1
|
Li L, Zhou J, Han L, Wu X, Shi Y, Cui W, Zhang S, Hu Q, Wang J, Bai H, Liu H, Guo W, Feng D, Qu Y. The Specific Role of Reactive Astrocytes in Stroke. Front Cell Neurosci 2022; 16:850866. [PMID: 35321205 PMCID: PMC8934938 DOI: 10.3389/fncel.2022.850866] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/15/2022] [Indexed: 01/05/2023] Open
Abstract
Astrocytes are essential in maintaining normal brain functions such as blood brain barrier (BBB) homeostasis and synapse formation as the most abundant cell type in the central nervous system (CNS). After the stroke, astrocytes are known as reactive astrocytes (RAs) because they are stimulated by various damage-associated molecular patterns (DAMPs) and cytokines, resulting in significant changes in their reactivity, gene expression, and functional characteristics. RAs perform multiple functions after stroke. The inflammatory response of RAs may aggravate neuro-inflammation and release toxic factors to exert neurological damage. However, RAs also reduce excitotoxicity and release neurotrophies to promote neuroprotection. Furthermore, RAs contribute to angiogenesis and axonal remodeling to promote neurological recovery. Therefore, RAs' biphasic roles and mechanisms make them an effective target for functional recovery after the stroke. In this review, we summarized the dynamic functional changes and internal molecular mechanisms of RAs, as well as their therapeutic potential and strategies, in order to comprehensively understand the role of RAs in the outcome of stroke disease and provide a new direction for the clinical treatment of stroke.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Yan Qu
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
2
|
Renal and Hematological Effects of CLCF-1, a B-Cell-Stimulating Cytokine of the IL-6 Family. J Immunol Res 2015; 2015:714964. [PMID: 26146641 PMCID: PMC4471311 DOI: 10.1155/2015/714964] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 05/13/2015] [Indexed: 12/23/2022] Open
Abstract
CLCF-1 is a cytokine known for B-cell stimulation and for neurotrophic properties. We have identified CLCF-1 as a potential injurious factor in the human renal disease focal segmental glomerulosclerosis (FSGS). We investigated its effects on renal cells and renal function in in vitro and in vivo studies. Methods include measurement of the effect of CLCF-1 on phosphorylation of target molecules of the JAK/STAT pathway, on cytoskeleton and cell morphology in cultured podocytes, on albumin permeability of isolated rat glomeruli, and on tissue phosphorylation and urine albumin after acute or chronic CLCF-1 injection. In addition, cell sorting was performed to determine the presence of cells expressing CLCF-1 in spleen and bone marrow of normal mice and the effect of CLCF-1 infusion on splenic B-cell populations. CLCF-1 increased phosphorylation of STAT3 in multiple cell types, activated podocytes leading to formation of lamellipodia and decrease in basal stress fibers, increased glomerular albumin permeability, and increased STAT3 phosphorylation of peripheral blood cells and renal cortex. CLCF-1 increased urine albumin/creatinine ratio in mice and increased B-cell expression of IgG in mouse spleen. We conclude that CLCF-1 has potentially important systemic effects, alters podocyte function, and may contribute to renal dysfunction and albuminuria.
Collapse
|
3
|
Tappenden DM, Hwang HJ, Yang L, Thomas RS, LaPres JJ. The Aryl-Hydrocarbon Receptor Protein Interaction Network (AHR-PIN) as Identified by Tandem Affinity Purification (TAP) and Mass Spectrometry. J Toxicol 2013; 2013:279829. [PMID: 24454361 PMCID: PMC3870133 DOI: 10.1155/2013/279829] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/09/2013] [Accepted: 10/14/2013] [Indexed: 12/28/2022] Open
Abstract
The aryl-hydrocarbon receptor (AHR), a ligand activated PAS superfamily transcription factor, mediates most, if not all, of the toxicity induced upon exposure to various dioxins, dibenzofurans, and planar polyhalogenated biphenyls. While AHR-mediated gene regulation plays a central role in the toxic response to dioxin exposure, a comprehensive understanding of AHR biology remains elusive. AHR-mediated signaling starts in the cytoplasm, where the receptor can be found in a complex with the heat shock protein of 90 kDa (Hsp90) and the immunophilin-like protein, aryl-hydrocarbon receptor-interacting protein (AIP). The role these chaperones and other putative interactors of the AHR play in the toxic response is not known. To more comprehensively define the AHR-protein interaction network (AHR-PIN) and identify other potential pathways involved in the toxic response, a proteomic approach was undertaken. Using tandem affinity purification (TAP) and mass spectrometry we have identified several novel protein interactions with the AHR. These interactions physically link the AHR to proteins involved in the immune and cellular stress responses, gene regulation not mediated directly via the traditional AHR:ARNT heterodimer, and mitochondrial function. This new insight into the AHR signaling network identifies possible secondary signaling pathways involved in xenobiotic-induced toxicity.
