1
|
Yan L, Yu J, Chen Z, Chen R, Zhu H, Yan J, Shi Z. Glucocorticoid receptor involvement in goose ( Anas cygnoides) pituitary somatotroph differentiation induced by glucocorticoids during embryonic development. Br Poult Sci 2019; 60:395-403. [PMID: 31132872 DOI: 10.1080/00071668.2019.1621988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
1. In this study, geese (Anas cygnoides) embryonic pituitary cells were cultured in vitro to determine if glucocorticoids could induce growth hormone (GH) expression and to investigate the molecular mechanisms involved in this process. 2. On embryonic day 15 (e15) and e20 the pituitary cells were treated with corticosterone (CORT), membrane impermeable bovine serum albumin-conjugate corticosterone (CORT-BSA), dexamethasone (DEX), and a glucocorticoid receptor (GR) antagonist (RU486) to detect responsiveness of somatotrophs to glucocorticoids. 3. Treatment with CORT, CORT-BSA, and DEX for as little as 6 h increased the percentage of GH-positive cells (P < 0.01) and increased GH mRNA expression (P < 0.01) in e15 goose pituitary cells compared to the control. CORT significantly increased the level of GH protein secreted from cultured e15 goose embryonic pituitary cells, and CORT-BSA increased GH secretion from e20 goose embryonic pituitary cells. 4. A significant increase was observed in the glucocorticoid receptor in GR transcription levels (P < 0.01) with CORT, CORT-BSA, and DEX treatment. Furthermore, the CORT-stimulated GH mRNA expression was completely negated by pre-treatment with RU486. 5. These findings demonstrate that glucocorticoids can stimulate somatotroph differentiation in vitro, as characterised by enhanced GH protein secretion andmRNA expression in cultured geese embryonic pituitary cells. The membrane GR was involved in pituitary somatotroph differentiation induced by glucocorticoids during the embryonic development of geese.
Collapse
Affiliation(s)
- L Yan
- a Laboratory of Animal Improvement and Reproduction , Institute of Animal Science, Jiangsu Academy of Agricultural Sciences , Nanjing , China
| | - J Yu
- a Laboratory of Animal Improvement and Reproduction , Institute of Animal Science, Jiangsu Academy of Agricultural Sciences , Nanjing , China
| | - Z Chen
- a Laboratory of Animal Improvement and Reproduction , Institute of Animal Science, Jiangsu Academy of Agricultural Sciences , Nanjing , China
| | - R Chen
- a Laboratory of Animal Improvement and Reproduction , Institute of Animal Science, Jiangsu Academy of Agricultural Sciences , Nanjing , China
| | - H Zhu
- a Laboratory of Animal Improvement and Reproduction , Institute of Animal Science, Jiangsu Academy of Agricultural Sciences , Nanjing , China
| | - J Yan
- a Laboratory of Animal Improvement and Reproduction , Institute of Animal Science, Jiangsu Academy of Agricultural Sciences , Nanjing , China.,b Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology , Jiangsu Academy of Agricultural Sciences , Nanjing , China
| | - Z Shi
- a Laboratory of Animal Improvement and Reproduction , Institute of Animal Science, Jiangsu Academy of Agricultural Sciences , Nanjing , China
| |
Collapse
|
2
|
Yu J, Yan L, Chen Z, Li H, Zhu H, Chen R, Shi Z. Corticosterone induces growth hormone expression in pituitary somatotrophs during goose embryonic development. THE JOURNAL OF REPRODUCTION AND DEVELOPMENT 2018. [PMID: 29887536 DOI: 10.1262/jrd.2018–001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Treatment of fetal rat and embryonic chicken with exogenous glucocorticoids induces premature differentiation of growth hormone (GH) secreting cells. The effect of corticosterone (CORT) on somatotroph differentiation was mostly studied in pituitary cells in vitro. Currently, there is no evidence for glucocorticoid-mediated induction of somatotroph differentiation during pituitary development in bird species other than chicken. In this study, we sought to find out if in ovo injection of corticosterone into developing goose embryos could induce premature increase of GH in somatotrophs. On embryonic day (e) 15, the albumen of fertile goose eggs was injected with 300 μl of 0.9% saline, 300 μl 5 × 10-8M CORT, or 300 μl 5 × 10-6 M CORT. Embryos were allowed to develop until e20 and e28 and isolated pituitaries were subjected to quantitative real-time PCR and immunocytochemistry to detect GH mRNA and protein, respectively. At e20 and e28, blood from chorioallantoic vessels was subjected to radioimmunoassay for analysis of plasma GH protein. In ovo administration of exogenous corticosterone brought about a 2.5-fold increase in the expression of GH mRNA and increased the in situ expression of GH protein in goose pituitary cells, and enhanced plasma GH levels compared to that of the respective controls at e20. These findings prove that administration of glucocorticoid could stimulate the expression of GH in somatotrophs during goose embryonic development. Our results suggest the probable involvement of membrane glucocorticoid receptor in the corticosterone mediated expression of GH. Together with previously published data, our results suggest that corticosterone mediated induction of GH expression during embryonic development is relatively conserved among different vertebrates.
