1
|
Adasheva DA, Serebryanaya DV. IGF Signaling in the Heart in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1402-1428. [PMID: 39245453 DOI: 10.1134/s0006297924080042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 09/10/2024]
Abstract
One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
2
|
Ji L, Jiao Z, Zhang L, Shi J, Wan Q, Qian C, Wang H, Cao X, Shen B, Jiang L. Role of increased IGFBP2 in trophoblast cell proliferation and recurrent spontaneous abortion development: A pilot study. Physiol Rep 2024; 12:e15939. [PMID: 38316422 PMCID: PMC10843903 DOI: 10.14814/phy2.15939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/07/2024] Open
Abstract
Recurrent spontaneous abortion (RSA) is a serious condition that adversely affects women's health. Differentially expressed proteins (DEPs) in plasma of patients experiencing RSA is helpful to find new therapeutic targets and identified with mass spectrometry. In 57 DEPs, 21 were upregulated and 36 were downregulated in RSA. Gene ontology analyses indicated that identified DEPs were associated with cell proliferation, including significantly downregulated insulin-like growth factor binding protein 2 (IGFBP2). Immunohistochemical result using clinical decidual tissues also showed that IGFBP2 expression was significantly decreased in RSA trophoblasts. Cell proliferation assay indicated that IGFBP2 treatment increased the proliferation and mRNA expressions of PCNA and Ki67 in trophoblast cells. Transcriptome sequencing experiments and Kyoto Encyclopedia of Genes and Genomes analyses revealed that gene expression for components in PI3K-Akt pathway in trophoblasts was significantly upregulated following IGFBP2 treatment. To confirm bioinformatics findings, we did cell-based experiments and found that treatment of inhibitors for insulin-like growth factor (IGF)-1 receptor-PI3K-Akt pathway significantly reduced IGFBP2-induced trophoblast cell proliferation and mRNA expressions of PCNA and Ki67. Our findings suggest that IGFBP2 may increase trophoblast proliferation through the PI3K-Akt signaling pathway to affect pregnancy outcomes and that IGFBP2 may be a new target for future research and treatment of RSA.
Collapse
Affiliation(s)
- Li Ji
- The First Clinical Medical CollegeNanjing University of Traditional Chinese MedicineNanjingChina
- Department of Obstetrics and GynecologyLu'an Traditional Chinese Hospital, The Affiliated Hospital of Anhui University of Chinese MedicineLu'anChina
| | - Ziying Jiao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Lin Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Jia Shi
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Qianqian Wan
- The First Clinical Medical CollegeNanjing University of Traditional Chinese MedicineNanjingChina
- Department of GynecologyThe First Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunmingChina
| | - Chunzhi Qian
- Department of Obstetrics and GynecologyLu'an Traditional Chinese Hospital, The Affiliated Hospital of Anhui University of Chinese MedicineLu'anChina
| | - Han Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Xiaoyan Cao
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
| | - Bing Shen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese MedicineMacau University of Science and TechnologyMacauChina
- School of Basic Medicine SciencesAnhui Medical UniversityHefeiChina
| | - Lijuan Jiang
- The First Clinical Medical CollegeNanjing University of Traditional Chinese MedicineNanjingChina
- Department of GynecologyThe First Affiliated Hospital of Yunnan University of Traditional Chinese MedicineKunmingChina
| |
Collapse
|
3
|
Samaržija I. The Potential of Extracellular Matrix- and Integrin Adhesion Complex-Related Molecules for Prostate Cancer Biomarker Discovery. Biomedicines 2023; 12:79. [PMID: 38255186 PMCID: PMC10813710 DOI: 10.3390/biomedicines12010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/16/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Prostate cancer is among the top five cancer types according to incidence and mortality. One of the main obstacles in prostate cancer management is the inability to foresee its course, which ranges from slow growth throughout years that requires minimum or no intervention to highly aggressive disease that spreads quickly and resists treatment. Therefore, it is not surprising that numerous studies have attempted to find biomarkers of prostate cancer occurrence, risk stratification, therapy response, and patient outcome. However, only a few prostate cancer biomarkers are used in clinics, which shows how difficult it is to find a novel biomarker. Cell adhesion to the extracellular matrix (ECM) through integrins is among the essential processes that govern its fate. Upon activation and ligation, integrins form multi-protein intracellular structures called integrin adhesion complexes (IACs). In this review article, the focus is put on the biomarker potential of the ECM- and IAC-related molecules stemming from both body fluids and prostate cancer tissue. The processes that they are involved in, such as tumor stiffening, bone turnover, and communication via exosomes, and their biomarker potential are also reviewed.
Collapse
Affiliation(s)
- Ivana Samaržija
- Laboratory for Epigenomics, Division of Molecular Medicine, Ruđer Bošković Institute, 10000 Zagreb, Croatia
| |
Collapse
|
4
|
Conway JRW, Dinç DD, Follain G, Paavolainen O, Kaivola J, Boström P, Hartiala P, Peuhu E, Ivaska J. IGFBP2 secretion by mammary adipocytes limits breast cancer invasion. SCIENCE ADVANCES 2023; 9:eadg1840. [PMID: 37436978 DOI: 10.1126/sciadv.adg1840] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
The progression of noninvasive ductal carcinoma in situ to invasive ductal carcinoma for patients with breast cancer results in a significantly poorer prognosis and is the precursor to metastatic disease. In this work, we have identified insulin-like growth factor-binding protein 2 (IGFBP2) as a potent adipocrine factor secreted by healthy breast adipocytes that acts as a barrier against invasive progression. In line with this role, adipocytes differentiated from patient-derived stromal cells were found to secrete IGFBP2, which significantly inhibited breast cancer invasion. This occurred through binding and sequestration of cancer-derived IGF-II. Moreover, depletion of IGF-II in invading cancer cells using small interfering RNAs or an IGF-II-neutralizing antibody ablated breast cancer invasion, highlighting the importance of IGF-II autocrine signaling for breast cancer invasive progression. Given the abundance of adipocytes in the healthy breast, this work exposes the important role they play in suppressing cancer progression and may help expound upon the link between increased mammary density and poorer prognosis.
Collapse
Affiliation(s)
- James R W Conway
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Defne D Dinç
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Gautier Follain
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Oona Paavolainen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
| | - Pia Boström
- Department of Pathology, Turku University Hospital, 20520 Turku, Finland; University of Turku, 20520 Turku, Finland
| | - Pauliina Hartiala
- Department of Plastic and General Surgery, Turku University Hospital, 20520 Turku, Finland
- Medicity Research Laboratory, InFLAMES Research Flagship, University of Turku, Turku, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Institute of Biomedicine, and Cancer Research Laboratory FICAN West, University of Turku, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520 Turku, Finland
- Western Finnish Cancer Center (FICAN West), University of Turku and Turku University Hospital, FI-20520 Turku, Finland
- Department of Life Technologies, University of Turku, FI-20520 Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014 Helsinki, Finland
| |
Collapse
|
5
|
Kunhiraman H, McSwain L, Shahab SW, Gershon TR, MacDonald TJ, Kenney AM. IGFBP2 promotes proliferation and cell migration through STAT3 signaling in Sonic hedgehog medulloblastoma. Acta Neuropathol Commun 2023; 11:62. [PMID: 37029430 PMCID: PMC10082504 DOI: 10.1186/s40478-023-01557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/25/2023] [Indexed: 04/09/2023] Open
Abstract
Medulloblastoma (MB) is the most common pediatric brain malignancy and is divided into four molecularly distinct subgroups: WNT, Sonic Hedgehog (SHHp53mut and SHHp53wt), Group 3, and Group 4. Previous reports suggest that SHH MB features a unique tumor microenvironment compared with other MB groups. To better understand how SHH MB tumor cells interact with and potentially modify their microenvironment, we performed cytokine array analysis of culture media from freshly isolated MB patient tumor cells, spontaneous SHH MB mouse tumor cells and mouse and human MB cell lines. We found that the SHH MB cells produced elevated levels of IGFBP2 compared to non-SHH MBs. We confirmed these results using ELISA, western blotting, and immunofluorescence staining. IGFBP2 is a pleiotropic member of the IGFBP super-family with secreted and intracellular functions that can modulate tumor cell proliferation, metastasis, and drug resistance, but has been understudied in medulloblastoma. We found that IGFBP2 is required for SHH MB cell proliferation, colony formation, and cell migration, through promoting STAT3 activation and upregulation of epithelial to mesenchymal transition markers; indeed, ectopic STAT3 expression fully compensated for IGFBP2 knockdown in wound healing assays. Taken together, our findings reveal novel roles for IGFBP2 in SHH medulloblastoma growth and metastasis, which is associated with very poor prognosis, and they indicate an IGFBP2-STAT3 axis that could represent a novel therapeutic target in medulloblastoma.