Collapse
Affiliation(s)
- Dorothy M. Tappenden
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Hye Jin Hwang
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824-1319, USA
| | - Longlong Yang
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
| | - Russell S. Thomas
- The Hamner Institutes for Health Sciences, Research Triangle Park, NC 27709, USA
| | - John J. LaPres
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
- Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824-1319, USA
- Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI 48824-1319, USA
| |
Collapse
|
4
|
Mousa A, Bakhiet M. Role of cytokine signaling during nervous system development. Int J Mol Sci 2013; 14:13931-57. [PMID: 23880850 PMCID: PMC3742226 DOI: 10.3390/ijms140713931] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 06/19/2013] [Accepted: 06/25/2013] [Indexed: 01/24/2023] Open
Abstract
Cytokines are signaling proteins that were first characterized as components of the immune response, but have been found to have pleiotropic effects in diverse aspects of body function in health and disease. They are secreted by numerous cells and are used extensively in intercellular communications to produce different activities, including intricate processes engaged in the ontogenetic development of the brain. This review discusses factors involved in brain growth regulation and recent findings exploring cytokine signaling pathways during development of the central nervous system. In view of existing data suggesting roles for neurotropic cytokines in promoting brain growth and repair, these molecules and their signaling pathways might become targets for therapeutic intervention in neurodegenerative processes due to diseases, toxicity, or trauma.
Collapse
Affiliation(s)
- Alyaa Mousa
- Department of Anatomy, Faculty of Medicine, Health Sciences Centre, Kuwait University, Safat 13060, Kuwait; E-Mail:
| | - Moiz Bakhiet
- Department of Molecular Medicine, Princess Al-Jawhara Center for Genetics and Inherited Diseases, College of Medicine and Medical Sciences, Arabian Gulf University, P.O. Box 26671 Manama, Bahrain
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +973-1723-7300
| |
Collapse
|
5
|
Johnson EC, Doser TA, Cepurna WO, Dyck JA, Jia L, Guo Y, Lambert WS, Morrison JC. Cell proliferation and interleukin-6-type cytokine signaling are implicated by gene expression responses in early optic nerve head injury in rat glaucoma. Invest Ophthalmol Vis Sci 2011; 52:504-18. [PMID: 20847120 DOI: 10.1167/iovs.10-5317] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE In glaucoma, the optic nerve head (ONH) is the principal site of initial axonal injury, and elevated intraocular pressure (IOP) is the predominant risk factor. However, the initial responses of the ONH to elevated IOP are unknown. Here the authors use a rat glaucoma model to characterize ONH gene expression changes associated with early optic nerve injury. METHODS Unilateral IOP elevation was produced in rats by episcleral vein injection of hypertonic saline. ONH mRNA was extracted, and retrobulbar optic nerve cross-sections were graded for axonal degeneration. Gene expression was determined by microarray and quantitative PCR (QPCR) analysis. Significantly altered gene expression was determined by multiclass analysis and ANOVA. DAVID gene ontology determined the functional categories of significantly affected genes. RESULTS The Early Injury group consisted of ONH from eyes with <15% axon degeneration. By array analysis, 877 genes were significantly regulated in this group. The most significant upregulated gene categories were cell cycle, cytoskeleton, and immune system process, whereas the downregulated categories included glucose and lipid metabolism. QPCR confirmed the upregulation of cell cycle-associated genes and leukemia inhibitory factor (Lif) and revealed alterations in expression of other IL-6-type cytokines and Jak-Stat signaling pathway components, including increased expression of IL-6 (1553%). In contrast, astrocytic glial fibrillary acidic protein (Gfap) message levels were unaltered, and other astrocytic markers were significantly downregulated. Microglial activation and vascular-associated gene responses were identified. CONCLUSIONS Cell proliferation and IL-6-type cytokine gene expression, rather than astrocyte hypertrophy, characterize early pressure-induced ONH injury.