Collapse
Affiliation(s)
- Jianning Yu
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Leyan Yan
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hui Li
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rong Chen
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - ZhenDan Shi
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
3
|
Yu J, Yan L, Chen Z, Li H, Zhu H, Chen R, Shi Z. Corticosterone induces growth hormone expression in pituitary somatotrophs during goose embryonic development. J Reprod Dev 2018; 64:343-350. [PMID: 29887536 PMCID: PMC6105744 DOI: 10.1262/jrd.2018-001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Treatment of fetal rat and embryonic chicken with exogenous glucocorticoids induces premature differentiation of growth hormone (GH) secreting cells. The effect of corticosterone (CORT) on somatotroph differentiation was mostly studied in pituitary cells in vitro. Currently, there is no evidence for glucocorticoid-mediated induction of somatotroph differentiation during pituitary development in bird species other than chicken. In this study, we sought to find out if in ovo injection of corticosterone into developing goose embryos could induce premature increase of GH in somatotrophs. On embryonic day (e) 15, the albumen of fertile goose eggs was injected with 300 μl of 0.9% saline, 300 μl 5 × 10-8M CORT, or 300 μl 5 × 10-6 M CORT. Embryos were allowed to develop until e20 and e28 and isolated pituitaries were subjected to quantitative real-time PCR and immunocytochemistry to detect GH mRNA and protein, respectively. At e20 and e28, blood from chorioallantoic vessels was subjected to radioimmunoassay for analysis of plasma GH protein. In ovo administration of exogenous corticosterone brought about a 2.5-fold increase in the expression of GH mRNA and increased the in situ expression of GH protein in goose pituitary cells, and enhanced plasma GH levels compared to that of the respective controls at e20. These findings prove that administration of glucocorticoid could stimulate the expression of GH in somatotrophs during goose embryonic development. Our results suggest the probable involvement of membrane glucocorticoid receptor in the corticosterone mediated expression of GH. Together with previously published data, our results suggest that corticosterone mediated induction of GH expression during embryonic development is relatively conserved among different vertebrates.
Collapse
Affiliation(s)
- Jianning Yu
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Leyan Yan
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhe Chen
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hui Li
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Huanxi Zhu
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rong Chen
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - ZhenDan Shi
- Key Laboratory of Protected Agriculture Engineering in the Middle and Lower Reaches of Yangtze River, Ministry of Agriculture; Laboratory of Animal Breeding and Reproduction, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
4
|
de Haas EN, Calandreau L, Baéza E, Chartrin P, Palme R, Darmaillacq AS, Dickel L, Lumineau S, Houdelier C, Denis I, Arnould C, Meurisse M, Bertin A. Lipids in maternal diet influence yolk hormone levels and post-hatch neophobia in the domestic chick. Dev Psychobiol 2017; 59:400-409. [PMID: 28261786 DOI: 10.1002/dev.21504] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/23/2016] [Accepted: 01/18/2017] [Indexed: 01/28/2023]
Abstract
We assessed whether the ratio of dietary n-6/n-3 polyunsaturated fatty acids (PUFA) during egg formation engenders transgenerational maternal effects in domestic chicks. We analyzed yolk lipid and hormone concentrations, and HPA-axis activity in hens fed a control diet (high n-6/n-3 ratio) or a diet enriched in n-3 PUFAs (low n-6/n-3 ratio) for 6 consecutive weeks. Their chicks were tested for neophobia during the first week of life. We found higher corticosterone metabolites in droppings of hens fed the diet enriched in n-3 and significantly higher concentrations of yolk progesterone, androstenedione, and estradiol in their eggs compared to controls. Chicks of hens fed the n-3 enriched diet showed a lower body mass at hatch than controls and expressed higher neophobia when exposed to a novel object. These results add support to the hypothesis that the nutritional state of female birds produces variation in yolk hormone levels and engender maternal effects.
Collapse
Affiliation(s)
- Elske N de Haas
- INRA Centre Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, Laboratoire de Comportement, Neurobiologie et Adaptation, Nouzilly, France.,CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Ludovic Calandreau
- INRA Centre Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, Laboratoire de Comportement, Neurobiologie et Adaptation, Nouzilly, France.,CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Elisabeth Baéza
- INRA Centre Val de Loire, Unité de Recherches Avicoles, Nouzilly, France
| | - Pascal Chartrin
- INRA Centre Val de Loire, Unité de Recherches Avicoles, Nouzilly, France
| | - Rupert Palme
- Unit of Physiology, Pathophysiology, and Experimental Endocrinology, Department of Biomedical Sciences, Institute of Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Anne-Sophie Darmaillacq
- Neuroéthologie Cognitive des Céphalopodes (NECC) Normandie Université, Université de Caen Normandie UMR 6552 CNRS - Université Rennes1 F-14032, Caen, France
| | - Ludovic Dickel
- Neuroéthologie Cognitive des Céphalopodes (NECC) Normandie Université, Université de Caen Normandie UMR 6552 CNRS - Université Rennes1 F-14032, Caen, France
| | | | | | - Isabelle Denis
- INRA, Unité de Neurobiologie de l'Olfaction (NBO, INRA-U1197), Jouy-en-Josas, France
| | - Cécile Arnould
- INRA Centre Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, Laboratoire de Comportement, Neurobiologie et Adaptation, Nouzilly, France.,CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Maryse Meurisse
- INRA Centre Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, Laboratoire de Comportement, Neurobiologie et Adaptation, Nouzilly, France.,CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,Institut Français du Cheval et de l'Equitation, Nouzilly, France
| | - Aline Bertin
- INRA Centre Val de Loire, UMR85 Physiologie de la Reproduction et des Comportements, Laboratoire de Comportement, Neurobiologie et Adaptation, Nouzilly, France.,CNRS, UMR7247 Physiologie de la Reproduction et des Comportements, Nouzilly, France.,Université François Rabelais de Tours, Tours, France.,Institut Français du Cheval et de l'Equitation, Nouzilly, France
| |
Collapse
|
5
|