Collapse
Affiliation(s)
- Haritha Kunhiraman
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Leon McSwain
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Shubin W Shahab
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Timothy R Gershon
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA
| | - Anna Marie Kenney
- Department of Pediatrics, Neuro-Oncology Division and Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta, Emory University, 1760 Haygood Drive, Atlanta, GA, 30322, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, 30322, USA.
| |
Collapse
|
6
|
Dya GA, Klychnikov OI, Adasheva DA, Vladychenskaya EA, Katrukha AG, Serebryanaya DV. IGF-Binding Proteins and Their Proteolysis as a Mechanism of Regulated IGF Release in the Nervous Tissue. BIOCHEMISTRY (MOSCOW) 2023; 88:S105-S122. [PMID: 37069117 DOI: 10.1134/s0006297923140079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Insulin-like growth factors 1 and 2 (IGF-1 and IGF-2) play a key role in the maintenance of the nervous tissue viability. IGF-1 and IGF-2 exhibit the neuroprotective effects by stimulating migration and proliferation of nervous cells, activating cellular metabolism, inducing regeneration of damaged cells, and regulating various stages of prenatal and postnatal development of the nervous system. The availability of IGFs for the cells is controlled via their interaction with the IGF-binding proteins (IGFBPs) that inhibit their activity. On the contrary, the cleavage of IGFBPs by specific proteases leads to the IGF release and activation of its cellular effects. The viability of neurons in the nervous tissue is controlled by a complex system of trophic factors secreted by auxiliary glial cells. The main source of IGF for the neurons are astrocytes. IGFs can accumulate as an extracellular free ligand near the neuronal membranes as a result of proteolytic degradation of IGFBPs by proteases secreted by astrocytes. This mechanism promotes interaction of IGFs with their genuine receptors and triggers intracellular signaling cascades. Therefore, the release of IGF by proteolytic cleavage of IGFBPs is an important mechanism of neuronal protection. This review summarizes the published data on the role of IGFs and IGFBPs as the key players in the neuroprotective regulation with a special focus on the specific proteolysis of IGFBPs as a mechanism for the regulation of IGF bioavailability and viability of neurons.
Collapse
Affiliation(s)
- German A Dya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Oleg I Klychnikov
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Elizaveta A Vladychenskaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Alexey G Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| |
Collapse
|
7
|
Walterskirchen N, Müller C, Ramos C, Zeindl S, Stang S, Herzog D, Sachet M, Schimek V, Unger L, Gerakopoulos V, Hengstschläger M, Bachleitner-Hofmann T, Bergmann M, Dolznig H, Oehler R. Metastatic colorectal carcinoma-associated fibroblasts have immunosuppressive properties related to increased IGFBP2 expression. Cancer Lett 2022; 540:215737. [PMID: 35569697 DOI: 10.1016/j.canlet.2022.215737] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022]
Abstract
Fibroblasts are the most abundant stromal constituents of the tumour microenvironment in primary as well as metastatic colorectal cancer (CRC). Their supportive effect on tumour cells is well established. There is growing evidence that stromal fibroblasts also modulate the immune microenvironment in tumours. Here, we demonstrate a difference in fibroblast-mediated immune modulation between primary CRC and peritoneal metastasis. Cancer-associated fibroblasts (CAFs) were isolated from primary cancer and from peritoneal metastases (MAFs) from a total of 17 patients. The ectoenzyme CD38 was consistently expressed on the surface of all MAFs, while it was absent from CAFs. Furthermore, MAFs secreted higher levels of IGFBP2, CXCL2, CXCL6, CXCL12, PDGF-AA, FGFb, and IL-6. This was associated with a decreased activation of macrophages and a suppression of CD25 expression and proliferation of co-cultivated T-cells. Downregulation of IGFBP2 abolished these immunosuppressive effects of MAFs. Taken together, these results show that MAFs contribute to an immunosuppressive tumour microenvironment in CRC metastases by modulating the phenotype of immune cells through an IGFBP2-dependent mechanism.
Collapse
Affiliation(s)
- Natalie Walterskirchen
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Catharina Müller
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Cristiano Ramos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Stephan Zeindl
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Simone Stang
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Straße 10, A-1090, Vienna, Austria
| | - Daniela Herzog
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Monika Sachet
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Vanessa Schimek
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Lukas Unger
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Vasileios Gerakopoulos
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Straße 10, A-1090, Vienna, Austria
| | - Thomas Bachleitner-Hofmann
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Michael Bergmann
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria
| | - Helmut Dolznig
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Straße 10, A-1090, Vienna, Austria.
| | - Rudolf Oehler
- Department of General Surgery, Division of Visceral Surgery, Medical University of Vienna, Waehringer Guertel 18-20, A-1090, Vienna, Austria.
| |
Collapse
|
8
|
Berg EL, Petkova SP, Born HA, Adhikari A, Anderson AE, Silverman JL. Insulin-like growth factor-2 does not improve behavioral deficits in mouse and rat models of Angelman Syndrome. Mol Autism 2021; 12:59. [PMID: 34526125 PMCID: PMC8444390 DOI: 10.1186/s13229-021-00467-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Angelman Syndrome (AS) is a rare neurodevelopmental disorder for which there is currently no cure or effective therapeutic. Since the genetic cause of AS is known to be dysfunctional expression of the maternal allele of ubiquitin protein ligase E3A (UBE3A), several genetic animal models of AS have been developed. Both the Ube3a maternal deletion mouse and rat models of AS reliably demonstrate behavioral phenotypes of relevance to AS and therefore offer suitable in vivo systems in which to test potential therapeutics. One promising candidate treatment is insulin-like growth factor-2 (IGF-2), which has recently been shown to ameliorate behavioral deficits in the mouse model of AS and improve cognitive abilities across model systems. METHODS We used both the Ube3a maternal deletion mouse and rat models of AS to evaluate the ability of IGF-2 to improve electrophysiological and behavioral outcomes. RESULTS Acute systemic administration of IGF-2 had an effect on electrophysiological activity in the brain and on a metric of motor ability; however the effects were not enduring or extensive. Additional metrics of motor behavior, learning, ambulation, and coordination were unaffected and IGF-2 did not improve social communication, seizure threshold, or cognition. LIMITATIONS The generalizability of these results to humans is difficult to predict and it remains possible that dosing schemes (i.e., chronic or subchronic dosing), routes, and/or post-treatment intervals other than that used herein may show more efficacy. CONCLUSIONS Despite a few observed effects of IGF-2, our results taken together indicate that IGF-2 treatment does not profoundly improve behavioral deficits in mouse or rat models of AS. These findings shed cautionary light on the potential utility of acute systemic IGF-2 administration in the treatment of AS.