Collapse
Affiliation(s)
- Elaine C Johnson
- Kenneth C. Swan Ocular Neurobiology Laboratory, Casey Eye Institute, Oregon Health and Science University, Portland, Oregon 97201, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Diegelmann J, Beigel F, Zitzmann K, Kaul A, Göke B, Auernhammer CJ, Bartenschlager R, Diepolder HM, Brand S. Comparative analysis of the lambda-interferons IL-28A and IL-29 regarding their transcriptome and their antiviral properties against hepatitis C virus. PLoS One 2010; 5:e15200. [PMID: 21170333 PMCID: PMC2999541 DOI: 10.1371/journal.pone.0015200] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 10/31/2010] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. METHODOLOGY/PRINCIPAL FINDINGS Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. CONCLUSIONS/SIGNIFICANCE IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV.
Collapse
Affiliation(s)
- Julia Diegelmann
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Florian Beigel
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Kathrin Zitzmann
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Artur Kaul
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Burkhard Göke
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Christoph J. Auernhammer
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Ralf Bartenschlager
- Department of Molecular Virology, University of Heidelberg, Heidelberg, Germany
| | - Helmut M. Diepolder
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| | - Stephan Brand
- Department of Medicine II, University Hospital Munich-Grosshadern, University of Munich, Munich, Germany
| |
Collapse
|
7
|
Interleukin-6 deficiency accelerates cisplatin-induced acute renal failure but not systemic injury. Toxicology 2009; 265:115-21. [PMID: 19833167 DOI: 10.1016/j.tox.2009.10.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/05/2009] [Accepted: 10/05/2009] [Indexed: 11/24/2022]
Abstract
Cisplatin (CDDP), a major chemotherapeutic agent used to treat solid tumors, is known to induce acute renal failure (ARF). The progression of tissue injury involves the coordination of inflammatory and repair responses. Interleukin-6 (IL-6) has been suggested to modulate inflammatory and repair processes in various tissue injuries. In this study, we analyzed IL-6 regulation during CDDP-induced ARF in wild-type (WT) mice and determined the pathological role of IL-6 using IL-6 knockout ((-/-)) mice. A correlation between increase in serum IL-6 level and blood urea nitrogen level was found in WT mice. Renal IL-6 expression in most proximal tubular cells and suppressor of cytokine signaling 3 (SOCS3) gene expression significantly increased in WT mice after administration of CDDP, suggesting active IL-6 signaling during CDDP-induced ARF development. Interestingly, renal dysfunction occurred soon after administration of CDDP and became more severe in IL-6(-/-) mice than that in WT mice. In contrast, the survival rate of IL-6(-/-) mice (50% at 8 days) was better than that of WT mice (10%). Induction levels of proapoptotic Bcl-2 associated X protein (Bax) in renal proximal tubular cells was significantly higher in IL-6(-/-) mice than in WT mice at 24h after CDDP injection. Levels of antiapoptotic proteins, Bcl-2 and Bcl-extra large (Bcl-x(L)), in IL-6(-/-) groups were significantly higher than those in CDDP-treated WT groups throughout the experimental period. Bax might contribute to the development of CDDP-induced ARF at 24h; however, high expression levels of Bcl-x(L) and Bcl-2 might overcome the proapoptosis signaling at 72 h in IL-6(-/-) mice. These results indicated that local and systemic elevation of IL-6 contributes to the development of CDDP-induced ARF and that IL-6 produced in renal tubular cells prevents progression of ARF at the early stage. IL-6 deficiency accelerates CDDP-induced ARF but not development of systemic injury.