Ellestad LE, Puckett SA, Porter TE. Mechanisms involved in glucocorticoid induction of pituitary GH expression during embryonic development. Endocrinology 2015; 156:1066-79. [PMID: 25560830 PMCID: PMC4330307 DOI: 10.1210/en.2014-1686] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 12/30/2014] [Indexed: 12/26/2022]
Abstract
Glucocorticoid hormones are involved in functional differentiation of GH-producing somatotrophs. Glucocorticoid treatment prematurely induces GH expression in mammals and birds in a process requiring protein synthesis and Rat sarcoma (Ras) signaling. The objective of this study was to investigate mechanisms through which glucocorticoids initiate GH expression during embryogenesis, taking advantage of the unique properties of chicken embryos as a developmental model. We determined that stimulation of GH expression occurred through transcriptional activation of GH, rather than enhancement of mRNA stability, and this process requires histone deacetylase activity. Through pharmacological inhibition, we identified the ERK1/2 pathway as a likely downstream Ras effector necessary for glucocorticoid stimulation of GH. However, we also found that chronic activation of ERK1/2 activity with a constitutively active mutant or stimulatory ligand reduced initiation of GH expression by glucocorticoid treatment. Corticosterone treatment of cultured embryonic pituitary cells increased ERK1/2 activity in an apparent cyclical manner, with a rapid increase within 5 minutes, followed by a reduction to near-basal levels at 3 hours, and a subsequent increase again at 6 hours. Therefore, we conclude that ERK1/2 signaling must be strictly controlled for maximal glucocorticoid induction of GH to occur. These results are the first in any species to demonstrate that Ras- and ERK1/2-mediated transcriptional events requiring histone deacetylase activity are involved in glucocorticoid induction of pituitary GH during embryonic development. This report increases our understanding of the molecular mechanisms underlying glucocorticoid recruitment of somatotrophs during embryogenesis and should provide insight into glucocorticoid-induced developmental changes in other tissues and cell types.
Collapse
Affiliation(s)
- Laura E Ellestad
- Molecular and Cell Biology Program (L.E.E, T.E.P.) and Department of Animal and Avian Sciences (L.E.E., S.A.P., T.E.P.), University of Maryland, College Park, Maryland 20742
| | | | | |
Collapse
|
6
|
Alatzoglou KS, Webb EA, Le Tissier P, Dattani MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014; 35:376-432. [PMID: 24450934 DOI: 10.1210/er.2013-1067] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The diagnosis of GH deficiency (GHD) in childhood is a multistep process involving clinical history, examination with detailed auxology, biochemical testing, and pituitary imaging, with an increasing contribution from genetics in patients with congenital GHD. Our increasing understanding of the factors involved in the development of somatotropes and the dynamic function of the somatotrope network may explain, at least in part, the development and progression of childhood GHD in different age groups. With respect to the genetic etiology of isolated GHD (IGHD), mutations in known genes such as those encoding GH (GH1), GHRH receptor (GHRHR), or transcription factors involved in pituitary development, are identified in a relatively small percentage of patients suggesting the involvement of other, yet unidentified, factors. Genome-wide association studies point toward an increasing number of genes involved in the control of growth, but their role in the etiology of IGHD remains unknown. Despite the many years of research in the area of GHD, there are still controversies on the etiology, diagnosis, and management of IGHD in children. Recent data suggest that childhood IGHD may have a wider impact on the health and neurodevelopment of children, but it is yet unknown to what extent treatment with recombinant human GH can reverse this effect. Finally, the safety of recombinant human GH is currently the subject of much debate and research, and it is clear that long-term controlled studies are needed to clarify the consequences of childhood IGHD and the long-term safety of its treatment.
Collapse
Affiliation(s)
- Kyriaki S Alatzoglou
- Developmental Endocrinology Research Group (K.S.A., E.A.W., M.T.D.), Clinical and Molecular Genetics Unit, and Birth Defects Research Centre (P.L.T.), UCL Institute of Child Health, London WC1N 1EH, United Kingdom; and Faculty of Life Sciences (P.L.T.), University of Manchester, Manchester M13 9PT, United Kingdom
| | | | | | | |
Collapse
|
7
|
Nishigori H, Kagami K, Nishigori H. Impaired imprinting and social behaviors in chicks exposed to mifepristone, a glucocorticoid receptor antagonist, during the final week of embryogenesis. Behav Brain Res 2014; 261:134-9. [PMID: 24368142 DOI: 10.1016/j.bbr.2013.11.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Revised: 11/21/2013] [Accepted: 11/24/2013] [Indexed: 12/01/2022]
Abstract
UNLABELLED The effects of glucocorticoid receptor dysfunction during embryogenesis on the imprinting abilities and social behaviors of hatchlings were examined using "fertile hen's egg-embryo-chick" system. METHODS AND RESULTS Of embryos treated with mifepristone (0.4μmol/egg) on day 14, over 75% hatched a day later than the controls (day 22) without external anomalies. The mifepristone-treated hatchlings were assayed for imprinting ability on post-hatching day 2 and for social behaviors on day 3. The findings were as follows: imprinting ability (expressed as preference score) was significantly lower in mifepristone-treated hatchlings than in controls (0.65±0.06 vs. 0.92±0.02, P<0.005). Aggregation tests to evaluate the speed (seconds) required for four chicks, individually isolated with cardboard dividers in a box, to form a group after removal of the barriers showed that aggregation was significantly slower in mifepristone-treated hatchlings than in controls (8.7±1.1 vs. 2.6±0.3, P<0.001). In belongingness tests to evaluate the speed (seconds) for a chick isolated at a corner to join a group of three chicks placed at the opposite corner, mifepristone-treated hatchlings took significantly longer than controls (4.5±0.4/40 cm vs. 2.4±0.08/40 cm, P<0.001). In vocalization tests, using a decibel meter to measure average decibel level/30s (chick vocalization), mifepristone-treated hatchlings had significantly weaker vocalizations than controls (14.2±1.9/30s vs. 26.4±1.3/30s P<0.001). In conclusion, glucocorticoid receptor dysfunction during the last week embryogenesis altered the programming of brain development, resulting in impaired behavioral activities in late life.