Collapse
Affiliation(s)
- Elizabeth L. Berg
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Stela P. Petkova
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Heather A. Born
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
- Gene Therapy Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - Anna Adhikari
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| | - Anne E. Anderson
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, TX USA
| | - Jill L. Silverman
- MIND Institute and Department of Psychiatry and Behavioral Sciences, University of California Davis School of Medicine, Sacramento, CA USA
| |
Collapse
|
9
|
Andrade MJ, Van Lonkhuyzen DR, Upton Z, Satyamoorthy K. RPA facilitates rescue of keratinocytes from UVB radiation damage through insulin-like growth factor-I signalling. J Cell Sci 2021; 134:jcs255786. [PMID: 34137442 DOI: 10.1242/jcs.255786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 05/10/2021] [Indexed: 01/19/2023] Open
Abstract
UVBR-induced photolesions in genomic DNA of keratinocytes impair cellular functions and potentially determine the cell fate post-irradiation. The ability of insulin-like growth factor-I (IGF-I) to rescue epidermal keratinocytes after photodamage via apoptosis prevention and photolesion removal was recently demonstrated using in vitro two-dimensional and three-dimensional skin models. Given the limited knowledge of specific signalling cascades contributing to post-UVBR IGF-I effects, we used inhibitors to investigate the impact of blockade of various signalling mediators on IGF-I photoprotection. IGF-I treatment, in the presence of signalling inhibitors, particularly TDRL-505, which targets replication protein A (RPA), impaired activation of IGF-1R downstream signalling, diminished cyclobutane pyrimidine dimer removal, arrested growth, reduced cell survival and increased apoptosis. Further, the transient partial knockdown of RPA was found to abrogate IGF-I-mediated responses in keratinocytes, ultimately affecting photoprotection and, thereby, establishing that RPA is required for IGF-I function. Our findings thus elucidate the importance of RPA in linking the damage response activation, cell cycle regulation, repair and survival pathways, separately initiated by IGF-I upon UVBR-induced damage. This information is potentially imperative for the development of effective sunburn and photodamage repair strategies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Melisa J Andrade
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Derek R Van Lonkhuyzen
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Zee Upton
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland 4059, Australia
- Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore138648
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
10
|
Siaw JT, Javanmardi N, Van den Eynden J, Lind DE, Fransson S, Martinez-Monleon A, Djos A, Sjöberg RM, Östensson M, Carén H, Trøen G, Beiske K, Berbegall AP, Noguera R, Lai WY, Kogner P, Palmer RH, Hallberg B, Martinsson T. 11q Deletion or ALK Activity Curbs DLG2 Expression to Maintain an Undifferentiated State in Neuroblastoma. Cell Rep 2021; 32:108171. [PMID: 32966799 DOI: 10.1016/j.celrep.2020.108171] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/09/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
High-risk neuroblastomas typically display an undifferentiated or poorly differentiated morphology. It is therefore vital to understand molecular mechanisms that block the differentiation process. We identify an important role for oncogenic ALK-ERK1/2-SP1 signaling in the maintenance of undifferentiated neural crest-derived progenitors through the repression of DLG2, a candidate tumor suppressor gene in neuroblastoma. DLG2 is expressed in the murine "bridge signature" that represents the transcriptional transition state when neural crest cells or Schwann cell precursors differentiate to chromaffin cells of the adrenal gland. We show that the restoration of DLG2 expression spontaneously drives neuroblastoma cell differentiation, highlighting the importance of DLG2 in this process. These findings are supported by genetic analyses of high-risk 11q deletion neuroblastomas, which identified genetic lesions in the DLG2 gene. Our data also suggest that further exploration of other bridge genes may help elucidate the mechanisms underlying the differentiation of NC-derived progenitors and their contribution to neuroblastomas.
Collapse
Affiliation(s)
- Joachim Tetteh Siaw
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Niloufar Javanmardi
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Jimmy Van den Eynden
- Department of Human Structure and Repair, Anatomy and Embryology Unit, Ghent University, 9000 Ghent, Belgium
| | - Dan Emil Lind
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Susanne Fransson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Angela Martinez-Monleon
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Anna Djos
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Rose-Marie Sjöberg
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden
| | - Malin Östensson
- Bioinformatics Core Facility, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Helena Carén
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunhild Trøen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Klaus Beiske
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Ana P Berbegall
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia/CIBER of Cancer, Madrid, Spain
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia/INCLIVA, Valencia/CIBER of Cancer, Madrid, Spain
| | - Wei-Yun Lai
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Per Kogner
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Ruth H Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Bengt Hallberg
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden.
| | - Tommy Martinsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, 40530 Gothenburg, Sweden.
| |
Collapse
|
11
|
Boughanem H, Yubero-Serrano EM, López-Miranda J, Tinahones FJ, Macias-Gonzalez M. Potential Role of Insulin Growth-Factor-Binding Protein 2 as Therapeutic Target for Obesity-Related Insulin Resistance. Int J Mol Sci 2021; 22:ijms22031133. [PMID: 33498859 PMCID: PMC7865532 DOI: 10.3390/ijms22031133] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/13/2021] [Accepted: 01/21/2021] [Indexed: 12/26/2022] Open
Abstract
Evidence from observational and in vitro studies suggests that insulin growth-factor-binding protein type 2 (IGFBP2) is a promising protein in non-communicable diseases, such as obesity, insulin resistance, metabolic syndrome, or type 2 diabetes. Accordingly, great efforts have been carried out to explore the role of IGFBP2 in obesity state and insulin-related diseases, which it is typically found decreased. However, the physiological pathways have not been explored yet, and the relevance of IGFBP2 as an important pathway integrator of metabolic disorders is still unknown. Here, we review and discuss the molecular structure of IGFBP2 as the first element of regulating the expression of IGFBP2. We highlight an update of the association between low serum IGFBP2 and an increased risk of obesity, type 2 diabetes, metabolic syndrome, and low insulin sensitivity. We hypothesize mechanisms of IGFBP2 on the development of obesity and insulin resistance in an insulin-independent manner, which meant that could be evaluated as a therapeutic target. Finally, we cover the most interesting lifestyle modifications that regulate IGFBP2, since lifestyle factors (diet and/or physical activity) are associated with important variations in serum IGFBP2.
Collapse
Affiliation(s)
- Hatim Boughanem
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
| | - Elena M. Yubero-Serrano
- Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (E.M.Y.-S.); (J.L.-M.)
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José López-Miranda
- Lipids and Atherosclerosis Unit, Maimonides Institute for Biomedical Research in Cordoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, 14004 Córdoba, Spain; (E.M.Y.-S.); (J.L.-M.)
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Francisco J. Tinahones
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.T.); (M.M.-G.); Tel.: +34-951-036-2647 (F.J.T. & M.M.-G.); Fax: +34-951-924-651 (F.J.T. & M.M.-G.)
| | - Manuel Macias-Gonzalez
- Department of Endocrinology and Nutrition, Institute of Biomedical Research Institute in Malaga (IBIMA), Virgen de la Victoria University Hospital, 29010 Málaga, Spain;
- CIBEROBN (CIBER in Physiopathology of Obesity and Nutrition), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Correspondence: (F.J.T.); (M.M.-G.); Tel.: +34-951-036-2647 (F.J.T. & M.M.-G.); Fax: +34-951-924-651 (F.J.T. & M.M.-G.)
| |
Collapse
|
12
|
Yang G, Zhao W, Qin C, Yang L, Meng X, Lu R, Yan X, Cao X, Zhang Y, Nie G. Molecular identification of grass carp igfbp2 and the effect of glucose, insulin, and glucagon on igfbp2 mRNA expression. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:1469-1482. [PMID: 32323051 DOI: 10.1007/s10695-020-00804-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
The GH (growth hormone)/IGFs (insulin-like growth factors) system has an important function in the regulation of growth. In this system, IGFBPs play a crucial regulatory role in IGF functions. As a member of the IGFBP family, IGFBP2 can bind to IGF and regulate IGF functions to regulate development and growth. In addition, IGFBP2 shows key regulatory functions in cell proliferation and metabolism. In this study, the igfbp2 gene was cloned from grass carp (Ctenopharyngodon idellus) liver. The ORF of grass carp igfbp2 is 834 bp long and encodes 277 amino acids. The tissue distribution results showed that igfbp2 is expressed in multiple tissues in grass carp and has a high expression level in the liver. In the OGTT, igfbp2 expression was significantly decreased in the liver and brain after 6 h of treatment with glucose. In vitro, igfbp2 expression in grass carp's primary hepatocytes was significantly suppressed by insulin after treatment for 6 and 12 h. Moreover, igfbp2 expression was markedly increased in a dose-dependent manner with glucagon incubation in grass carp's primary hepatocytes. To the best of our knowledge, this is the first report about Igfbp2 in grass carp. These results will provide a basis for the in-depth study of grass carp Igfbp2.
Collapse
Affiliation(s)
- Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Wenli Zhao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Chaobin Qin
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Liping Yang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Ronghua Lu
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xiao Yan
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Yanmin Zhang
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China
| | - Guoxing Nie
- College of Fisheries, Henan Normal University, Xinxiang, 453007, People's Republic of China.