Collapse
|
8
|
Abstract
Malignant gliomas are the most common primary brain tumors. Despite efforts to find effective treatments, these tumors remain incurable. The failure of malignant gliomas to respond to conventional cancer therapies may reflect the unique biology of these tumors, underscoring the need for new approaches in their investigation. Recently, progress has been made in characterization of the molecular pathogenesis of glioblastoma using a developmental neurobiological perspective, by exploring the role of signaling pathways that control the differentiation of neural stem cells along the glial lineage. The transcription factor STAT3, which has an established function in neural stem cell and astrocyte development, has been found to play dual tumor suppressive and oncogenic roles in glial malignancy depending on the mutational profile of the tumor. These findings establish a novel developmental paradigm in the study of glioblastoma pathogenesis and provide the rationale for patient-tailored therapy in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Núria de la Iglesia
- Department of Pathology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, USA
| | - Sidharth V. Puram
- Department of Pathology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, USA
| | - Azad Bonni
- Department of Pathology, Harvard Medical School, 77 Ave Louis Pasteur, Boston, MA 02115, USA
| |
Collapse
|
9
|
White UA, Stewart WC, Mynatt RL, Stephens JM. Neuropoietin attenuates adipogenesis and induces insulin resistance in adipocytes. J Biol Chem 2008; 283:22505-12. [PMID: 18562323 DOI: 10.1074/jbc.m710462200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Recent findings have implicated gp130 receptor ligands, particularly ciliary neurotrophic factor (CNTF), as potential anti-obesity therapeutics. Neuropoietin (NP) is a recently discovered cytokine in the gp130 family that shares functional and structural features with CNTF and signals via the CNTF receptor tripartite complex comprised of CNTFRalpha, LIF receptor, and gp130. NP plays a role in the development of the nervous system, but the effects of NP on adipocytes have not been previously examined. Because CNTF exerts anti-obesogenic effects in adipocytes and NP shares the same receptor complex, we investigated the effects of NP on adipocyte development and insulin action. Using cultured 3T3-L1 adipocytes, we observed that NP has the ability to block adipogenesis in a dose- and time-dependent manner. We also observed that cultured adipocytes, as well as murine adipose tissue, are highly responsive to acute NP treatment. Rodents injected with NP had a substantial increase in STAT3 tyrosine phosphorylation and ERK 1 and 2 activation. We also observed the induction of SOCS-3 mRNA in 3T3-L1 adipocytes following NP treatment. Unlike CNTF, our studies have revealed that NP also substantially attenuates insulin-stimulated glucose uptake in 3T3-L1 adipocytes. In addition, NP blocks insulin action in adipose tissue in vivo. These observations are supported by data demonstrating that NP impairs insulin signaling via decreased activation of both IRS-1 and Akt. In summary, we have observed that both adipocytes in vitro and in vivo are highly responsive to NP, and this cytokine has the ability to affect insulin signaling in fat cells. These novel observations suggest that NP, unlike CNTF, may not be a viable obesity therapeutic.
Collapse
Affiliation(s)
- Ursula A White
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | | | |
Collapse
|
10
|
Dambacher J, Beigel F, Zitzmann K, Heeg MHJ, Göke B, Diepolder HM, Auernhammer CJ, Brand S. The role of interleukin-22 in hepatitis C virus infection. Cytokine 2008; 41:209-16. [PMID: 18191408 DOI: 10.1016/j.cyto.2007.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 11/01/2007] [Accepted: 11/17/2007] [Indexed: 12/25/2022]
Abstract
In this study, we analyzed if IL-22 displays, similar to other IL-10 like cytokines such as IL-28A, antiviral properties in hepatic cells. Using RT-PCR and immunoblotting, we demonstrated that hepatic cell lines and primary hepatocytes express the functional IL-22 receptor complex consisting of IL-22R1 and IL-10R2. Hepatic IL-22 mRNA expression as measured by quantitative PCR was up-regulated in autoimmune and viral hepatitis compared to cholestatic liver diseases, while IL-22 serum levels did not differ significantly between patients with viral hepatitis and normal controls. IL-22 did not significantly change the expression levels of IFN-alpha/-beta and of the antiviral proteins MxA and 2',5'-OAS. Consequently, it had in comparison to IFN-alpha no relevant antiviral activity in in vitro models of HCV replication and infection. Taken together, hepatic IL-22 expression is up-regulated in viral hepatitis but IL-22 does not directly regulate antiviral proteins and has, in contrast to IFN-alpha, no effect on HCV replication.