Collapse
Affiliation(s)
- Hideo Nishigori
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa-gun, Iwate 028-3694, Japan.
| | - Keisuke Kagami
- Department of Pharmacotherapeutics, School of Pharmacy, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Hidekazu Nishigori
- Department of Obstetrics, Tohoku University Hospital, Sendai, Miyagi 980-8575, Japan
| |
Collapse
|
8
|
Jenkins SA, Ellestad LE, Mukherjee M, Narayana J, Cogburn LA, Porter TE. Glucocorticoid-induced changes in gene expression in embryonic anterior pituitary cells. Physiol Genomics 2013; 45:422-33. [DOI: 10.1152/physiolgenomics.00154.2012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Within the anterior pituitary gland, glucocorticoids such as corticosterone (CORT) provide negative feedback to inhibit adrenocorticotropic hormone secretion and act to regulate production of other hormones including growth hormone (GH). The ontogeny of GH production during chicken embryonic and rat fetal development is controlled by glucocorticoids. The present study was conducted to characterize effects of glucocorticoids on gene expression within embryonic pituitary cells and to identify genes that are rapidly and directly regulated by glucocorticoids. Chicken embryonic pituitary cells were cultured with CORT for 1.5, 3, 6, 12, and 24 h in the absence and presence of cycloheximide (CHX) to inhibit protein synthesis. RNA was analyzed with custom microarrays containing 14,053 chicken cDNAs, and results for selected genes were confirmed by quantitative reverse transcription real-time PCR (qRT-PCR). Levels of GH mRNA were maximally induced by 6 h of CORT treatment, and this response was blocked by CHX. Expression of 396 genes was affected by CORT, and of these, mRNA levels for 46 genes were induced or repressed within 6 h. Pathway analysis of genes regulated by CORT in the absence of CHX revealed networks of genes associated with endocrine system development and cellular development. Eleven genes that were induced within 6 h in the absence and presence of CHX were identified, and eight were confirmed by qRT-PCR. The expression profiles and canonical pathways defined in this study will be useful for future analyses of glucocorticoid action and regulation of pituitary function.
Collapse
Affiliation(s)
- Sultan A. Jenkins
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
| | - Laura E. Ellestad
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Malini Mukherjee
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Jyoti Narayana
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Larry A. Cogburn
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware
| | - Tom E. Porter
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| |
Collapse
|
9
|
Vakili H, Cattini PA. The hidden but positive role for glucocorticoids in the regulation of growth hormone-producing cells. Mol Cell Endocrinol 2012; 363:1-9. [PMID: 22910554 DOI: 10.1016/j.mce.2012.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 07/18/2012] [Accepted: 08/01/2012] [Indexed: 11/27/2022]
Abstract
Growth hormone (GH) is a prominent metabolic factor that is targeted by glucocorticoids; however, their role in GH production remains controversial. This is explained in part by discrepancies between in vitro and in vivo, short-term versus long-term exposure and even species-specific effects. The prevailing view, however, is that glucocorticoids are negative modulators of growth and GH production. An examination of recent findings from elegant avian and gene ablation in mice studies as well as clinical case reports, suggests this is not the case. The evidence suggests that the effect of glucocorticoids on growth and GH production can be uncoupled, and reveals they play a crucial and positive role in maturation of functional somatotrophs, the GH-producing cells of the anterior pituitary. Here, we provide an overview and insights into the possible roles of glucocorticoids in the development of somatotrophs before birth as well as regulation of GH production in infancy (neonatal) and adulthood (postnatal). A fully functional glucocorticoid-signaling pathway appears to be required for establishment of somatotrophs before birth, and glucocorticoids continue to be required for maintenance of GH production in the newborn. There is evidence to suggest progenitor somatotrophs may persist after birth, and perhaps account for the ability of glucocorticoid therapy to correct some cases of GH deficiency as a result of compromised glucocorticoid signaling. Finally, there is support for positive regulation of avian, murine and human GH gene activation and/or expression by glucocorticoids, however, there appears to be no common mechanism and the contribution of direct versus indirect effects remains unclear. Thus, our observations reveal a largely hidden face of glucocorticoids, specifically, a positive role in somatotroph development and GH gene activation/expression, which may enable us to better understand the differential effect of glucocorticoids on growth and GH production in human studies.
Collapse
Affiliation(s)
- Hana Vakili
- Department of Physiology, University of Manitoba, Canada.
| | | |
Collapse
|
10
|
Heuck-Knubel K, Proszkowiec-Weglarz M, Narayana J, Ellestad LE, Prakobsaeng N, Porter TE. Identification of cis elements necessary for glucocorticoid induction of growth hormone gene expression in chicken embryonic pituitary cells. Am J Physiol Regul Integr Comp Physiol 2012; 302:R606-19. [DOI: 10.1152/ajpregu.00492.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid (GC) treatment of rat or chicken embryonic pituitary (CEP) cells induces premature production of growth hormone (GH). GC induction of the GH gene requires ongoing protein synthesis, and the GH genes lack a canonical GC response element (GRE). To characterize cis-acting elements and identify trans-acting proteins involved in this process, we characterized the regulation of a luciferase reporter containing a fragment of the chicken GH gene (−1727/+48) in embryonic day 11 CEP cells. Corticosterone (Cort) increased luciferase activity and mRNA expression, and mRNA induction was blocked by protein synthesis inhibition. Through deletion analysis, we identified a GC-responsive region (GCRR) at −1045 to −954. The GCRR includes an ETS-1 binding site and a degenerate GRE (dGRE) half site. Nuclear proteins, including ETS-1, bound to a GCRR probe in electrophoretic mobility shift assays, and Cort regulated protein binding. Using chromatin immunoprecipitation, we found that ETS-1 and GC receptor (GR) were associated with the GCRR in CEP cells, and Cort increased GR recruitment to the GCRR. Mutation of the ETS-1 site or dGRE site in the −1045/+48 GH reporter abolished Cort responsiveness. We conclude that GC regulation of the GH gene during development requires cis-acting elements in the GCRR and involves ETS-1 and GR binding to these elements. Similar ETS-1 elements/dGREs are located in the 5′-flanking regions of GH genes in mammals, including rodents and humans. This is the first study to demonstrate involvement of ETS-1 in GC regulation of the GH gene during embryonic development in any species, enhancing our understanding of GH regulation in vertebrates.
