1
|
Dissociable Effects on Birdsong of Androgen Signaling in Cortex-Like Brain Regions of Canaries. J Neurosci 2017; 37:8612-8624. [PMID: 28821656 DOI: 10.1523/jneurosci.3371-16.2017] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 07/14/2017] [Accepted: 07/24/2017] [Indexed: 12/12/2022] Open
Abstract
The neural basis of how learned vocalizations change during development and in adulthood represents a major challenge facing cognitive neuroscience. This plasticity in the degree to which learned vocalizations can change in both humans and songbirds is linked to the actions of sex steroid hormones during ontogeny but also in adulthood in the context of seasonal changes in birdsong. We investigated the role of steroid hormone signaling in the brain on distinct features of birdsong using adult male canaries (Serinus canaria), which show extensive seasonal vocal plasticity as adults. Specifically, we bilaterally implanted the potent androgen receptor antagonist flutamide in two key brain regions that control birdsong. We show that androgen signaling in the motor cortical-like brain region, the robust nucleus of the arcopallium (RA), controls syllable and trill bandwidth stereotypy, while not significantly affecting higher order features of song such syllable-type usage (i.e., how many times each syllable type is used) or syllable sequences. In contrast, androgen signaling in the premotor cortical-like brain region, HVC (proper name), controls song variability by increasing the variability of syllable-type usage and syllable sequences, while having no effect on syllable or trill bandwidth stereotypy. Other aspects of song, such as the duration of trills and the number of syllables per song, were also differentially affected by androgen signaling in HVC versus RA. These results implicate androgens in regulating distinct features of complex motor output in a precise and nonredundant manner.SIGNIFICANCE STATEMENT Vocal plasticity is linked to the actions of sex steroid hormones, but the precise mechanisms are unclear. We investigated this question in adult male canaries (Serinus canaria), which show extensive vocal plasticity throughout their life. We show that androgens in two cortex-like vocal control brain regions regulate distinct aspects of vocal plasticity. For example, in HVC (proper name), androgens regulate variability in syntax but not phonology, whereas androgens in the robust nucleus of the arcopallium (RA) regulate variability in phonology but not syntax. Temporal aspects of song were also differentially affected by androgen signaling in HVC versus RA. Thus, androgen signaling may reduce vocal plasticity by acting in a nonredundant and precise manner in the brain.
Collapse
|
2
|
Knoop A, Krug O, Vincenti M, Schänzer W, Thevis M. In vitro metabolism studies on the selective androgen receptor modulator (SARM) LG121071 and its implementation into human doping controls using liquid chromatography-mass spectrometry. EUROPEAN JOURNAL OF MASS SPECTROMETRY (CHICHESTER, ENGLAND) 2015; 21:27-36. [PMID: 25906032 DOI: 10.1255/ejms.1328] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
LG121071 is a member of the tetrahydroquinolinone-based class of selective androgen receptor modulator (SARM) drug candidates. These nonsteroidal compounds are supposed to act as full anabolic agents with reduced androgenic properties. As SARMs provide an alternative to anabolic androgenic steroids, they represent an emerging class of potential doping substances abused by athletes for illicit performance enhancement. According to the World Anti-Doping Agency's regulations, SARMs are banned substances and part of the Prohibited List since 2008. In consideration of the increasing number of adverse analytical findings in doping controls caused by SARMs abuse, potential drug candidates such as LG121071 have been proactively investigated to enable a timely integration into routine testing procedures even though clinical trials are not yet complete. In the present approach, the collision-induced dissociation (CID) of LG121071 was characterized by means of electrospray ionization-high resolution/high accuracy mass spectrometry, MS(n), and isotope labeling experiments. Interestingly, the even-electron precursor ion [M + H](+) at m/z 297 was found to produce a radical cation at m/z 268 under CID conditions, violating the even-electron rule that commonly applies. For doping control purposes, metabolites were generated in vitro and a detection method for urine samples based on liquid chromatography-tandem mass spectrometry was established. The overall metabolic conversion of LG121071 was modest, yielding primarily mono-, bis- and trishydroxylated species. Notable, however, was the identification of a glucuronic acid conjugate of the intact drug, attributed to an N-glucuronide structure. The sample preparation procedure included the enzymatic hydrolysis of glucuronides prior to liquid-liquid extraction, allowing intact LG121071 to be measured, as well as the corresponding phase-I metabolites. The method was characterized concerning inter alia lower limit of detection (0.5 ng mL(-1) in urine), recovery (40%), and intra-/interday precision (2.3% to 11.7%) to assess its fitness for purpose. Prospectively, the assay can serve as detection method for LG121071 in drug testing and/or doping controls.
