1
|
Ashton A, Stoney PN, Ransom J, McCaffery P. Rhythmic Diurnal Synthesis and Signaling of Retinoic Acid in the Rat Pineal Gland and Its Action to Rapidly Downregulate ERK Phosphorylation. Mol Neurobiol 2018. [PMID: 29520716 PMCID: PMC6153719 DOI: 10.1007/s12035-018-0964-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Vitamin A is important for the circadian timing system; deficiency disrupts daily rhythms in activity and clock gene expression, and reduces the nocturnal peak in melatonin in the pineal gland. However, it is currently unknown how these effects are mediated. Vitamin A primarily acts via the active metabolite, retinoic acid (RA), a transcriptional regulator with emerging non-genomic activities. We investigated whether RA is subject to diurnal variation in synthesis and signaling in the rat pineal gland. Its involvement in two key molecular rhythms in this gland was also examined: kinase activation and induction of Aanat, which encodes the rhythm-generating melatonin synthetic enzyme. We found diurnal changes in expression of several genes required for RA signaling, including a RA receptor and synthetic enzymes. The RA-responsive gene Cyp26a1 was found to change between day and night, suggesting diurnal changes in RA activity. This corresponded to changes in RA synthesis, suggesting rhythmic production of RA. Long-term RA treatment in vitro upregulated Aanat transcription, while short-term treatment had no effect. RA was also found to rapidly downregulate extracellular signal-regulated kinase (ERK) 1/2 phosphorylation, suggesting a rapid non-genomic action which may be involved in driving the molecular rhythm in ERK1/2 activation in this gland. These results demonstrate that there are diurnal changes in RA synthesis and activity in the rat pineal gland which are partially under circadian control. These may be key to the effects of vitamin A on circadian rhythms, therefore providing insight into the molecular link between this nutrient and the circadian system.
Collapse
Affiliation(s)
- Anna Ashton
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Patrick N Stoney
- Cell Signal Unit, Okinawa Institute of Science and Technology, Okinawa, Japan
| | - Jemma Ransom
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK
| | - Peter McCaffery
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, Scotland, AB25 2ZD, UK.
| |
Collapse
|
2
|
Cammalleri M, Locri F, Catalani E, Filippi L, Cervia D, Dal Monte M, Bagnoli P. The Beta Adrenergic Receptor Blocker Propranolol Counteracts Retinal Dysfunction in a Mouse Model of Oxygen Induced Retinopathy: Restoring the Balance between Apoptosis and Autophagy. Front Cell Neurosci 2017; 11:395. [PMID: 29375312 PMCID: PMC5770647 DOI: 10.3389/fncel.2017.00395] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/28/2017] [Indexed: 12/29/2022] Open
Abstract
In a mouse model of oxygen induced retinopathy (OIR), beta adrenergic receptor (BAR) blockade has been shown to recover hypoxia-associated retinal damages. Although the adrenergic signaling is an important regulator of apoptotic and autophagic processes, the role of BARs in retinal cell death remains to be elucidated. The present study was aimed at investigating whether ameliorative effects of BAR blockers may occur through their coordinated action on apoptosis and autophagy. To this aim, retinas from control and OIR mice untreated or treated with propranolol, a non-selective BAR1/2 blocker, were characterized in terms of expression and localization of apoptosis and autophagy markers. The effects of propranolol on autophagy signaling were also evaluated and specific autophagy modulators were used to get functional information on the autophagic effects of BAR antagonism. Finally, propranolol effects on neurodegenerative processes were associated to an electrophysiological investigation of retinal function by recording electroretinogram (ERG). We found that retinas of OIR mice are characterized by increased apoptosis and decreased autophagy, while propranolol reduces apoptosis and stimulates autophagy. In particular, propranolol triggers autophagosome formation in bipolar, amacrine and ganglion cells that are committed to die by apoptosis in response to hypoxia. Also our data argue that propranolol, through the inhibition of the Akt-mammalian target of rapamycin pathway, activates autophagy which decreases retinal cell death. At the functional level, propranolol recovers dysfunctional ERG by recovering the amplitude of a- and b-waves, and oscillatory potentials, thus indicating an efficient restoring of retinal transduction. Overall, our results demonstrate that BAR1/2 are key regulators of retinal apoptosis/autophagy, and that BAR1/2 blockade leads to autophagy-mediated neuroprotection. Reinstating the balance between apoptotic and autophagic machines may therefore be viewed as a future goal in the treatment of retinopathies.