Collapse
Affiliation(s)
| | | | - Jyoti Narayana
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Laura E. Ellestad
- Department of Animal and Avian Sciences and
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| | - Nattiya Prakobsaeng
- School of Biology, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Tom E. Porter
- Department of Animal and Avian Sciences and
- Molecular and Cell Biology Program, University of Maryland, College Park, Maryland; and
| |
Collapse
|
11
|
Proszkowiec-Weglarz M, Porter TE. Functional characterization of chicken glucocorticoid and mineralocorticoid receptors. Am J Physiol Regul Integr Comp Physiol 2010; 298:R1257-68. [DOI: 10.1152/ajpregu.00805.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glucocorticoid (GR) and mineralocorticoid (MR) receptors are ligand-activated transcription factors that belong to the nuclear hormone receptor superfamily. Little is known about the function of GR and MR in avian species. Recently, the chicken homologue of the GR (cGR) gene was cloned, and its tissue-specific expression was characterized, whereas the full-length sequence of the chicken MR (cMR) gene remains unknown. Therefore, the aims of this project were to clone the full-length cMR and to functionally characterize both chicken receptors. Cos-7 cells were transiently transfected with cGR or cMR expression vectors along with a glucocorticoid response element-luciferase (GRE-Luc) reporter construct. Transfected cells were then treated with increasing doses of corticosterone (CORT) or aldosterone (ALDO) alone and with GR or MR antagonists (ZK98299 and spironolactone, respectively). Transactivation of cGR or cMR was evaluated by luciferase assay. CORT and ALDO induced cGR- and cMR-driven transcriptional activity in a dose-dependent manner. Each receptor responded to both steroids, but cMR transcriptional activity was induced by lower levels of CORT and ALDO than cGR. Coexpression of both chicken corticosteroid receptors in Cos-7 cells had no synergistic or additive effect on CORT- or ALDO-induced transcriptional activity. Corticosteroid-dependent transactivation of cGR and cMR was partially blocked by antagonists. ZK98299 showed high specificity to cGR, while spironolactone had agonist properties toward both receptors. Immunocytochemistry was used to assess the cellular localization of both receptors. Corticosteroids induced translocation of both receptors into the nucleus. The functional properties of cGR and cMR determined in this study will be helpful in defining the physiological roles of GR and MR in avian species.
Collapse
Affiliation(s)
| | - Tom E. Porter
- University of Maryland, Department of Animal and Avian Sciences, College Park, Maryland
| |
Collapse
|
12
|
Yamate S, Nishigori H, Kishimoto S, Tezuka Y, Fukushima A, Sugiyama T, Nishigori H. Effects of glucocorticoid on brain acetylcholinesterase of developing chick embryos. J Obstet Gynaecol Res 2010; 36:11-8. [PMID: 20178522 DOI: 10.1111/j.1447-0756.2009.01091.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIM Fetal exposure to excessive or deficient glucocorticoids may alter the programming in differentiation and maturation of various tissues including the brain and nervous system, leading to dysfunctions later in life. For further exploration of this possibility, we established an animal model using developing chick embryos. METHODS (i) Reverse-transcription polymerase chain reaction was used to determine the expression of glucocorticoid receptor mRNA in the brain of chick embryos. (ii) Embryos on day 15 were administered betamethasone or mifepristone and their cerebrum, cerebellum and optic lobe were investigated to determine the activity of acetylcholinesterase. RESULTS (i) Glucocorticoid receptor mRNA was shown to be present in the cerebrum, cerebellum and optic lobe. (ii) After the administration of betamethasone, acetylcholinesterase activities in the cerebrum, cerebellum and optic lobe on day 19 were 1.5- to 2-fold higher than those of untreated control. Weights of body and brain parts were 0.65-0.75-fold relative to control values. However, these differences were less noticeable on day 22. (iii) Administration of mifepristone before treatment with betamethasone prevented high-dose betamethasone-induced changes in acetylcholinesterase activity and bodyweights on day 19. Administration of mifepristone alone did not induce differences from the control. CONCLUSIONS The cerebrum, cerebellum and optic lobe of chick embryos could be influenced by glucocorticoids because of the presence of glucocorticoid receptor mRNA. Although the effects observed after treatment with excess glucocorticoids (even no effects after mifepristone treatment) were transitory, they may alter the developmental program in ways that could result in lasting change and influence behavioral activities after hatching.