- College of Fisheries, Engineering Technology Research Center of Henan Province for Aquatic Animal Cultivation, Henan Normal University, Xinxiang, 453007, People's Republic of China.
| |
Collapse
|
13
|
Ma Y, Cui D, Zhang Y, Han CC, Wei W. Insulin-Like Growth Factor Binding Protein-2 Promotes Proliferation and Predicts Poor Prognosis in Hepatocellular Carcinoma. Onco Targets Ther 2020; 13:5083-5092. [PMID: 32606730 PMCID: PMC7292487 DOI: 10.2147/ott.s249527] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 05/18/2020] [Indexed: 01/16/2023] Open
Abstract
Background Insulin-like growth factor binding protein-2 (IGFBP2) levels are significantly increased in the plasma of hepatocellular carcinoma (HCC) patients. However, the correlation between IGFBP2 levels and clinical parameters and the exact role of IGFBP2 in HCC are unclear. In this study, we identified the role and potential molecular mechanisms of IGFBP2 in HCC. Materials and Methods ELISA assays were used to detect plasma IGFBP2 levels in HCC patients and healthy controls, and the correlations with patients’ clinicopathological data were analyzed. The CCK8 assay was used to explore cell proliferation. Luciferase reporter, co-immunoprecipitation, and immunofluorescence assays were used to demonstrate the molecular mechanism of IGFBP2 in HCC. Results Plasma IGFBP2 levels were determined blindly in 37 HCC patients and 37 matched healthy controls. The mean plasma IGFBP2 concentrations in HCC patients were higher than in healthy controls, and IGFBP2 levels in HCC were positively correlated with the degree of differentiation, tumor size, metastasis, and portal venous invasion. Exogenous IGFBP2 activated integrin β1 and thus induced the combination and colocalization of activated integrin β1 and p-FAK, which promoted the phosphorylation of FAK, Erk, and Elk1, eventually inducing EGR1-mediated proliferation of the HCC cell lines HepG2 and HCCLM3. Meanwhile, neutralization of integrin β1 inhibited IGFBP2-induced FAK, Erk, Elk1, and EGR1 activation. Conclusion Taken together, these results indicated that exogenous IGFBP2 promoted the integrin β1/FAK/Erk/Elk1/EGR1 pathway, which stimulated the proliferation of HCC cells. Plasma IGFBP2 could be a novel prognostic biomarker for HCC patients.
Collapse
Affiliation(s)
- Yang Ma
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| | - Dongqian Cui
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| | - Chen-Chen Han
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
14
|
Poreba E, Durzynska J. Nuclear localization and actions of the insulin-like growth factor 1 (IGF-1) system components: Transcriptional regulation and DNA damage response. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 784:108307. [PMID: 32430099 DOI: 10.1016/j.mrrev.2020.108307] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Insulin-like growth factor (IGF) system stimulates growth, proliferation, and regulates differentiation of cells in a tissue-specific manner. It is composed of two insulin-like growth factors (IGF-1 and IGF-2), six insulin-like growth factor-binding proteins (IGFBPs), and two insulin-like growth factor receptors (IGF-1R and IGF-2R). IGF actions take place mostly through the activation of the plasma membrane-bound IGF-Rs by the circulating ligands (IGFs) released from the IGFBPs that stabilize their levels in the serum. This review focuses on the IGF-1 part of the system. The IGF-1 gene, which is expressed mainly in the liver as well as in other tissues, comprises six alternatively spliced exons that code for three protein isoforms (pro-IGF-1A, pro-IGF-1B, and pro-IGF-1C), which are processed to mature IGF-1 and E-peptides. The IGF-1R undergoes autophosphorylation, resulting in a signaling cascade involving numerous cytoplasmic proteins such as AKT and MAPKs, which regulate the expression of target genes. However, a more complex picture of the axis has recently emerged with all its components being translocated to the nuclear compartment. IGF-1R takes part in the regulation of gene expression by forming transcription complexes, modifying the activity of chromatin remodeling proteins, and participating in DNA damage tolerance mechanisms. Four IGFBPs contain a nuclear localization signal (NLS), which targets them to the nucleus, where they regulate gene expression (IGFBP-2, IGFBP-3, IGFBP-5, IGFBP-6) and DNA damage repair (IGFBP-3 and IGFBP-6). Last but not least, the IGF-1B isoform has been reported to be localized in the nuclear compartment. However, no specific molecular actions have been assigned to the nuclear pro-IGF-1B or its derivative EB peptide. Therefore, further studies are needed to shed light on their nuclear activity. These recently uncovered nuclear actions of different components of the IGF-1 axis are relevant in cancer cell biology and are discussed in this review.
Collapse
Affiliation(s)
- Elzbieta Poreba
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| | - Julia Durzynska
- Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland.
| |
Collapse
|
15
|
IGFBP2: integrative hub of developmental and oncogenic signaling network. Oncogene 2020; 39:2243-2257. [PMID: 31925333 DOI: 10.1038/s41388-020-1154-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/16/2019] [Accepted: 12/31/2019] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor (IGF) binding protein 2 (IGFBP2) was discovered and identified as an IGF system regulator, controlling the distribution, function, and activity of IGFs in the pericellular space. IGFBP2 is a developmentally regulated gene that is highly expressed in embryonic and fetal tissues and markedly decreases after birth. Studies over the last decades have shown that in solid tumors, IGFBP2 is upregulated and promotes several key oncogenic processes, such as epithelial-to-mesenchymal transition, cellular migration, invasion, angiogenesis, stemness, transcriptional activation, and epigenetic programming via signaling that is often independent of IGFs. Growing evidence indicates that aberrant expression of IGFBP2 in cancer acts as a hub of an oncogenic network, integrating multiple cancer signaling pathways and serving as a potential therapeutic target for cancer treatment.
Collapse
|
16
|
Khan S. IGFBP-2 Signaling in the Brain: From Brain Development to Higher Order Brain Functions. Front Endocrinol (Lausanne) 2019; 10:822. [PMID: 31824433 PMCID: PMC6883226 DOI: 10.3389/fendo.2019.00822] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/08/2019] [Indexed: 12/13/2022] Open
Abstract
Insulin-like growth factor-binding protein-2 (IGFBP-2) is a pleiotropic polypeptide that functions as autocrine and/or paracrine growth factors. IGFBP-2 is the most abundant of the IGFBPs in the cerebrospinal fluid (CSF), and developing brain showed the highest expression of IGFBP-2. IGFBP-2 expressed in the hippocampus, cortex, olfactory lobes, cerebellum, and amygdala. IGFBP-2 mRNA expression is seen in meninges, blood vessels, and in small cell-body neurons (interneurons) and astrocytes. The expression pattern of IGFBP-2 is often developmentally regulated and cell-specific. Biological activities of IGFBP-2 which are independent of their abilities to bind to insulin-like growth factors (IGFs) are mediated by the heparin binding domain (HBD). To execute IGF-independent functions, some IGFBPs have shown to bind with their putative receptors or to translocate inside the cells. Thus, IGFBP-2 functions can be mediated both via insulin-like growth factor receptor-1 (IGF-IR) and independent of IGF-Rs. In this review, I suggest that IGFBP-2 is not only involved in the growth, development of the brain but also with the regulation of neuronal plasticity to modulate high-level cognitive operations such as spatial learning and memory and information processing. Hence, IGFBP-2 serves as a neurotrophic factor which acts via metaplastic signaling from embryonic to adult stages.
Collapse
|
17
|
Swenarchuk LE. Nerve, Muscle, and Synaptogenesis. Cells 2019; 8:cells8111448. [PMID: 31744142 PMCID: PMC6912269 DOI: 10.3390/cells8111448] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 12/21/2022] Open
Abstract
The vertebrate skeletal neuromuscular junction (NMJ) has long served as a model system for studying synapse structure, function, and development. Over the last several decades, a neuron-specific isoform of agrin, a heparan sulfate proteoglycan, has been identified as playing a central role in synapse formation at all vertebrate skeletal neuromuscular synapses. While agrin was initially postulated to be the inductive molecule that initiates synaptogenesis, this model has been modified in response to work showing that postsynaptic differentiation can develop in the absence of innervation, and that synapses can form in transgenic mice in which the agrin gene is ablated. In place of a unitary mechanism for neuromuscular synapse formation, studies in both mice and zebrafish have led to the proposal that two mechanisms mediate synaptogenesis, with some synapses being induced by nerve contact while others involve the incorporation of prepatterned postsynaptic structures. Moreover, the current model also proposes that agrin can serve two functions, to induce synaptogenesis and to stabilize new synapses, once these are formed. This review examines the evidence for these propositions, and concludes that it remains possible that a single molecular mechanism mediates synaptogenesis at all NMJs, and that agrin acts as a stabilizer, while its role as inducer is open to question. Moreover, if agrin does not act to initiate synaptogenesis, it follows that as yet uncharacterized molecular interactions are required to play this essential inductive role. Several alternatives to agrin for this function are suggested, including focal pericellular proteolysis and integrin signaling, but all require experimental validation.