Collapse
Affiliation(s)
- Julia Dambacher
- Department of Medicine II, University-Hospital Munich-Grosshadern, University of Munich, Marchioninistr. 15, 81377 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Vlotides G, Zitzmann K, Stalla GK, Auernhammer CJ. Novel neurotrophin-1/B cell-stimulating factor-3 (NNT-1/BSF-3)/cardiotrophin-like cytokine (CLC)--a novel gp130 cytokine with pleiotropic functions. Cytokine Growth Factor Rev 2005; 15:325-36. [PMID: 15450249 DOI: 10.1016/j.cytogfr.2004.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Novel neurotrophin-1/B-cell stimulating factor-3 (NNT-1/BSF-3) is a new member of the gp130 cytokine family. NNT-1/BSF-3 is a second ligand to the tripartite CNTFR complex and activates Jak-STAT, MAPK and PI3/Akt signaling pathways in various cell systems. So far, the known functions of NNT-1/BSF-3 encompass neurotrophic and B cell stimulatory effects, as well as neuroimmunoendocrine modulation of corticotroph function. Gene expression of NNT-1/BSF-3 is stimulated by PKA- and PKC-dependent pathways. Cellular secretion of NNT-1/BSF-3 requires heteromeric complex formation with other factors, e.g. cytokine-like factor-1 (CLF-1) or soluble ciliary neurotrophic factor receptor (sCNTFR). This article reviews the current knowledge on NNT-1/BSF-3 expression, secretion, receptor interaction, signal transduction and physiologic effects of this novel gp130 cytokine. Remark: After preparation of this manuscript, another novel gp130 cytokine named neuropoietin (NP) has been reported and shown to be a ligand of the CNTFR complex.
Collapse
Affiliation(s)
- George Vlotides
- Department of Internal Medicine II, Klinikum der Ludwig-Maximilians-Universität München, Standort Grosshadern, Marchioninistr 15, Munich 81377, Germany
| | | | | | | |
Collapse
|
12
|
Vlotides G, Sörensen AS, Kopp F, Zitzmann K, Cengic N, Brand S, Zachoval R, Auernhammer CJ. SOCS-1 and SOCS-3 inhibit IFN-alpha-induced expression of the antiviral proteins 2,5-OAS and MxA. Biochem Biophys Res Commun 2004; 320:1007-14. [PMID: 15240148 DOI: 10.1016/j.bbrc.2004.06.051] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Indexed: 12/22/2022]
Abstract
Although the use of IFN-alpha in combination with ribavirin has improved the treatment efficacy of chronic hepatitis C virus (HCV) infection, 20-50% of patients still fail to eradicate the virus depending on the HCV genotype. Recently, overexpression of HCV core protein has been shown to inhibit IFN signaling and induce SOCS-3 expression. Aim of this study was to examine the putative role of SOCS proteins in IFN resistance. By Western blot analysis, a 4-fold induction of STAT-1/3 phosphorylation by IFN-alpha was observed in mock-transfected HepG2 clones. In contrast, IFN-induced STAT-1/3 phosphorylation was considerably downregulated by SOCS-1/3 overexpression. In mock-transfected cells, IFN-alpha induced 2',5'-OAS and myxovirus resistance A (MxA) promoter activity 40- to 80-fold and 10- to 35-fold, respectively, and this effect was abrogated in SOCS-1/3 overexpressing cells. As detected by Northern blot technique, IFN-alpha potently induced 2',5'-OAS and MxA mRNA expression in the control clones. Overexpression of SOCS-1 completely abolished both 2',5'-OAS and MxA mRNA expression, whereas SOCS-3 mainly inhibited 2',5'-OAS mRNA expression. Our results demonstrate that SOCS-1 and SOCS-3 proteins inhibit IFN-alpha-induced activation of the Jak-STAT pathway and expression of the antiviral proteins 2',5'-OAS and MxA. These data suggest a potential role of SOCS proteins in IFN resistance during antiviral treatment.