Collapse
Affiliation(s)
| | - Filippo Locri
- Department of Biology, University of Pisa, Pisa, Italy
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Luca Filippi
- Neonatal Intensive Care Unit, Medical Surgical Fetal-Neonatal Department, Meyer University Children's Hospital, Florence, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy
| | | | - Paola Bagnoli
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
3
|
Klein DC, Bailey MJ, Carter DA, Kim JS, Shi Q, Ho AK, Chik CL, Gaildrat P, Morin F, Ganguly S, Rath MF, Møller M, Sugden D, Rangel ZG, Munson PJ, Weller JL, Coon SL. Pineal function: impact of microarray analysis. Mol Cell Endocrinol 2010; 314:170-83. [PMID: 19622385 PMCID: PMC3138125 DOI: 10.1016/j.mce.2009.07.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2009] [Accepted: 07/14/2009] [Indexed: 02/06/2023]
Abstract
Microarray analysis has provided a new understanding of pineal function by identifying genes that are highly expressed in this tissue relative to other tissues and also by identifying over 600 genes that are expressed on a 24-h schedule. This effort has highlighted surprising similarity to the retina and has provided reason to explore new avenues of study including intracellular signaling, signal transduction, transcriptional cascades, thyroid/retinoic acid hormone signaling, metal biology, RNA splicing, and the role the pineal gland plays in the immune/inflammation response. The new foundation that microarray analysis has provided will broadly support future research on pineal function.
Collapse
Affiliation(s)
- David C Klein
- Section on Neuroendocrinology, Program on Developmental Endocrinology and Genetics, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
|
5
|
Price DM, Wloka MT, Chik CL, Ho AK. Mitogen-activated protein kinase phosphatase-1 (MKP-1) preferentially dephosphorylates p42/44MAPK but not p38MAPK in rat pinealocytes. J Neurochem 2007; 101:1685-93. [PMID: 17437549 DOI: 10.1111/j.1471-4159.2007.04557.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We recently reported a diurnal and norepinephrine (NE) -induced expression of mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) in the rat pineal gland and postulated that this MKP-1 expression might impact adrenergic-regulated arylalkylamine-N-acetyltransferase (AA-NAT) activity via modulation of MAPKs. In this study, we investigated the effect of depletion of MKP-1 expression by using doxorubicin, a topoisomerase inhibitor that suppresses the expression of MKP-1 in other cell types and small interfering RNA targeted against Mkp1 in NE-stimulated pinealocytes. We found that both treatments were effective in inhibiting NE induction of MKP-1 expression. Moreover, both treatments also resulted in a prolonged activation of p42/44MAPK and an increase in AA-NAT induction by NE. In contrast, treatment of pinealocytes with PD98059, an inhibitor of MAPK kinase, reduced NE-stimulated AA-NAT activity. Interestingly, suppressing MKP-1 expression had no effect on the time profile of NE-stimulated p38MAPK activation. These results indicate that MKP-1 modulates the profile of AA-NAT activity by selectively shaping the activation profile of p42/44MAPK but not that of p38MAPK.
Collapse
Affiliation(s)
- Donald M Price
- Department of Physiology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
6
|
Price DM, Terriff DL, Chik CL, Ho AK. The role of protein turnover in regulating MKP-1 levels in rat pinealocytes. Mol Cell Endocrinol 2007; 263:134-41. [PMID: 17079074 DOI: 10.1016/j.mce.2006.09.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 09/04/2006] [Accepted: 09/19/2006] [Indexed: 10/24/2022]
Abstract
We have previously shown that mitogen-activated protein kinase (MAPK) phosphatase-1 (MKP-1) is induced at night under the control of a photoneural system in the rat pineal gland. Because of the established roles of MAPKs, glucocorticoids and proteasome activity in regulating MKP-1 expression in other cell types, their relative contributions to MKP-1 regulation were investigated in rat pinealocytes. We found that neither inhibition of MAPKs nor treatment with dexamethasone affected norepinephrine-stimulated MKP-1 expression. In contrast, treatment with proteasome inhibitors increased norepinephrine-stimulated MKP-1 protein levels and abolished the decline in norepinephrine-stimulated MKP-1 protein levels caused by inhibition of transcription or translation, or blockade of alpha-adrenergic receptors. Taken together, our results indicate that in rat pinealocytes, the continuous and rapid turnover of MKP-1 protein allows for its rapid induction but is not sufficient to generate the sustained increase in MKP-1 expression post-adrenergic stimulation.