Collapse
Affiliation(s)
- Sumire Yamate
- Department of Obstetrics and Gynecology, School of Medicine, Iwate Medical University, Iwate, Japan
| | | | | | | | | | | | | |
Collapse
|
13
|
Heuck KA, Ellestad LE, Proudman JA, Porter TE. Somatotropin response in vitro to corticosterone and triiodothyronine during chick embryonic development: Involvement of type I and type II glucocorticoid receptors. Domest Anim Endocrinol 2009; 36:186-96. [PMID: 19157766 DOI: 10.1016/j.domaniend.2008.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 11/25/2008] [Accepted: 11/27/2008] [Indexed: 11/25/2022]
Abstract
Corticosterone (CORT) can stimulate growth hormone (GH) secretion on embryonic day (e) 12 in the chicken. However, CORT failed to induce GH secretion on e20 in a single report, suggesting that regulation of GH production changes during embryonic development. Secretion in response to CORT during embryonic development is modulated by the thyroid hormones triiodothyronine (T(3)) and thyroxine (T(4)). Growth hormone responses on e12 involve both glucocorticoid (GR) and mineralocorticoid receptors (MR); however, involvement of MR has not been evaluated past e12. To further define changes in somatotroph responsiveness to CORT, pituitary cells obtained on e12-e20 were cultured with CORT alone and in combination with T(3) and GH-releasing hormone (GHRH). Growth hormone mRNA levels and protein secretion were quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and radioimmunoassay (RIA), respectively. Corticosterone significantly increased GH mRNA and protein secretion on e12; however, mRNA concentration and protein secretion were unaffected on e20. Contributions of GR and MR in CORT responses were evaluated using GR and MR antagonists. Treatment with a GR-specific antagonist effectively blocked the CORT-induced increase in GH secretion on e12. The same treatment on e20 had no effect on GH secretion. These findings demonstrate that GR is directly involved in glucocorticoid stimulation of GH secretion at the time of somatotroph differentiation but is not regulatory at the end of embryonic development. We conclude that positive somatotroph responses to CORT are lost during chicken embryonic development and that GR is the primary regulator of CORT-induced GH secretion.
Collapse
Affiliation(s)
- K A Heuck
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
14
|
State-of-the-art technologies, current opinions and developments, and novel findings: news from the field of histochemistry and cell biology. Histochem Cell Biol 2008; 130:1205-51. [PMID: 18985372 DOI: 10.1007/s00418-008-0535-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2008] [Indexed: 10/25/2022]
Abstract
Investigations of cell and tissue structure and function using innovative methods and approaches have again yielded numerous exciting findings in recent months and have added important data to current knowledge, inspiring new ideas and hypotheses in various fields of modern life sciences. Topics and contents of comprehensive expert reviews covering different aspects in methodological advances, cell biology, tissue function and morphology, and novel findings reported in original papers are summarized in the present review.
Collapse
|
15
|
Katz A, Mirzatoni A, Zhen Y, Schlinger BA. Sex differences in cell proliferation and glucocorticoid responsiveness in the zebra finch brain. Eur J Neurosci 2008; 28:99-106. [PMID: 18662338 DOI: 10.1111/j.1460-9568.2008.06303.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neural proliferation is a conserved property of the adult vertebrate brain. In mammals, stress reduces hippocampal neuronal proliferation and the effect is stronger in males than in females. We tested the effects of glucocorticoids on ventricular zone cell proliferation in adult zebra finches where neurons are produced that migrate to and incorporate within the neural circuits controlling song learning and performance. Adult male zebra finches sing and have an enlarged song circuitry; females do not sing and the song circuit is poorly developed. Freshly prepared slices from adult males and females containing the lateral ventricles were incubated with the mitotic marker BrdU with or without steroid treatments. BrdU-labeled cells were revealed immunocytochemically and all labeled cells within the ventricular zone were counted. We identified significantly higher rates of proliferation along the ventricular zone of males than in females. Moreover, acute administration of corticosterone significantly reduced proliferation in males with no effects in females. This effect in males was replicated by RU-486, which appears to act as an agonist of the glucocorticoid receptor in the songbird brain. The corticosterone effect was reversed by Thiram, which disrupts corticosterone action on the glucocorticoid receptor. Sex differences in proliferation and responses to stress hormones may contribute to the sexually dimorphic and seasonal growth of the neural song system of songbirds.
Collapse
Affiliation(s)
- Amnon Katz
- Department of Physiological Science and Laboratory of Neuroendocrinology, Brain Research Institute, University of California, Los Angeles, CA 90095, USA.
| | | | | | | |
Collapse
|
16
|
De Groef B, Grommen SVH, Darras VM. The chicken embryo as a model for developmental endocrinology: development of the thyrotropic, corticotropic, and somatotropic axes. Mol Cell Endocrinol 2008; 293:17-24. [PMID: 18619516 DOI: 10.1016/j.mce.2008.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/15/2008] [Accepted: 06/11/2008] [Indexed: 10/22/2022]
Abstract
The ease of in vivo experimental manipulation is one of the main factors that have made the chicken embryo an important animal model in developmental research, including developmental endocrinology. This review focuses on the development of the thyrotropic, corticotropic and somatotropic axes in the chicken, emphasizing the central role of the pituitary gland in these endocrine systems. Functional maturation of the endocrine axes entails the cellular differentiation and acquisition of cell function and responsiveness of the different glands involved, as well as the establishment of top-down and bottom-up anatomical and functional communication between the control levels. Extensive cross-talk between the above-mentioned axes accounts for the marked endocrine changes observed during the last third of embryonic development. In a final paragraph we shortly discuss how genomic resources and new transgenesis techniques can increase the power of the chicken embryo model in developmental endocrinology research.