Collapse
Affiliation(s)
- George Vlotides
- Department of Internal Medicine II, Grosshadern, Klinikum der Ludwig, Maximilians-Universität, Munich 81377, Germany
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Vlotides G, Zitzmann K, Hengge S, Engelhardt D, Stalla GK, Auernhammer CJ. Expression of novel neurotrophin-1/B-cell stimulating factor-3 (NNT-1/BSF-3) in murine pituitary folliculostellate TtT/GF cells: pituitary adenylate cyclase-activating polypeptide and vasoactive intestinal peptide-induced stimulation of NNT-1/BSF-3 is mediated by protein kinase A, protein kinase C, and extracellular-signal-regulated kinase1/2 pathways. Endocrinology 2004; 145:716-27. [PMID: 14605001 DOI: 10.1210/en.2003-0813] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Novel neurotrophin-1/B cell stimulating factor-3 (NNT-1/BSF-3) is a gp130 cytokine potently stimulating corticotroph proopiomelanocortin gene expression and ACTH secretion by a Janus kinase-signal transducer and activator of transcription (JAK-STAT)-dependent mechanism. In the current study, we examined the regulation of NNT-1/BSF-3 mRNA expression in murine pituitary folliculostellate TtT/GF cells using Northern blot technique. A 5- to 9-fold and a 4- to 7-fold induction in NNT-1/BSF-3 mRNA expression was observed between 2 and 6 h stimulation with the protein kinase C (PKC) stimulus phorbol-12-myristate-13-acetate (100 nm) and the protein kinase A (PKA) stimulus Bu(2)cAMP (5 mm), respectively. Pituitary adenylate cyclase-activating polypeptide (PACAP-38, 50 nm) and vasoactive intestinal peptide (VIP, 50 nm) also stimulated NNT-1/BSF-3 mRNA expression 5- to 9-fold between 2 and 6 h. Preincubation with PKC and PKA inhibitors such as H-7 (20 microm), GF109203X (50 microm), and H-89 (50 microm) decreased the stimulatory effects of PACAP and VIP. Both PACAP-38 and VIP also rapidly induced ERK1/2 phosphorylation and their stimulatory effect on NNT-1/BSF-3 mRNA expression was reduced by the MAPK kinase/ERK kinase (MEK) inhibitor U0126 (10 microm). Dexamethasone (10(-7) m) was a potent inhibitor of phorbol-12-myristate-13-acetate-induced NNT-1/BSF-3 expression. RT-PCR analysis demonstrated TtT/GF cells to express the short and the hop variant but not the hip variant of the PACAP-1 receptor (PAC1-R). In addition, TtT/GF cells express the VIP/PACAP-2 receptor (VPAC2-R). In summary, NNT-1/BSF-3 is expressed in pituitary folliculostellate TtT/GF cells and induced by PKC-, PKA-, and ERK1/2-dependent mechanisms. The novel gp130 cytokine NNT-1/BSF-3 derived from folliculostellate cells might act as a paracrine neuroimmunoendocrine modulator of pituitary corticotroph function.