Collapse
|
18
|
Zhang X, Zhang Z, Yu Z, Li J, Chen S, Sun R, Jia C, Zhu F, Meng Q, Xu S. Molecular cloning and expression pattern of IGFBP-2a in black porgy (Acanthopagrus schlegelii) and evolutionary analysis of IGFBP-2s in the species of Perciformes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1731-1745. [PMID: 31418102 DOI: 10.1007/s10695-019-00665-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/24/2019] [Indexed: 06/10/2023]
Abstract
Insulin-like growth factor-binding protein-2 (IGFBP-2) plays a key role in regulating growth and development by its affinity with insulin-like growth factors (IGFs). In this study, we cloned the coding sequence (CDS) of IGFBP-2a from the black porgy (Acanthopagrus schlegelii) muscle and identified that the full-length CDS of IGFBP-2a was 882 bp. Real-time quantitative PCR revealed that IGFBP-2a was most abundant in the liver of the black porgy and backcross breed (F1♀×black porgy♂) but remained lower in each tested tissue in self-cross breed (F1♀×F1♂). In addition, the IGFBP-2a expression in the liver of three breeds showed a negative correlation with their growth rates, indicating that the IGFBP-2a played a growth-inhibiting role in the three breeds. We further identified 810 bp IGFBP-2b gene from the draft genome of black porgy. Finally, we examined the IGFBP-2a and IGFBP-2b genes by scanning the genomes of the species of Perciformes and found the IGFBP-2 gene duplication took place earlier than the divergence of perciform species. Interestingly, six positively selected sites were detected in both Perciformes IGFBP-2 genes, although both genes were identified to be under purifying selection. Specially, these positively selected sites were located in the functional domains, suggesting these sites played key roles in the growth of Perciformes. Our study partially explains the molecular basis for the prepotency in black porgy hybrids, which will provide guidance for their cultivation in the future.
Collapse
Affiliation(s)
- Xinyi Zhang
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Zhiyong Zhang
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| | - Zhenpeng Yu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Jiayi Li
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Shuyin Chen
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China.
| | - Ruijian Sun
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| | - Chaofeng Jia
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| | - Fei Zhu
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| | - Qian Meng
- Marine Fisheries Research Institute of Jiangsu Province, Nantong, 226007, China
| | - Shixia Xu
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
19
|
Dong J, Zeng Y, Zhang P, Li C, Chen Y, Li Y, Wang K. Serum IGFBP2 Level Is a New Candidate Biomarker of Severe Malnutrition in Advanced Lung Cancer. Nutr Cancer 2019; 72:858-863. [PMID: 32286106 DOI: 10.1080/01635581.2019.1656755] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objectives: This study aimed to analyze and evaluate serum insulin-like growth factor-binding protein 2 (IGFBP2) levels as a new biomarker of severe malnutrition in patients with advanced lung cancer.Design and methods: This prospective study involved 59 patients with advanced lung cancer. We detected serum IGFBP2 level by using enzyme-linked immunosorbent assay and analyzed its relationship to clinical characteristics, nutritional status, Glasgow prognostic score (GPS), and survival. Serum albumin and C-reactive protein (CRP) levels were measured, and nutritional status was assessed using Patient-Generated Subjective Global Assessment (PG-SGA). The best cutoff point value for serum IGFBP2 level was established using receiver operating characteristic analysis. Kaplan-Meier method was utilized to analyze the survival curves.Results: Serum IGFBP2 levels were elevated in patients with advanced lung cancer and severe malnutrition. The best cutoff value for serum IGFBP2 level was determined at 363 ng/ml, which could diagnose severe malnutrition with 73.3% sensitivity and 70.5% specificity and was found to be related to albumin, CRP, and GPS. Patients whose serum IGFBP2 levels were higher than 363 ng/ml had poor survival outcome.Conclusion: This study demonstrates the remarkably association between higher serum level of IGFBP2 and severe malnutrition, albumin, CRP, GPS, and survival. Hence, serum IGFBP2 level can be used as a potential biomarker for diagnosis of severe malnutrition in patients with advanced lung cancer.
Collapse
Affiliation(s)
- Jie Dong
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yaqi Zeng
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Ping Zhang
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Chunlei Li
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yajun Chen
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Yueying Li
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Kun Wang
- Department of Nutritional Therapy, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| |
Collapse
|
20
|
Slater T, Haywood NJ, Matthews C, Cheema H, Wheatcroft SB. Insulin-like growth factor binding proteins and angiogenesis: from cancer to cardiovascular disease. Cytokine Growth Factor Rev 2019; 46:28-35. [PMID: 30954375 DOI: 10.1016/j.cytogfr.2019.03.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/22/2022]
Abstract
Angiogenesis is a tightly regulated activity that is vital during embryonic development and for normal physiological repair processes and reproduction in healthy adults. Pathological angiogenesis is a driving force behind a variety of diseases including cancer and retinopathies, and inhibition of angiogenesis is a therapeutic option that has been the subject of much research, with several inhibitory agents now available for medical therapy. Conversely, therapeutic angiogenesis has been mooted as having significant potential in the treatment of ischemic conditions such as angina pectoris and peripheral arterial disease, but so far there has been less translation from lab to bedside. The insulin-like growth factor binding proteins (IGFBP) are a family of seven proteins essential for the binding and transport of the insulin-like growth factors (IGF). It is being increasingly recognised that IGFBPs have a significant role beyond simply modulating IGF activity, with evidence of both IGF dependent and independent actions through a variety of mechanisms. Moreover, the action of the IGFBPs can be stimulatory or inhibitory depending on the cell type and environment. Specifically the IGFBPs have been heavily implicated in angiogenesis, both pathological and physiological, and they have significant promise as targeted cell therapy agents for both pathological angiogenesis inhibition and therapeutic angiogenesis following ischemic injury. In this short review we will explore the current understanding of the individual impact of each IGFBP on angiogenesis, and the pathways through which these effects occur.
Collapse
Affiliation(s)
- Thomas Slater
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Natalie J Haywood
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Connor Matthews
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Harneet Cheema
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom
| | - Stephen B Wheatcroft
- Leeds Institute of Cardiovascular & Metabolic Medicine, School of Medicine, University of Leeds, United Kingdom.
| |
Collapse
|
21
|
Chiarelli N, Carini G, Zoppi N, Ritelli M, Colombi M. Molecular insights in the pathogenesis of classical Ehlers-Danlos syndrome from transcriptome-wide expression profiling of patients' skin fibroblasts. PLoS One 2019; 14:e0211647. [PMID: 30716086 PMCID: PMC6361458 DOI: 10.1371/journal.pone.0211647] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022] Open
Abstract
Classical Ehlers-Danlos syndrome (cEDS) is a dominant inherited connective tissue disorder mainly caused by mutations in the COL5A1 and COL5A2 genes encoding type V collagen (COLLV), which is a fibrillar COLL widely distributed in a variety of connective tissues. cEDS patients suffer from skin hyperextensibility, abnormal wound healing/atrophic scars, and joint hypermobility. Most of the causative variants result in a non-functional COL5A1 allele and COLLV haploinsufficiency, whilst COL5A2 mutations affect its structural integrity. To shed light into disease mechanisms involved in cEDS, we performed gene expression profiling in skin fibroblasts from four patients harboring haploinsufficient and structural mutations in both disease genes. Transcriptome profiling revealed significant changes in the expression levels of different extracellular matrix (ECM)-related genes, such as SPP1, POSTN, EDIL3, IGFBP2, and C3, which encode both matricellular and soluble proteins that are mainly involved in cell proliferation and migration, and cutaneous wound healing. These gene expression changes are consistent with our previous protein findings on in vitro fibroblasts from other cEDS patients, which exhibited reduced migration and poor wound repair owing to COLLV disorganization, altered deposition of fibronectin into ECM, and an abnormal integrin pattern. Microarray analysis also indicated the decreased expression of DNAJB7, VIPAS39, CCPG1, ATG10, SVIP, which encode molecular chaperones facilitating protein folding, enzymes regulating post-Golgi COLLs processing, and proteins acting as cargo receptors required for endoplasmic reticulum (ER) proteostasis and implicated in the autophagy process. Patients’ cells also showed altered mRNA levels of many cell cycle regulating genes including CCNE2, KIF4A, MKI67, DTL, and DDIAS. Protein studies showed that aberrant COLLV expression causes the disassembly of itself and many structural ECM constituents including COLLI, COLLIII, fibronectin, and fibrillins. Our findings provide the first molecular evidence of significant gene expression changes in cEDS skin fibroblasts highlighting that defective ECM remodeling, ER homeostasis and autophagy might play a role in the pathogenesis of this connective tissue disorder.