Collapse
Affiliation(s)
- D M Price
- Department of Physiology, University of Alberta, 7-26 Medical Sciences Building, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | |
Collapse
|
7
|
Ho AK, Price DM, Terriff D, Chik CL. Timing of mitogen-activated protein kinase (MAPK) activation in the rat pineal gland. Mol Cell Endocrinol 2006; 252:34-9. [PMID: 16672173 DOI: 10.1016/j.mce.2006.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Activation of members of the mitogen-activated protein kinase (MAPK) family of signaling cascades is a tightly controlled event in rat pinealocytes. Cell culture studies indicate that whereas the NE-->cGMP activation of p42/44MAPK is rapid and transient, the NE-->cAMP activation of p38MAPK is slower and more sustained. The decline in the p42/44MAPK response is in part due to the induction of MAPK phosphatase-1 by NE. In comparison, p38MAPK activation is tightly coupled to the synthesis and degradation of an upstream element in its activation cascade. Whole animal studies confirm activation of p42/44MAPK occurring during the early part of night and precedes p38MAPK activation. Studies with selective MAPK inhibitors reveal a modulating effect of MAPKs on arylalkylamine-N-acetyltransferse (AA-NAT) activity, with involvement of p42/44MAPK in the induction of AA-NAT and p38MAPK participating in the amplitude and duration of the AA-NAT response. These effects of p42/44MAPK and p38MAPK on AA-NAT activity match their timing of activation. Taken together, our studies on the timing of MAPK activation and regulation of AA-NAT by MAPKs add to the importance of MAPKs in regulating the circadian biology of the pineal gland.
Collapse
Affiliation(s)
- A K Ho
- Department of Physiology, Faculty of Medicine, University of Alberta, 7-26 Medical Sciences Building, Edmonton, Alta. T6G 2H7, Canada.
| | | | | | | |
Collapse
|
8
|
Ho AK, McNeil L, Terriff D, Price DM, Chik CL. Role of protein turnover in the activation of p38 mitogen-activated protein kinase in rat pinealocytes. Biochem Pharmacol 2005; 70:1840-50. [PMID: 16236272 DOI: 10.1016/j.bcp.2005.09.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2005] [Revised: 09/15/2005] [Accepted: 09/16/2005] [Indexed: 11/17/2022]
Abstract
Differences in the time profiles of activation between p38MAPK and p42/44MAPK by norepinephrine (NE) in rat pinealocytes suggest involvement of mechanisms other than the phosphorylation cascades in their activation. In the present study we investigated whether protein turnover played a role in regulating p38MAPK activation in the rat pineal gland. NE stimulation caused an increase in MAPK kinase3/6 (MKK 3/6) and p38MAPK phosphorylation that occurred in the absence of changes in the mRNA or protein levels of p38MAPK or MKK3/6. The stimulatory effect of NE on phosphorylated MKK3/6 and p38MAPK, but not phosphorylated p42/44MAPK, was blocked by treatment with actinomycin or cycloheximide, indicating a requirement of transcription and translation in activation of the p38MAPK but not the p42/44MAPK pathway. Moreover, inhibition of proteasomes by clasto-lactacystin beta-lactone or Z-Leu-Leu-Leu-CHO (MG132) selectively increased basal and NE-stimulated phosphorylated MKK3/6 and p38MAPK levels without affecting the mRNA or protein levels of MKK3 or p38MAPK. In contrast, the effect of proteasomal inhibition on NE-stimulated p42/44MAPK phosphorylation was inhibitory. Treatment with MG132 also reduced the decline in the phosphorylated levels of NE-stimulated MKK3/6 and p38MAPK that normally follows beta-adrenergic blockade. Together, our results indicate that p38MAPK but not p42/44MAPK activation in the rat pineal gland is tightly coupled to protein synthesis and degradation. The synthesis of an activator upstream of MKK3/6 is required for the NE-activation of p38MAPK.