Collapse
Affiliation(s)
- George Vlotides
- Department of Internal Medicine II, Klinikum der Ludwig-Maximilians-Universität München, Standort Grosshadern, Marchioninistrasse 15, Munich 81377, Germany
| | | | | | | | | | | |
Collapse
|
14
|
Auernhammer CJ, Kopp FB, Vlotides G, Dorn F, Isele NB, Spöttl G, Cengic N, Weber MM, Senaldi G, Engelhardt D. Comparative study of gp130 cytokine effects on corticotroph AtT-20 cells--redundancy or specificity of neuroimmunoendocrine modulators? Neuroimmunomodulation 2004; 11:224-32. [PMID: 15249728 DOI: 10.1159/000078440] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2003] [Accepted: 08/08/2003] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This comparative in vitro study examined the effects of all known gp130 cytokines on murine corticotroph AtT-20 cell function. METHODS Cytokines were tested at equimolar concentrations from 0.078 to 10 nM. Tyrosine phosphorylation of the signal transducer and activator of transcription (STAT)3 and STAT1, the STAT-dependent suppressor of cytokine signaling (SOCS)-3 promoter activity, SOCS-3 gene expression, STAT-dependent POMC promoter activity and adrenocorticotropic hormone (ACTH) secretion were determined. RESULTS Leukemia inhibitory factor (LIF), human oncostatin M (OSM) and cardiotrophin (CT)-1 (LIFR/gp130 ligands), as well as ciliary neurotrophic factor (CNTF) and novel neurotrophin-1/B-cell stimulating factor-3 (CNTFR alpha/LIFR/gp130 ligands) are potent stimuli of corticotroph cells in vitro. In comparison, interleukin (IL)-6 (IL-6R/gp130 ligand) and IL-11 (IL-11R/gp130 ligand) exhibited only modest direct effects on corticotrophs, while murine OSM (OSMR/gp130 ligand) showed no effect. CONCLUSION (i) CNTFR complex ligands are potent stimuli of corticotroph function, comparable to LIFR complex ligands; (ii) IL-6 and IL-11 are relatively weak direct stimuli of corticotroph function; (iii) differential effects of human and murine OSM suggest that LIFR/gp130 (OSMR type I) but not OSMR/gp130 (OSMR type II) are involved in corticotroph signaling. (iv) CT-1 has the hitherto unknown ability to stimulate corticotroph function, and (v) despite redundant immuno-neuroendocrine effects of different gp130 cytokines, corticotroph cells are preferably activated through the LIFR and CNTFR complexes.
Collapse
MESH Headings
- Adrenocorticotropic Hormone/metabolism
- Animals
- Antigens, CD/drug effects
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Cell Line
- Cytokine Receptor gp130
- Cytokines/immunology
- Cytokines/metabolism
- Cytokines/pharmacology
- DNA-Binding Proteins/drug effects
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Dose-Response Relationship, Drug
- Gene Expression/drug effects
- Gene Expression/immunology
- Hypothalamo-Hypophyseal System/drug effects
- Hypothalamo-Hypophyseal System/immunology
- Leukemia Inhibitory Factor Receptor alpha Subunit
- Ligands
- Membrane Glycoproteins/drug effects
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice
- Neuroimmunomodulation/immunology
- Phosphorylation/drug effects
- Pituitary Gland, Anterior/cytology
- Pituitary Gland, Anterior/drug effects
- Pituitary Gland, Anterior/immunology
- Pro-Opiomelanocortin/genetics
- Promoter Regions, Genetic/drug effects
- Promoter Regions, Genetic/immunology
- RNA, Messenger/drug effects
- RNA, Messenger/metabolism
- Receptor, Ciliary Neurotrophic Factor/drug effects
- Receptor, Ciliary Neurotrophic Factor/immunology
- Receptor, Ciliary Neurotrophic Factor/metabolism
- Receptors, Cytokine/drug effects
- Receptors, Cytokine/immunology
- Receptors, Cytokine/metabolism
- Receptors, OSM-LIF
- Repressor Proteins/genetics
- STAT1 Transcription Factor
- STAT3 Transcription Factor
- Suppressor of Cytokine Signaling 3 Protein
- Suppressor of Cytokine Signaling Proteins
- Trans-Activators/drug effects
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Transcription Factors/genetics
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Christoph J Auernhammer
- Medizinische Klinik II, Klinikum Grosshadern, Ludwig-Maximilians-Universität, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|