Collapse
Affiliation(s)
- Andre Knoop
- Institute for Biochemistry- Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany..
| | - Oliver Krug
- Institute for Biochemistry- Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany. European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany.
| | - Marco Vincenti
- Dipartimento di Chimica, Università degli Studi di Torino, via P. Giuria 7, 10125 Turin, Italy.
| | - Wilhelm Schänzer
- Institute for Biochemistry- Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany..
| | - Mario Thevis
- Institute for Biochemistry- Center for Preventive Doping Research, German Sport University Cologne, Am Sportpark Müngersdorf 6, 50933 Cologne, Germany. European Monitoring Center for Emerging Doping Agents (EuMoCEDA), Cologne/Bonn, Germany.
| |
Collapse
|
3
|
Abstract
A credible, reversible male contraceptive with sufficient efficacy and convenience to rival established female methods has been eagerly awaited for some years. What are the issues surrounding its development and when is a launch likely? At present, many different approaches and targets have been identified for further development. These include spermatogenesis, unique testicular proteins, immunocontraception, the vas deferens and the potential method currently closest to fruition, hormonal contraception. This is now in Phase III studies in China and commercial studies are underway in Europe.
Collapse
Affiliation(s)
- Ra Anderson
- Centre for Reproductive Biology, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
4
|
Abstract
Among cocaine users, men experience more adverse brain and vascular effects than their female counterparts. This could be caused by testosterone, which may potentiate some of cocaine's effects. We examined whether antiandrogen (flutamide, FL) pretreatment alters cocaine's acute behavioral, physiologic, and pharmacokinetic effects in men with histories of occasional cocaine use. Participants (N = 8) were pretreated with oral FL (250 mg) and placebo on separate study days followed by intravenous (IV) cocaine (0.4 mg/kg). Vital signs, subjective ratings, and blood samples for cocaine and metabolites were obtained at baseline and for 90 minutes after cocaine administration. FL, itself, had no effects on physiologic or subjective responses; however, after cocaine, heart rate recovered faster with FL pretreatment. Flutamide reduced peak plasma cocaine levels (Wilcoxon signed-rank z = 2.1, P < 0.04) and area under the curve (AUC; z = 1.96, P < 0.05). Additionally, FL reduced EME levels (z = 1.96, P < 0.05) and AUC for BE and EME (z = 2.38, P < 0.02 and z = 1.96, P < 0.05, respectively). These results suggest that FL may alter cocaine pharmacokinetics in men. Because cocaine and BE are vasoconstrictive, the data imply that FL might reduce some of cocaine's cardiovascular effects.
Collapse
|
5
|
Poutiainen PK, Oravilahti T, Peräkylä M, Palvimo JJ, Ihalainen JA, Laatikainen R, Pulkkinen JT. Design, Synthesis, and Biological Evaluation of Nonsteroidal Cycloalkane[d]isoxazole-Containing Androgen Receptor Modulators. J Med Chem 2012; 55:6316-27. [DOI: 10.1021/jm300233k] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | - Janne A. Ihalainen
- Nanoscience Center, Department
of Biological and Environmental Sciences, University of Jyväskylä, P.O. Box 35, FI-40014 University
of Jyväskylä, Finland
| | | | | |
Collapse
|
6
|
Abstract
A promising strategy to delay and perhaps prevent Alzheimer's disease (AD) is to identify the age-related changes that put the brain at risk for the disease. A significant normal age change known to result in tissue-specific dysfunction is the depletion of sex hormones. In women, menopause results in a relatively rapid loss of estradiol and progesterone. In men, aging is associated with a comparatively gradual yet significant decrease in testosterone. We review a broad literature that indicates age-related losses of estrogens in women and testosterone in men are risk factors for AD. Both estrogens and androgens exert a wide range of protective actions that improve multiple aspects of neural health, suggesting that hormone therapies have the potential to combat AD pathogenesis. However, translation of experimental findings into effective therapies has proven challenging. One emerging treatment option is the development of novel hormone mimetics termed selective estrogen and androgen receptor modulators. Continued research of sex hormones and their roles in the aging brain is expected to yield valuable approaches to reducing the risk of AD.