Collapse
|
17
|
Zheng J, Takagi H, Tsutsui C, Adachi A, Sakai T. Hypophyseal corticosteroids stimulate somatotrope differentiation in the embryonic chicken pituitary gland. Histochem Cell Biol 2007. [PMID: 18064482 DOI: 10.1007/s00418-007-0364–9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although it is known that glucocorticoids induce differentiation of growth hormone (GH)-producing cells in rodents and birds, the effect of mineralocorticoids on GH mRNA expression and the origin of corticosteroids affecting somatotrope differentiation have not been elucidated. In this study, we therefore carried out experiments to determine the effect of mineralocorticoids on GH mRNA expression in the chicken anterior pituitary gland in vitro and to determine whether corticosteroids are synthesized in the chicken embryonic pituitary gland. In a pituitary culture experiment with E11 embryos, both corticosterone and aldosterone stimulated GH mRNA expression and increased the number of GH cells in both lobes of the pituitary gland in a dose-dependent manner. These effects of the corticosteroids were significantly reversed by pretreatment with mifepristone, a glucocorticoid receptor (GR) antagonist, or spironolactone, a mineralocorticoid receptor (MR) antagonist. Interestingly, an in vitro serum-free culture experiment with an E11 pituitary gland showed that the GH mRNA level spontaneously increased during cultivation for 2 days without any extra stimulation, and this increase in GH mRNA level was completely suppressed by metyrapone, a corticosterone-producing enzyme P450C11 inhibitor. Moreover, progesterone, the corticosterone precursor, also stimulated GH mRNA expression in the cultured chicken pituitary gland, and this effect was blocked by pretreatment with metyrapone. We also detected mRNA expression of enzymes of cytochrome P450 cholesterol side chain cleavage (P450scc) and 3beta-hydroxysteroid dehydrogenase1 (3beta-HSD1) in the developmental chicken pituitary gland from E14 and E18, respectively. These results suggest that mineralocorticoids as well as glucocorticoids can stimulate GH mRNA expression and that corticosteroids generated in the embryonic pituitary gland by intrinsic steroidogenic enzymes stimulate somatotrope differentiation.
Collapse
Affiliation(s)
- Jun Zheng
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | | | | | | | | |
Collapse
|
18
|
Zheng J, Takagi H, Tsutsui C, Adachi A, Sakai T. Hypophyseal corticosteroids stimulate somatotrope differentiation in the embryonic chicken pituitary gland. Histochem Cell Biol 2007; 129:357-65. [DOI: 10.1007/s00418-007-0364-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2007] [Indexed: 10/22/2022]
|
19
|
The tubulogenic effect of aldosterone is attributed to intact binding and intracellular response of the mineralocorticoid receptor. Open Life Sci 2007. [DOI: 10.2478/s11535-007-0030-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
AbstractLittle is known about the extra- and intracellular stimuli inducing renal stem/progenitor cells to develop into three-dimensionally structured tubules. To study this specific development in a controlled environment, we used an advanced culture technique. Embryonic tissue derived from neonatal rabbit kidney was placed in a perfusion culture container at the interface of an artificial interstitium made of a polyester fleece. Culture was carried out in chemically defined Iscove’s Modified Dulbecco’s Medium (IMDM) for 13 days. Development of tubules was histochemically detected on cryosections labeled with Soybean Agglutinin (SBA). The experiments showed that aldosterone exerts a specific tubulogenic effect. Application of aldosterone (1 × 10−7 M) raised numerous SBA-labeled tubules, while in the absence of the steroid hormone the development of tubules was lacking. Specificity of hormone action was analyzed by the use of aldosterone antagonists. Administration of spironolactone (1 × 10−4 M) and canrenoate (1 × 10−5 M) completely inhibited the development of tubules. Finally, disrupting the intracellular molecular complex of the mineralocorticoid receptor (MR) and heat shock proteins by geldanamycin (2 μg/ml) prevented the development of tubules. Our results suggest that the tubulogenic effect induced by aldosterone is attributed to both hormone binding and an undisturbed intracellular response of the MR.
Collapse
|
20
|
Jenkins SA, Muchow M, Richards MP, McMurtry JP, Porter TE. Administration of adrenocorticotropic hormone during chicken embryonic development prematurely induces pituitary growth hormone cells. Endocrinology 2007; 148:3914-21. [PMID: 17463063 DOI: 10.1210/en.2006-1102] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Treatment of fetal rats and embryonic chickens with exogenous glucocorticoids induces premature GH cell differentiation. However, it is unknown whether the developing adrenal gland is capable of mounting this response autonomously. The present study determined whether stimulation of the adrenal gland in developing chicken embryos through administration of ACTH could induce a premature increase in GH cells. We found that plasma corticosterone and ACTH levels increased between embryonic day (e) 11 and e17, consistent with GH cell (somatotroph) ontogeny. Injection of ACTH into eggs on e9, e10, or e11 increased somatotrophs on e14. In contrast, thyroid-stimulating hormone, CRH, alpha-MSH, GHRH, and TRH were ineffective. Culture of e11 pituitary cells with ACTH failed to induce somatotrophs, suggesting an indirect action of ACTH on GH cells in vivo. Intravenous administration of ACTH dramatically increased plasma levels of corticosterone within 1 h and increased the percentage of pituitary somatotrophs within 24 h. Although ACTH administration increased the relative abundance of pituitary GH cells, there was no effect on plasma levels of GH, IGF-I, or IGF-II, or in hepatic expression of IGF-I or IGF-II mRNA. We conclude that ACTH administration can increase the population of GH cells in the embryonic pituitary. However, this treatment alone does not lead to downstream activation of hepatic IGF production. These findings indicate that the embryonic adrenal gland, and ultimately anterior pituitary corticotrophs, may function to regulate pituitary GH cell differentiation during embryonic development.