Collapse
Affiliation(s)
- Nicola Chiarelli
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Giulia Carini
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Nicoletta Zoppi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Marco Ritelli
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
| | - Marina Colombi
- Department of Molecular and Translational Medicine, Division of Biology and Genetics, University of Brescia, Brescia, Italy
- * E-mail:
| |
Collapse
|
22
|
Hu T, Lu MN, Chen B, Tong J, Mao R, Li SS, Dai P, Tan YX, Xiyang YB. Electro-acupuncture-induced neuroprotection is associated with activation of the IGF-1/PI3K/Akt pathway following adjacent dorsal root ganglionectomies in rats. Int J Mol Med 2018; 43:807-820. [PMID: 30569108 PMCID: PMC6317683 DOI: 10.3892/ijmm.2018.4035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
The aim of the present study was to investigate the putative role and underlying mechanisms of insulin-like growth factor 1 (IGF-1) in mediating neuroplasticity in rats subjected to partial dorsal root ganglionectomies following electro-acupuncture (EA) treatment. The rats underwent bilateral removal of the L1-L4 and L6 dorsal root ganglia (DRG), sparing the L5 DRG, and were subsequently subjected to 28 days of EA treatment at two paired acupoints, zusanli (ST 36)-xuanzhong (GB 39) and futu (ST 32)-sanyinjiao (SP 6), as the EA Model group. Rats that received partial dorsal root ganglionectomies without EA treatment served as a control (Model group). Subsequently, herpes simplex virus (HSV)-IGF-1, HSV-small interfering (si) RNA-IGF-1 and the associated control vectors were injected into the L5 DRG of rats in the EA Model group. HSV-IGF-1 transfection enhanced EA-induced neuroplasticity, which manifested as partial recovery in locomotor function, remission hyperpathia, growth of DRG-derived spared fibers, increased expression of phosphorylated (p-) phosphatidylinositol 3-kinase (PI3K) and Akt, and increased pPI3K/PI3K and pAkt/Akt expression ratios. By contrast, HSV-siRNA-IGF-1 treatment attenuated these effects induced by HSV-IGF-1 transfection. The results additionally demonstrated that HSV-IGF-1 transfection augmented the outgrowth of neurites in cultured DRG neurons, and interference of the expression of IGF-1 retarded neurite outgrowth. Co-treatment with a PI3K inhibitor or Akt siRNA inhibited the aforementioned effects induced by the overexpression of IGF-1. In conclusion, the results of the present study demonstrated the crucial roles of IGF-1 in EA-induced neuroplasticity following adjacent dorsal root ganglionectomies in rats via the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Tao Hu
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Min-Nan Lu
- Experiment Center for Medical Science Research, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Bo Chen
- Experiment Center for Medical Science Research, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Jun Tong
- Physical Education Department, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Rui Mao
- School of Stomatology, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Shan-Shan Li
- Basic Medical College, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Pin Dai
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Ya-Xin Tan
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Yan-Bin Xiyang
- Institute of Neuroscience, Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| |
Collapse
|
23
|
Jiao Q, Yin RH, Zhao SJ, Wang ZY, Zhu YB, Wang W, Zheng YY, Yin XB, Guo D, Wang SQ, Zhu YX, Bai WL. Identification and molecular analysis of a lncRNA-HOTAIR transcript from secondary hair follicle of cashmere goat reveal integrated regulatory network with the expression regulated potentially by its promoter methylation. Gene 2018; 688:182-192. [PMID: 30521888 DOI: 10.1016/j.gene.2018.11.084] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 01/17/2023]
Abstract
The HOTAIR transcript is transcribed from the antisense strand within the HOXC gene cluster, and it is thought to play a role in regulating the inductive capacity of dermal papilla cells during the reconstruction of hair-follicle. In the current investigation, we firstly isolated and characterized a lncRNA-HOTAIR transcript from the secondary hair follicle of cashmere goat. Also, we analyzed its transcriptional pattern and methylation level of HOTAIR gene promoter in secondary hair follicle of cashmere goat during anagen and telogen stages. Nucleotide composition analysis indicated that the contents of Adenine (A) and Thymine (T) are higher than that of Guanine (G) and Cytosine (C) in lncRNA-HOTAIR transcript of cashmere goat with the highest frequency distribution of AG nucleotide pair (8.06%). The regulatory network analysis showed a directly or indirectly complex regulatory relationships between lncRNA-HOTAIR of cashmere goat and its potential target molecules: miRNAs, mRNAs and proteins. Also, we showed that lncRNA-HOTAIR was properly transcribed at both anagen and telogen stages of secondary hair follicle of cashmere goat with the anagen being significantly higher than telogen in its expression, which suggest that lncRNA-HOTAIR transcript might be involved in the reconstruction of secondary hair follicle with the formation and growth of cashmere fiber. Taken together with methylation analysis of HOTAIR gene promoter, our data suggest that the promoter methylation of HOTAIR gene most likely is involved in its transcriptional suppression in secondary hair follicle of cashmere goat.
Collapse
Affiliation(s)
- Qian Jiao
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Rong H Yin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Su J Zhao
- Sichuan Animal Science Academy, Chengdu 610066, PR China
| | - Ze Y Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yu B Zhu
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Wei Wang
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Yuan Y Zheng
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Xian B Yin
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China
| | - Dan Guo
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang 111000, PR China
| | - Shi Q Wang
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang 111000, PR China
| | - Yan X Zhu
- Academy of Animal Husbandry Science of Liaoning Province, Liaoyang 111000, PR China
| | - Wen L Bai
- College of Animal Science & Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, PR China.
| |
Collapse
|
24
|
Liu Y, Li F, Yang YT, Xu XD, Chen JS, Chen TL, Chen HJ, Zhu YB, Lin JY, Li Y, Xie XM, Sun XL, Ke YQ. IGFBP2 promotes vasculogenic mimicry formation via regulating CD144 and MMP2 expression in glioma. Oncogene 2018; 38:1815-1831. [PMID: 30368528 DOI: 10.1038/s41388-018-0525-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 07/21/2018] [Accepted: 09/10/2018] [Indexed: 01/03/2023]
Abstract
Vasculogenic mimicry (VM) refers to the fluid-conducting channels formed by aggressive tumor cells rather than endothelial cells (EC) with elevated expression of genes associated with vascularization. VM has been considered as one of the reasons that glioblastoma becomes resistant to anti-VEGF therapy. However, the molecular basis underlying VM formation remains unclear. Here we report that the insulin-like growth factor-binding protein 2 (IGFBP2) acts as a potent factor to enhance VM formation in glioma. Evidence showed that elevated IGFBP2 expression was positively related with VM formation in patients with glioma. Enforced expression of IGFBP2 increased network formation of glioma cells in vitro by activating CD144 and MMP2 (Matrix Metalloproteinase 2). U251 cells with stable knockdown of IGFBP2 led to decreased VM formation and tumor progression in orthotopic mouse model. Mechanistically, IGFBP2 interacts with integrin α5 and β1 subunits and augments CD144 expression in a FAK/ERK pathway-dependent manner. Luciferase reporter and ChIP assay suggested that IGFBP2 activated the transcription factor SP1, which could bind to CD144 promoter. Thus, IGFBP2 acts as a stimulator of VM formation in glioma cells via enhancing CD144 and MMP2 expression.