Collapse
Affiliation(s)
- Anna M. Barron
- USC Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 153-8902 Japan
| | - Christian J. Pike
- USC Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| |
Collapse
|
7
|
Barron AM, Pike CJ. Sex hormones, aging, and Alzheimer's disease. Front Biosci (Elite Ed) 2012. [PMID: 22201929 DOI: 10.2741/434] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A promising strategy to delay and perhaps prevent Alzheimer's disease (AD) is to identify the age-related changes that put the brain at risk for the disease. A significant normal age change known to result in tissue-specific dysfunction is the depletion of sex hormones. In women, menopause results in a relatively rapid loss of estradiol and progesterone. In men, aging is associated with a comparatively gradual yet significant decrease in testosterone. We review a broad literature that indicates age-related losses of estrogens in women and testosterone in men are risk factors for AD. Both estrogens and androgens exert a wide range of protective actions that improve multiple aspects of neural health, suggesting that hormone therapies have the potential to combat AD pathogenesis. However, translation of experimental findings into effective therapies has proven challenging. One emerging treatment option is the development of novel hormone mimetics termed selective estrogen and androgen receptor modulators. Continued research of sex hormones and their roles in the aging brain is expected to yield valuable approaches to reducing the risk of AD.
Collapse
Affiliation(s)
- Anna M Barron
- USC Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089 USA
| | | |
Collapse
|
8
|
Goto T, Ohta K, Fujii S, Ohta S, Endo Y. Design and Synthesis of Androgen Receptor Full Antagonists Bearing a p-Carborane Cage: Promising Ligands for Anti-Androgen Withdrawal Syndrome. J Med Chem 2010; 53:4917-26. [DOI: 10.1021/jm100316f] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tokuhito Goto
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kiminori Ohta
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Shinya Fujii
- School of Medical Science, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University, 2-3-10, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Shigeru Ohta
- Graduate School of Medical Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8551, Japan
| | - Yasuyuki Endo
- Faculty of Pharmaceutical Sciences, Tohoku Pharmaceutical University, 4-4-1, Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| |
Collapse
|
9
|
Pike CJ, Carroll JC, Rosario ER, Barron AM. Protective actions of sex steroid hormones in Alzheimer's disease. Front Neuroendocrinol 2009; 30:239-58. [PMID: 19427328 PMCID: PMC2728624 DOI: 10.1016/j.yfrne.2009.04.015] [Citation(s) in RCA: 390] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2009] [Revised: 04/25/2009] [Accepted: 04/28/2009] [Indexed: 12/19/2022]
Abstract
Risk for Alzheimer's disease (AD) is associated with age-related loss of sex steroid hormones in both women and men. In post-menopausal women, the precipitous depletion of estrogens and progestogens is hypothesized to increase susceptibility to AD pathogenesis, a concept largely supported by epidemiological evidence but refuted by some clinical findings. Experimental evidence suggests that estrogens have numerous neuroprotective actions relevant to prevention of AD, in particular promotion of neuron viability and reduction of beta-amyloid accumulation, a critical factor in the initiation and progression of AD. Recent findings suggest neural responsiveness to estrogen can diminish with age, reducing neuroprotective actions of estrogen and, consequently, potentially limiting the utility of hormone therapies in aged women. In addition, estrogen neuroprotective actions are also modulated by progestogens. Specifically, continuous progestogen exposure is associated with inhibition of estrogen actions whereas cyclic delivery of progestogens may enhance neural benefits of estrogen. In recent years, emerging literature has begun to elucidate a parallel relationship of sex steroid hormones and AD risk in men. Normal age-related testosterone loss in men is associated with increased risk to several diseases including AD. Like estrogen, testosterone has been established as an endogenous neuroprotective factor that not only increases neuronal resilience against AD-related insults, but also reduces beta-amyloid accumulation. Androgen neuroprotective effects are mediated both directly by activation of androgen pathways and indirectly by aromatization to estradiol and initiation of protective estrogen signaling mechanisms. The successful use of hormone therapies in aging men and women to delay, prevent, and or treat AD will require additional research to optimize key parameters of hormone therapy and may benefit from the continuing development of selective estrogen and androgen receptor modulators.