Collapse
Affiliation(s)
- A K Ho
- Department of Physiology, University of Alberta, Edmonton, Alta., Canada T6G 2H7.
| | | | | | | | | |
Collapse
|
9
|
Rakhit S, Clark CJ, O'shaughnessy CT, Morris BJ. N-methyl-D-aspartate and brain-derived neurotrophic factor induce distinct profiles of extracellular signal-regulated kinase, mitogen- and stress-activated kinase, and ribosomal s6 kinase phosphorylation in cortical neurons. Mol Pharmacol 2005; 67:1158-65. [PMID: 15625280 DOI: 10.1124/mol.104.005447] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Stimulation of N-methyl-D-aspartate (NMDA) receptors is believed to underlie long-term memory formation, and excessive NMDA receptor activation has been linked to several neuropathological conditions. Phosphorylation and activation of p42/44 mitogen-activated protein kinase (ERK) is believed to mediate many of these effects, but the downstream targets of ERK in response to NMDA activation have not been determined. In primary cultures of rat cortical neurons, we found that NMDA was able to elevate phosphorylation of mitogen- and stress-activated kinase 1 (MSK1) as well as ERK. Likewise, brain-derived neurotrophic factor (BDNF) treatment increased phosphorylation of MSK1 and ERKs. The NMDA-induced MSK1 phosphorylation was sensitive to the MEK inhibitor 2'-amino-3'-methoxyflavone (PD98059) and the p38 inhibitor 4-(4-fluorophenyl)-2-(4-methylsulfinylphenyl)-5-(4-pyridyl)1H-imidazole (SB203580). MSK1 activation by NMDA was transient, although ERK remained phosphorylated within the neuronal cytoplasm for several hours. Although BDNF increased ribosomal S6 kinase (RSK) phosphorylation, NMDA had no discernable effect on the phosphorylation of RSKs. Thus, phosphorylation and activation of MSK1 but not RSK could be an important step in the pathway linking NMDA-induced ERK phosphorylation to the activation of transcription factors required for the formation of long-term memory.
Collapse
Affiliation(s)
- S Rakhit
- Institute of Biomedical and Life Sciences, West Medical Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | |
Collapse
|
10
|
Price DM, Chik CL, Terriff D, Weller J, Humphries A, Carter DA, Klein DC, Ho AK. Mitogen-activated protein kinase phosphatase-1 (MKP-1): >100-fold nocturnal and norepinephrine-induced changes in the rat pineal gland. FEBS Lett 2005; 577:220-6. [PMID: 15527789 DOI: 10.1016/j.febslet.2004.09.083] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2004] [Accepted: 09/15/2004] [Indexed: 11/21/2022]
Abstract
The norepinephrine-driven increase in mitogen-activated protein kinase (MAPK) activity is part of the mechanism that regulates arylalkylamine N-acetyltransferase (AA-NAT) activity in the rat pineal gland. We now report a marked nocturnal increase in the expression of a MAPK phosphatase, MAP kinase phosphatase-1 (MKP-1), that was blocked by maintaining animals in constant light or treatment with propranolol. MKP-1 expression was regulated by norepinephrine acting through both alpha- and beta-adrenergic receptors. These results establish a nocturnal increase in pineal MKP-1 expression that is under the control of a photoneural system. Because substrates of MKP-1 can influence AA-NAT activity, our findings suggest the involvement of MKP-1 in the regulation of the nocturnal AA-NAT signal.