Collapse
Affiliation(s)
- Y Liu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - F Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Y T Yang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - X D Xu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - J S Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - T L Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - H J Chen
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Y B Zhu
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - J Y Lin
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - Y Li
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - X M Xie
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China.,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| | - X L Sun
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. .,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China. .,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China.
| | - Y Q Ke
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China. .,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangzhou, China. .,Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China.
| |
Collapse
|
25
|
Neurite Growth and Polarization on Vitronectin Substrate after in Vitro Trauma is not Enhanced after IGF Treatment. Brain Sci 2018; 8:brainsci8080151. [PMID: 30103517 PMCID: PMC6119911 DOI: 10.3390/brainsci8080151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 11/23/2022] Open
Abstract
Following traumatic brain injuries (TBI), insulin-like growth factor (IGF) is cortically widely upregulated. This upregulation has a potential role in the recovery of neuronal tissue, plasticity, and neurotrophic activity, though the molecular mechanisms involved in IGF regulation and the exact role of IGF after TBI remain unclear. Vitronectin (VN), an extracellular matrix (ECM) molecule, has recently been shown to be of importance for IGF-mediated cellular growth and migration. Since VN is downregulated after TBI, we hypothesized that insufficient VN levels after TBI impairs the potential beneficial activity of IGF. To test if vitronectin and IGF-1/IGFBP-2 could contribute to neurite growth, we cultured hippocampal neurons on ± vitronectin-coated coverslips and them treated with ± IGF-1/IGF binding protein 2 (IGFBP-2). Under same conditions, cell cultures were also subjected to in vitro trauma to investigate differences in the posttraumatic regenerative capacity with ± vitronectin-coated coverslips and with ± IGF-1/IGFBP-2 treatment. In both the control and trauma situations, hippocampal neurons showed a stronger growth pattern on vitronectin than on the control substrate. Surprisingly, the addition of IGF-1/IGFBP-2 showed a decrease in neurite growth. Since neurite growth was measured as the number of neurites per area, we hypothesized that IGF-1/IGFBP-2 contributes to the polarization of neurons and thus induced a less dense neurite network after IGF-1/IGFBP-2 treatment. This hypothesis could not be confirmed and we therefore conclude that vitronectin has a positive effect on neurite growth in vitro both under normal conditions and after trauma, but that addition of IGF-1/IGFBP-2 does not have a positive additive effect.
Collapse
|
26
|
Insulin-Like Growth Factor (IGF) Binding Protein-2, Independently of IGF-1, Induces GLUT-4 Translocation and Glucose Uptake in 3T3-L1 Adipocytes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:3035184. [PMID: 29422987 PMCID: PMC5750484 DOI: 10.1155/2017/3035184] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/23/2017] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor binding protein-2 (IGFBP-2) is the predominant IGF binding protein produced during adipogenesis and is known to increase the insulin-stimulated glucose uptake (GU) in myotubes. We investigated the IGFBP-2-induced changes in basal and insulin-stimulated GU in adipocytes and the underlying mechanisms. We further determined the role of insulin and IGF-1 receptors in mediating the IGFBP-2 and the impact of IGFBP-2 on the IGF-1-induced GU. Fully differentiated 3T3-L1 adipocytes were treated with IGFBP-2 in the presence and absence of insulin and IGF-1. Insulin, IGF-1, and IGFBP-2 induced a dose-dependent increase in GU. IGFBP-2 increased the insulin-induced GU after long-term incubation. The IGFBP-2-induced impact on GU was neither affected by insulin or IGF-1 receptor blockage nor by insulin receptor knockdown. IGFBP-2 significantly increased the phosphorylation of PI3K, Akt, AMPK, TBC1D1, and PKCζ/λ and induced GLUT-4 translocation. Moreover, inhibition of PI3K and AMPK significantly reduced IGFBP-2-stimulated GU. In conclusion, IGFBP-2 stimulates GU in 3T3-L1 adipocytes through activation of PI3K/Akt, AMPK/TBC1D1, and PI3K/PKCζ/λ/GLUT-4 signaling. The stimulatory effect of IGFBP-2 on GU is independent of its binding to IGF-1 and is possibly not mediated through the insulin or IGF-1 receptor. This study highlights the potential role of IGFBP-2 in glucose metabolism.
Collapse
|
27
|
Schindler N, Mayer J, Saenger S, Gimsa U, Walz C, Brenmoehl J, Ohde D, Wirthgen E, Tuchscherer A, Russo VC, Frank M, Kirschstein T, Metzger F, Hoeflich A. Phenotype analysis of male transgenic mice overexpressing mutant IGFBP-2 lacking the Cardin-Weintraub sequence motif: Reduced expression of synaptic markers and myelin basic protein in the brain and a lower degree of anxiety-like behaviour. Growth Horm IGF Res 2017; 33:1-8. [PMID: 27919008 DOI: 10.1016/j.ghir.2016.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/18/2016] [Accepted: 11/14/2016] [Indexed: 01/07/2023]
Abstract
Brain growth and function are regulated by insulin-like growth factors I and II (IGF-I and IGF-II) but also by IGF-binding proteins (IGFBPs), including IGFBP-2. In addition to modulating IGF activities, IGFBP-2 interacts with a number of components of the extracellular matrix and cell membrane via a Cardin-Weintraub sequence or heparin binding domain (HBD1). The nature and the signalling elicited by these interactions are not fully understood. Here, we examined transgenic mice (H1d-hBP2) overexpressing a mutant human IGFBP-2 that lacks a specific heparin binding domain (HBD1) known as the Cardin-Weintraub sequence. H1d-hBP2 transgenic mice have the genetic background of FVB mice and are characterized by severe deficits in brain growth throughout their lifetime (p<0.05). In tissue lysates from brain hemispheres of 12-21day old male mice, protein levels of the GTPase dynamin-I were significantly reduced (p<0.01). Weight reductions were also found in distinct brain regions in two different age groups (12 and 80weeks). In the younger group, impaired weights were observed in the hippocampus (-34%; p<0.001), cerebellum (-25%; p<0.0001), olfactory bulb (-31%; p<0.05) and prefrontal cortex (-29%; p<0.05). At an age of 12weeks expression of myelin basic protein was reduced (p<0.01) in H1d-BP-2 mice in the cerebellum but not in the hippocampus. At 80weeks of age, weight reductions were similarly present in the cerebellum (-28%; p<0.001) and hippocampus (-31; p<0.05). When mice were challenged in the elevated plus maze, aged but not younger H1d-hBP2 mice displayed significantly less anxiety-like behaviour, which was also observed in a second transgenic mouse model overexpressing mouse IGFBP-2 lacking HBD1 (H1d-mBP2). These in vivo studies provide, for the first time, evidence for a specific role of IGFBP-2 in brain functions associated with anxiety and risk behaviour. These activities of IGFBP-2 could be mediated by the Cardin-Weintraub/HBD1 sequence and are altered in mice expressing IGFBP-2 lacking the HBD1.
Collapse
Affiliation(s)
- N Schindler
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - J Mayer
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany
| | - S Saenger
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, DTA CNS, Basel, Switzerland
| | - U Gimsa
- Institute of Behavioural Physiology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - C Walz
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - J Brenmoehl
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - D Ohde
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - E Wirthgen
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - A Tuchscherer
- Institute of Genetic and Biometry, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - V C Russo
- Hormone Research, Murdoch Childrens Research Institute, University of Melbourne, Australia
| | - M Frank
- Medical Biology and Electron Microscopy Centre, University Medicine Rostock, Rostock, Germany
| | - T Kirschstein
- Oscar Langendorff Institute of Physiology, University of Rostock, Germany
| | - F Metzger
- F. Hoffmann-La Roche AG, pRED, Pharma Research & Early Development, DTA CNS, Basel, Switzerland
| | - A Hoeflich
- Institute of Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany.
| |
Collapse
|
28
|
Hur H, Yu EJ, Ham IH, Jin HJ, Lee D. Preoperative serum levels of insulin-like growth factor-binding protein 2 predict prognosis of gastric cancer patients. Oncotarget 2017; 8:10994-11003. [PMID: 28036255 PMCID: PMC5355240 DOI: 10.18632/oncotarget.14202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 12/20/2016] [Indexed: 01/26/2023] Open
Abstract
It has been reported that serum insulin-like growth factor-binding protein 2 (IGFBP2) levels are elevated in various types of cancers. However, the clinicopathologic and prognostic implications of circulating IGFBP2 have never been investigated in gastric cancer. We tested IGFBP2 levels in the sera of 118 gastric cancer patients and 34 healthy controls using enzyme-linked immunosorbent assay (ELISA). The mean serum IGFBP2 level was significantly elevated in the gastric cancer patients compared to controls (805.23 ± 590.56 ng/ml vs. 459.61 ± 277.01 ng/ml; P < 0.001). Serum IGFBP2 levels were significantly higher in larger (> 6 cm) tumors (956.8 ± 734.0 ng/ml vs. 548.6 ± 364.0 ng/ml; P = 0.007) and in higher (T3/4) T stages (854.8 ± 621.4 ng/ml vs. 546.5 ± 315.1 ng/ml; P = 0.037). Multivariate Cox analysis showed that higher serum IGFBP2 level (> 400.01 ng/ml) was an independent prognostic factor predicting worse overall survival in patients with gastric cancer (hazard ratio (HR): 3.749, P = 0.034). When we divided patients into four groups based on blood IGFBP2 levels, survival was stratified. The HRs for death in the 3rd and 4th quartiles of serum IGFBP2 levels in comparison to that in the 1st quartile were 2.527 (P = 0.043) and 3.092 (P = 0.012). In conclusion, circulating IGFBP2 has potential as a biomarker predicting prognosis for gastric cancer patients.
