αTHF/THE) or the urinary cortisol/cortisone (F/E) ratio. Exosomal mRNA is an emerging diagnostic tool due to its stability in body fluids and its biological regulatory function. It is unknown whether urinary exosomal HSD11B2 mRNA is related to steroid ratio or the HSD11B2 662 C>G genotype (corresponding to a 221 A>G substitution) in patients with AME and essential hypertension (EH). AIM OF THE STUDY To detect and quantify HSD11B2 mRNA from urinary exosomes in samples from family members affected by AME and EH, and to evaluate the relationship between exosomal HSD11B2 mRNA, steroid ratio, 662C>G genotype, and hypertension. METHODS In this observational case-control study, urinary steroid ratios and biochemical parameters were measured. Urinary exosomes were extracted from urine and exosomal HSD11B2 mRNA was quantified by Droplet Digital PCR (ddPCR). B2M (β-2 microglobulin) gene was selected as the reference housekeeping gene. RESULTS Among family members affected by AME, exosomal urinary HSD11B2 mRNA expression was strictly related to genotypes. The two homozygous mutant probands showed the highest HSD11B2 mRNA levels (median 169, range 118-220 copies/µl) that progressively decreased in 221 AG heterozygous with hypertension (108, range 92-124 copies/µl), 221 AG heterozygous normotensives (23.35, range 8-38.7 copies/µl), and wild-type 221 AA subjects (5.5, range 4.5-14 copies/µl). Heterozygous hypertensive subjects had more HSD11B2 mRNA than heterozygous normotensive subjects. The F/E urinary ratio correlated with HSD11B2 mRNA copy number (p < 0.05); HSD11B2 mRNA strongly decreased while THF+5αTHF/THE increased in the two probands after therapy. In the AME family, HSD11B2 copy number correlated with both F/E and THF+5αTHF/THE ratios, whereas in EH patients, a high F/E ratio reflected a reduced HSD11B2 mRNA expression. CONCLUSIONS HSD11B2 mRNA is detectable and quantifiable in urinary exosomes; its expression varies according to the 662 C>G genotype with the highest levels in homozygous mutant subjects. The HSD11B2 mRNA overexpression in AME could be due to a compensatory mechanism of the enzyme impairment. Exosomal mRNA is a useful tool to investigate HSD11B2 dysregulation in hypertension.
Collapse
Affiliation(s)
- Domenica De Santis
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Annalisa Castagna
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Elisa Danese
- Section of Clinical Biochemistry, University and Azienda Ospedaliera Universitaria Integrata of Verona, Verona, Italy
| | - Silvia Udali
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Nicola Martinelli
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Morandini
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Mariangela Veneri
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Lorenzo Bertolone
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Oliviero Olivieri
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Simonetta Friso
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
| | - Francesca Pizzolo
- Unit of Internal Medicine, Department of Medicine, University of Verona, Verona, Italy
- *Correspondence: Francesca Pizzolo,
| |
Collapse
|
22
|
Fan P, Lu YT, Yang KQ, Zhang D, Liu XY, Tian T, Luo F, Wang LP, Ma WJ, Liu YX, Zhang HM, Song L, Cai J, Lou Y, Zhou XL. Apparent mineralocorticoid excess caused by novel compound heterozygous mutations in HSD11B2 and characterized by early-onset hypertension and hypokalemia. Endocrine 2020; 70:607-615. [PMID: 32816205 PMCID: PMC7674368 DOI: 10.1007/s12020-020-02460-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/08/2020] [Indexed: 11/22/2022]
Abstract
PURPOSE Apparent mineralocorticoid excess (AME) is an ultrarare autosomal recessive disorder resulting from deficiency of 11β-hydroxysteroid dehydrogenase type 2 (11βHSD2) caused by mutations in HSD11B2. The purpose of this study was to identify novel compound heterozygous HSD11B2 mutations in a Chinese pedigree with AME and conduct a systematic review evaluating the AME clinical features associated with HSD11B2 mutations. METHODS Next-generation sequencing was performed in the proband, and Sanger sequencing was used to identify candidate variants in family members, 100 hypertensives, and 100 healthy controls. A predicted structure of 11βHSD2 was constructed by in silico modeling. A systematic review was used to identify cases of HSD11B2-related AME. Data for genotyping and clinical characterizations and complications were extracted. RESULTS Next-generation sequencing showed novel compound heterozygous mutations (c.343_348del and c.1099_1101del) in the proband with early-onset hypertension and hypokalemia. Sanger sequencing verified the monoallelic form of the same mutations in five other relatives but not in 100 hypertensives or 100 healthy subjects. In silico structural modeling showed that compound mutations may simultaneously perturb the substrate and coenzyme binding pocket. A systematic review of 101 AME patients with 54 HSD11B2 mutations revealed early-onset hypertension, hypokalemia and homozygous mutations as common features. The homozygous HSD11B2 mutations correlated with low birth weight (r = 0.285, P = 0.02). CONCLUSIONS We report novel compound heterozygous HSD11B2 mutations in a Chinese teenager with early-onset hypertension, and enriched genotypic and phenotypic spectrums in AME. Genetic testing helps early diagnosis and treatment for AME patients, which may avoid target organ damage.
Collapse
Affiliation(s)
- Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi-Ting Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhang
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue-Ying Liu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Tian
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fang Luo
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin-Ping Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen-Jun Ma
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ya-Xin Liu
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui-Min Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Song
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Cai
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Lou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
23
|
Lu YT, Fan P, Zhang D, Zhang Y, Meng X, Zhang QY, Zhao L, Yang KQ, Zhou XL. Overview of Monogenic Forms of Hypertension Combined With Hypokalemia. Front Pediatr 2020; 8:543309. [PMID: 33569358 PMCID: PMC7868374 DOI: 10.3389/fped.2020.543309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 12/29/2020] [Indexed: 12/26/2022] Open
Abstract
Hypertension is an important risk factor in many conditions and creates a heavy burden of disease and mortality globally. Polygenic hypertension is the most common form; however, it is increasingly recognized that monogenic hypertension is not rare, especially in patients with electrolyte disorders. Single genetic alterations are associated with plasma volume expansion and catecholamines/sympathetic excess with simultaneously increased potassium excretion in the urine and potassium intracellular shift. Early-onset refractory hypertension and profound hypokalemia are characteristics of monogenic hypertension. However, accumulated evidence shows the existence of phenotypic heterogeneity in monogenic hypertension meaning that, even for mild symptoms, clinicians cannot easily exclude the possibility of monogenic hypertension. Genetic, epigenetic and non-genetic factors are all possible mechanisms influencing phenotypic diversity. Genetic sequencing is a precise and efficient method that can broaden the mutant gene spectrum of the disease and is very helpful for understanding the pathophysiology of monogenic hypertension. Genetic sequencing, along with biochemical tests and imaging modalities, is essential for the early diagnosis and targeted management of monogenic hypertension to avoid long-term catastrophic complications.
Collapse
Affiliation(s)
- Yi-Ting Lu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peng Fan
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Di Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Meng
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong-Yu Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Zhao
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kun-Qi Yang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xian-Liang Zhou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|