Collapse
Affiliation(s)
- Donald M Price
- Department of Physiology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alta., Canada T6G 2H7
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chik CL, Mackova M, Price D, Ho AK. Adrenergic regulation and diurnal rhythm of p38 mitogen-activated protein kinase phosphorylation in the rat pineal gland. Endocrinology 2004; 145:5194-201. [PMID: 15297444 DOI: 10.1210/en.2004-0864] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In this study, we investigated adrenergic and photoneural regulation of p38MAPK phosphorylation in the rat pineal gland. Norepinephrine (NE), the endogenous neurotransmitter, dose-dependently increased the levels of phosphorylated MAPK kinase 3/6 (MKK3/6) and p38MAPK in rat pinealocytes. Time-course studies showed a gradual increase in MKK3/6 and p38MAPK phosphorylation that peaked between 1 and 2 h and persisted for 4 h post NE stimulation. In cells treated with NE for 2 and 4 h, the inclusion of prazosin or propranolol reduced NE-induced MKK3/6 and p38MAPK phosphorylation, indicating involvement of both alpha- and beta-adrenergic receptors for the sustained response. Whereas treatment with dibutyryl cAMP or ionomycin mimicked the NE-induced MKK3/6 and p38MAPK phosphorylation, neither dibutyryl cGMP nor 4beta-phorbol 12-myristate 13-acetate had an effect. The NE-induced increase in MKK3/6 and p38MAPK phosphorylation was blocked by KT5720 (a protein kinase A inhibitor) and KN93 (a Ca(2+)/calmodulin-dependent kinase inhibitor), but not by KT5823 (a protein kinase G inhibitor) or calphostin C (a protein kinase C inhibitor). In animals housed under a lighting regimen with 12 h of light, MKK3/6 and p38MAPK phosphorylation increased in the rat pineal gland at zeitgeber time 18. The nocturnal increase in p38MAPK phosphorylation was blocked by exposing the animal to constant light and reduced by treatment with propranolol, a beta-adrenergic blocker. Together, our results indicate that activation of p38MAPK is under photoneural control in the rat pineal gland and that protein kinase A and intracellular Ca(2+) signaling pathways are involved in NE regulation of p38MAPK.
Collapse
Affiliation(s)
- C L Chik
- Department of Physiology, 7-26 Medical Sciences Building, Edmonton, Alberta, Canada
| | | | | | | |
Collapse
|
12
|
Man JR, Rustaeus S, Price DM, Chik CL, Ho AK. Inhibition of p38 mitogen-activated protein kinase enhances adrenergic-stimulated arylalkylamine N-acetyltransferase activity in rat pinealocytes. Endocrinology 2004; 145:1167-74. [PMID: 14617573 DOI: 10.1210/en.2003-1170] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have previously shown that inhibition of p38(MAPK) increases adrenergic-stimulated p42/44(MAPK) activation in rat pinealocytes. In this study we investigated whether p38(MAPK) played a role in the adrenergic regulation of arylalkylamine-N-acetyltransferase (AA-NAT) induction and melatonin (MT) synthesis. Treatment of pinealocytes with norepinephrine (NE) caused a time-dependent increase in the levels of AA-NAT mRNA, AA-NAT protein, and enzymatic activity as well as MT production. Cotreatment with SB202190, a selective p38(MAPK) inhibitor, although having no effect on AA-NAT activity or protein level 3 h after NE treatment, caused a sustained increase in AA-NAT activity and protein level after 6 h of NE treatment. The increases in NE-stimulated AA-NAT activity and protein level by SB202190 occurred in the absence of an increase in AA-NAT mRNA. Similar results were obtained when AA-NAT was induced by (Bu)(2)cAMP or when SB203580 was used to inhibit p38(MAPK). In comparison, SB202474, the inactive analog, had no effect on NE or (Bu)(2)cAMP-stimulated AA-NAT activity or protein level. SB202190 also increased cumulative NE-stimulated MT production, provided that the medium was supplemented with 5-methoxytryptamine. p38(MAPK) inhibitors had no effect on hydroxyindole-O-methyltransferase activity. These results show that inhibition of p38(MAPK), although having no effect on cAMP-mediated AA-NAT transcription, appears to increase AA-NAT activity either by increasing translation or by reducing degradation of the AA-NAT protein. The lack of effect on NE-stimulated MT accumulation by p38(MAPK) inhibitors in the absence of 5-methoxytryptamine could be secondary to a lack of substrate, or alternatively, hydroxyindole-O-methyltransferase may become limiting.
Collapse
Affiliation(s)
- J R Man
- Department of Physiology, Faculty of Medicine, University of Alberta, Edmonton, Canada T6G 2H7
| | | | | | | | | |
Collapse
|