Collapse
Affiliation(s)
- Christian J Pike
- Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| | | | | | | |
Collapse
|
10
|
Fragkaki AG, Angelis YS, Koupparis M, Tsantili-Kakoulidou A, Kokotos G, Georgakopoulos C. Structural characteristics of anabolic androgenic steroids contributing to binding to the androgen receptor and to their anabolic and androgenic activities. Applied modifications in the steroidal structure. Steroids 2009; 74:172-97. [PMID: 19028512 DOI: 10.1016/j.steroids.2008.10.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/21/2008] [Accepted: 10/29/2008] [Indexed: 11/21/2022]
Abstract
Anabolic androgenic steroids (AAS) are synthetic derivatives of testosterone introduced for therapeutic purposes providing enhanced anabolic potency with reduced androgenic effects. Androgens mediate their action through their binding to the androgen receptor (AR) which is mainly expressed in androgen target tissues, such as the prostate, skeletal muscle, liver and central nervous system. This paper reviews some of the wide spectrum of testosterone and synthetic AAS structure modifications related to the intended enhancement in anabolic activity. The structural features of steroids necessary for effective binding to the AR and those which contribute to the stipulation of the androgenic and anabolic activities are also presented.
Collapse
Affiliation(s)
- A G Fragkaki
- Doping Control Laboratory of Athens, Olympic Athletic Center of Athens Spyros Louis, Kifisias 37, 15123 Maroussi, Greece
| | | | | | | | | | | |
Collapse
|
11
|
Kuuranne T, Leinonen A, Schänzer W, Kamber M, Kostiainen R, Thevis M. Aryl-propionamide-derived selective androgen receptor modulators: liquid chromatography-tandem mass spectrometry characterization of the in vitro synthesized metabolites for doping control purposes. Drug Metab Dispos 2008; 36:571-81. [PMID: 18086831 DOI: 10.1124/dmd.107.017954] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Selective androgen receptor modulators (SARM) are a prominent group of compounds for being misused in sports owing to their advantageous anabolic properties and reduced side effects. To target the preventive doping control analysis in relevant compounds, the challenge is to predict the metabolic fate of a new compound. For aryl-propionamide-derived SARM, an in vitro assay employing microsomal and S9 human liver enzymes was developed to simulate phase-I and phase-II metabolic reactions. In vitro metabolic profiles and the structure-metabolic relationship were compared between four structurally modified substrates. Accurate mass measurements were used to characterize the synthesized metabolites, and also collision-induced dissociation was examined to suggest the methodological approach to monitor the prohibited use of aryl-propionamide-derived drug candidates. Subsequent phase-I and phase-II metabolic reactions were successfully combined in one in vitro assay. The main routes of phase-I modifications involved the hydrolysis of ether linkage, monohydroxylation, and hydrolytic cleavage of the amide bond. Nitro-reduction and deacetylation were reactions observed for substrates possessing the corresponding functionality. SARM metabolites were analyzed in negative ion electrospray ionization and detected as deprotonated species [M-H](-). The main metabolic modifications were observed to occur in the B-ring side, and collision-induced dissociation resulted in the product ions originating from the A-ring side of the compound. These structure-specific ions may be monitored as target ions in the routine doping control.
Collapse
Affiliation(s)
- Tiia Kuuranne
- Institute of Biochemistry, Center for Preventive Doping Research, German Sports University Cologne, Carl-Diem Weg 6, 50933 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
12
|
Nguyen TVV, Yao M, Pike CJ. Flutamide and cyproterone acetate exert agonist effects: induction of androgen receptor-dependent neuroprotection. Endocrinology 2007; 148:2936-43. [PMID: 17347309 DOI: 10.1210/en.2006-1469] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Androgens can exert profound effects on the organization, development, and function of the nervous system through activation of androgen receptors (ARs). Nonsteroidal and steroidal antiandrogens antagonize AR-mediated, classic genomic actions of androgens. However, emerging studies in nonneuronal cells indicate that antiandrogens can act as partial agonists for the AR. Here we investigated the effects of the antiandrogens flutamide and cyproterone acetate on neuroprotection induced by dihydrotestosterone (DHT). We observed that, although flutamide and cyproterone acetate blocked androgen-induced gene expression, they failed to inhibit DHT protection against apoptotic insults in cultured hippocampal neurons. Interestingly, flutamide and cyproterone acetate alone, like DHT, significantly reduced apoptosis. Furthermore, the protective actions of flutamide and cyproterone acetate were observed specifically in AR-expressing cell lines, suggesting a role for AR in the agonist effects of antiandrogens. Our results indicate that, in contrast to the classic antiandrogen properties of flutamide and cyproterone acetate, these AR modulators display agonist activities at the level of neuroprotection. These findings provide new insight into the agonist vs. antagonist properties of antiandrogens, information that will be crucial to understanding the neural implications of clinically used AR-modulating drugs.