Collapse
Affiliation(s)
- S A Jenkins
- Department of Animal and Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | |
Collapse
|
21
|
Kwok AHY, Wang Y, Wang CY, Leung FC. Cloning of Chicken Glucocorticoid Receptor (GR) and Characterization of its Expression in Pituitary and Extrapituitary Tissues. Poult Sci 2007; 86:423-30. [PMID: 17234861 DOI: 10.1093/ps/86.2.423] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Substantial evidence suggests that glucocorticoids play critical roles in the differentiation of somatotroph and lactotroph in embryonic pituitaries of birds. However, the basic information on the expression of glucocorticoid receptor (GR) in avian species is limited. In this study, the full-length cDNA for chicken GR was cloned from the chicken kidney. It encodes 772 amino acids and shares high homology with that of the human (73%), mouse (73%), rat (71%), rabbit (72%), and trout (51%) sequences. Similar to mammals, chicken GR is widely expressed in all adult tissues being investigated. Among the 12 tissues investigated, relatively high expression of GR was detected in pituitary, muscle, ovary, and kidney using reverse transcription-PCR assay. Using semiquantitative reverse transcription-PCR, GR is shown to be abundantly expressed at a more or less constant level during embryonic pituitary development (from d 8 to 20), supporting the hypothesis that the expression of GR is unlikely to be a limiting factor in initiating the differentiation of somatotroph and lactotroph in embryonic pituitary of birds. Moreover, an abundant expression of GR in the whole embryos at earlier developmental stages (from d 2 to 5) was also detected in the present study, though its physiological relevance remains to be determined.
Collapse
Affiliation(s)
- A H Y Kwok
- Department of Zoology, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
22
|
Wang CY, Wang Y, Li J, Leung FC. Expression profiles of growth hormone-releasing hormone and growth hormone-releasing hormone receptor during chicken embryonic pituitary development. Poult Sci 2006; 85:569-76. [PMID: 16553291 DOI: 10.1093/ps/85.3.569] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Growth hormone-releasing hormone (GHRH) and its receptor (GHRHR) have long been regarded as the critical molecules for the stimulation of growth hormone (GH) synthesis and release, as well as the regulation of pituitary somatotroph expansion in vertebrates. However, little is known about their expression in the embryonic pituitaries of birds. In this study, the full-length cDNA for chicken GHRHR was cloned from the chicken pituitary. It encodes 419 amino acids and shares high homology with that of the human, rat, and mouse. As in those in mammals, chicken GHRHR is predominantly expressed in the pituitary and weakly expressed in several extra-pituitary tissues including brain, pancreas, testis, and kidney, among 12 tissues examined. Using semiquantitative reverse transcription-PCR, we further examined the expression of GH, GHRH, and GHRHR during embryonic pituitary development. The expression of GHRHR on embryonic d 8 was much lower, but abundant expression was noticed as early as embryonic d 12. In contrast, the level of pituitary GHRH mRNA peaked on d 8 and declined sharply afterwards. Interestingly, unlike those of pituitary GHRH and GHRHR, the higher expression levels of GH appeared much later (from d 16 to 20). The differential expressions of GHRH, GHRHR, and GH in the developing embryonic pituitaries not only imply that pituitary-derived GHRH (or pituitary adenylate cyclase-activating polypeptide) and GHRHR may have a paracrine/autocrine role in the expansion of undifferentiated somatotroph precursor cells, but also suggest that GHRHR is likely to be involved in the somatotroph differentiation occurring at the later developmental stages.
Collapse
Affiliation(s)
- C Y Wang
- Department of Zoology, The University of Hong Kong, Hong Kong, China
| | | | | | | |
Collapse
|
23
|
Glucocorticoid-Inducible Glutamine Synthetase in GH Cells of Chick Embryos, Gallus domesticus: Ontogeny of Glutamine Synthetase, GH, and Pit-1 Protein in the Pituitary Gland. J Poult Sci 2006. [DOI: 10.2141/jpsa.43.266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Porter TE. Regulation of pituitary somatotroph differentiation by hormones of peripheral endocrine glands. Domest Anim Endocrinol 2005; 29:52-62. [PMID: 15885962 DOI: 10.1016/j.domaniend.2005.04.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2005] [Revised: 03/28/2005] [Accepted: 04/03/2005] [Indexed: 10/25/2022]
Abstract
Anterior pituitary somatotroph differentiation occurs during chick embryonic and rat fetal development. A number of findings support the hypothesis that differentiation of these growth hormone (GH) producing cells in the chick and the rat is regulated by adrenal glucocorticoids and thyroid hormones. Somatotroph differentiation can be induced in cultures of chick embryonic and rat fetal pituitary cells with adrenal glucocorticoids and this effect can be modulated by concomitant treatment with thyroid hormones. Plasma levels of thyroid hormones, corticosterone and adrenocorticotropic hormone increase during development, consistent with the ontogeny of somatotrophs. Treatment of chick embryos or rat fetuses with glucocorticoids in vivo induces premature somatotroph differentiation, indicating that the adrenal gland, and ultimately anterior pituitary corticotrophs, may function to regulate pituitary GH cell differentiation during development. Administration of thyroid hormones in vivo also increases somatotrophs prematurely, and administration of the thyroid hormone synthesis inhibitor methimazole inhibits somatotroph differentiation in vivo, suggesting that endogenous thyroid hormone synthesis contributes to normal somatotroph differentiation. Our working model for the regulation of somatotroph differentiation during normal development includes modulation by elements of the hypothalamo-pituitary-adrenal and hypothalamo-pituitary-thyroid axes. Additional research is reviewed defining the mechanism of action for these peripheral hormones in induction of pituitary GH gene expression during development.
Collapse
Affiliation(s)
- Tom E Porter
- Department of Animal and Avian Sciences, Molecular and Cell Biology Program, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|