Collapse
Affiliation(s)
- Thuy-Vi V Nguyen
- University of Southern California, Davis School of Gerontology, 3715 McClintock Avenue, Los Angeles, CA 90089-0191, USA
| | | | | |
Collapse
|
13
|
Chen F, Su Q, Torrent M, Wei N, Peekhaus N, McMasters D, Fisher J, Glantschnig H, Hodor P, Flores O, Reszka A. Identification and characterization of a novel nonsecosteroidal vitamin D receptor ligand. Drug Dev Res 2007. [DOI: 10.1002/ddr.20165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
|
15
|
Wu D, Wu Z, Yang J, Nair VA, Miller DD, Dalton JT. Pharmacokinetics and metabolism of a selective androgen receptor modulator in rats: implication of molecular properties and intensive metabolic profile to investigate ideal pharmacokinetic characteristics of a propanamide in preclinical study. Drug Metab Dispos 2006; 34:483-94. [PMID: 16381665 PMCID: PMC2039877 DOI: 10.1124/dmd.105.006643] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
S-1 [3-(4-fluorophenoxy)-2-hydroxy-2-methyl-N-[4-nitro-3-(trifluoromethyl)phenyl]-propanamide] is one member of a series of potent selective androgen receptor modulators (SARMs) that are being explored and developed for androgen-dependent diseases. Recent studies showed that S-1 holds great promise as a novel therapeutic agent for benign hyperplasia [W. Gao, J. D. Kearbey, V. A. Nair, K. Chung, A. F. Parlow, D. D. Miller, and J. T. Dalton (2004) Endocrinology 145:5420-5428]. We examined the pharmacokinetics and metabolism of S-1 in rats as a component of our preclinical development of this compound and continued interest in structure-activation relationships for SARM action. Forty male Sprague-Dawley rats were randomly assigned to treatment groups and received either an i.v. or a p.o. dose of S-1 at a dose level of 0.1, 1, 10, or 30 mg/kg. S-1 demonstrated a low clearance (range, 3.6-5.2 ml/min/kg), a moderate volume of distribution (range, 1460-1560 ml/kg), and a terminal half-life ranging from 3.6 to 5.2 h after i.v. doses. The oral bioavailability of S-1 ranged from 55% to 60%. Forty phase I and phase II metabolites of S-1 were identified in the urine and feces of male Sprague-Dawley rats dosed at 50 mg/kg via the i.v. route. The two major urinary metabolites of S-1 were a carboxylic acid and a sulfate-conjugate of 4-nitro-3-trifluoromethylphenylamine. Phase I metabolites arising from A-ring nitro reduction to an aromatic amine and B-ring hydroxylation were also identified in the urinary and fecal samples of rats. Furthermore, a variety of phase II metabolites through sulfation, glucuronidation, and methylation were also found. These studies demonstrate that S-1 is rapidly absorbed, slowly cleared, moderately distributed, and extensively metabolized in rats.
Collapse
Affiliation(s)
- Di Wu
- Division of Pharmaceutics, College of Pharmacy, The Ohio State University, 500 West 12 Ave., Columbus, OH 43210, USA
| | | | | | | | | | | |
Collapse
|
16
|
Sternberg CN. Treatments for hormonal refractory prostate cancer. EJC Suppl 2005. [DOI: 10.1016/s1359-6349(05)80293-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
17
|
Abstract
Increased awareness of the clinical diagnosis of male hypogonadism has resulted in the wider use of androgen substitution therapy. Clinical signs and symptoms together with a low serum testosterone level confirm the diagnosis of male hypogonadism. Androgen replacement results in improved sexual function, mood, muscle mass and bone density in most hypogonadal men. Such benefits must be assessed against potential risks. In older men, the potential risks of androgen treatment of hypogonadism are not known. Many delivery systems for androgen substitution are now available; the preparation chosen depends on the choice of the patient and his physician. Selective androgen receptor modulators offer tissue selective biological effects and the possibility of attaining maximum efficacy and minimum adverse effects.
Collapse
Affiliation(s)
- Ammar Qoubaitary
- Division of Endocrinology, Department of Medicine, Harbor-UCLA Medical Center and Los Angeles Biomedical Research Institute, Torrance, CA 90509, USA
| | | | | |
Collapse
|