Collapse
Affiliation(s)
- Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Brain Korea 21 Plus Research Center for Biomedical Sciences, Ajou University, Suwon, Republic of Korea
| | - Eun Ji Yu
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Brain Korea 21 Plus Research Center for Biomedical Sciences, Ajou University, Suwon, Republic of Korea
| | - Hye-Jin Jin
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Brain Korea 21 Plus Research Center for Biomedical Sciences, Ajou University, Suwon, Republic of Korea
| | - Dakeun Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| |
Collapse
|
29
|
Akkiprik M, Nicorici D, Cogdell D, Jia YJ, Hategan A, Tabus I, Yli-Harja O, Y D, Sahin A, Zhang W. Dissection of Signaling Pathways in Fourteen Breast Cancer Cell Lines Using Reverse-Phase Protein Lysate Microarray. Technol Cancer Res Treat 2016; 5:543-51. [PMID: 17121430 DOI: 10.1177/153303460600500601] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Signal transduction pathways play a crucial role in breast cancer development, progression, and response to different therapies. A major problem in breast cancer therapy is the heterogeneity among different tumor types and cell lines commonly used in preclinical studies. To characterize the signaling pathways of some of the commonly used breast cancer cell lines and dissect the relationship among a number of pathways and some key genetic and molecular events in breast cancer development, such as p53 mutation, ErbB2 expression, and estrogen receptor (ER)/progesterone receptor (PR) status, we performed pathway profiling of 14 breast cancer cell lines by measuring the expression and phosphorylation status of 40 different cell signaling proteins with 53 specific antibodies using a protein lysate array. Cluster analysis of the expression data showed that there was close clustering of phosphatidylinositol 3-kinase, Akt, mammalian target of rapamycin (mTOR), Src, and platelet-derived growth factor receptor β (PDGFRβ) in all of the cell lines. The most differentially expressed proteins between ER- and PR-positive and ER- and PR-negative breast cells were mTOR, Akt (pThr308), PDGFRβ, PDGFRβ (pTyr751), panSrc, Akt (pSer473), insulin-like growth factor-binding protein 5 (IGFBP5), Src (pTyr418), mTOR (pSer2448), and IGFBP2. Many apoptotic proteins, such as apoptosis-inducing factor, IGFBP3, bad, bax, and cleaved caspase 9, were overexpressed in mutant p53-carrying breast cancer cells. Hexokinase isoenzyme 1, ND2, and c-kit were the most differentially expressed proteins in high and low ErbB2-expressing breast cancer cells. This study demonstrated that ER/PR status, ErbB2 expression, and p53 status are major molecules that impact downstream signaling pathways.
Collapse
Affiliation(s)
- M Akkiprik
- Department of Pathology, Unit 85, The University of Texas, M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Clemmons DR. Role of IGF Binding Proteins in Regulating Metabolism. Trends Endocrinol Metab 2016; 27:375-391. [PMID: 27117513 DOI: 10.1016/j.tem.2016.03.019] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/10/2023]
Abstract
Insulin-like growth factors (IGFs) circulate in extracellular fluids bound to a family of binding proteins. Although they function in a classical manner to limit the access of the IGFs to their receptors they also have a multiplicity of actions that are independent of this property; they bind to their own receptors or are transported to intracellular and intranuclear sites to influence cellular functions that may directly or indirectly modify IGF actions. The availability of genetically modified animals has helped to determine their functions in a physiological context. These results show that many of their actions are cell type- and context-specific, and have led to a broader understanding of how these proteins function coordinately with IGF-I and -II to regulate growth and metabolism.
Collapse
Affiliation(s)
- David R Clemmons
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA.
| |
Collapse
|
31
|
Bhutia SK, Behera B, Nandini Das D, Mukhopadhyay S, Sinha N, Panda PK, Naik PP, Patra SK, Mandal M, Sarkar S, Menezes ME, Talukdar S, Maiti TK, Das SK, Sarkar D, Fisher PB. Abrus agglutinin is a potent anti-proliferative and anti-angiogenic agent in human breast cancer. Int J Cancer 2016; 139:457-66. [PMID: 26914517 DOI: 10.1002/ijc.30055] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 11/11/2022]
Abstract
Abrus agglutinin (AGG), a plant lectin isolated from the seeds of Abrus precatorius, has documented antitumor and immunostimulatory effects in murine models. To examine possible antitumor activity against breast cancer, we established human breast tumor xenografts in athymic nude mice and intraperitoneally administered AGG. AGG inhibited tumor growth and angiogenesis as confirmed by monitoring the expression of Ki-67 and CD-31, respectively. In addition, TUNEL positive cells increased in breast tumors treated with AGG suggesting that AGG mediates anti-tumorigenic activity through induction of apoptosis and inhibition of angiogenesis. On a molecular level, AGG caused extrinsic apoptosis through ROS generation that was AKT-dependent in breast cancer cells, without affecting primary mammary epithelial cells, suggesting potential cancer specificity of this natural compound. In addition, using HUVECs, AGG inhibited expression of the pro-angiogenic factor IGFBP-2 in an AKT-dependent manner, reducing angiogenic phenotypes both in vitro and in vivo. Overall, the present results establish that AGG promotes both apoptosis and anti-angiogenic activities in human breast tumor cells, which might be exploited for treatment of breast and other cancers.
Collapse
Affiliation(s)
- Sujit K Bhutia
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Birendra Behera
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Durgesh Nandini Das
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | | - Niharika Sinha
- Department of Life Science, National Institute of Technology, Rourkela, India
| | | | | | - Samir K Patra
- Department of Life Science, National Institute of Technology, Rourkela, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Siddik Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Mitchell E Menezes
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, India
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA.,VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, USA
| |
Collapse
|
32
|
Yao X, Sun S, Zhou X, Guo W, Zhang L. IGF-binding protein 2 is a candidate target of therapeutic potential in cancer. Tumour Biol 2015; 37:1451-9. [PMID: 26662106 DOI: 10.1007/s13277-015-4561-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/01/2015] [Indexed: 01/20/2023] Open
Abstract
Insulin-like growth factor (IGF)-binding protein 2(IGFBP2), a key member of IGF family, has been reported as a notable oncogene in most human epithelium cancers. Increasing evidences suggested that IGFBP2 might be a candidate target of therapuetic potential by regulating key cancer metastasis and invasion-associated signaling networks, but there is still confusion about the mechanism on how IGFBP2 takes part in these processes. In this review, we summarized the current points of view that IGFBP2 functions in signaling pathways during tumorigenesis and tumor progression and discussed its potential clinical applications as a therapeutic target.
Collapse
Affiliation(s)
- Xiaofeng Yao
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Shanshan Sun
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Xuan Zhou
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Wenyu Guo
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China.,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China
| | - Lun Zhang
- Department of Maxillofacial and Otorhinolaryngology Head & Neck Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, People's Republic of China. .,National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, People's Republic of China.
| |
Collapse
|
33
|
Kashyap MK. Role of insulin-like growth factor-binding proteins in the pathophysiology and tumorigenesis of gastroesophageal cancers. Tumour Biol 2015; 36:8247-8257. [PMID: 26369544 DOI: 10.1007/s13277-015-3972-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/21/2015] [Indexed: 02/07/2023] Open
Abstract
The insulin family of proteins include insulin-like growth factor binding proteins (IGFBPs) that are classified into two groups based on their differential affinities to IGFs: IGF high-affinity binding proteins (IGFBP1-6) and IGF low-affinity IGFBP-related proteins (IGFBP-rP1-10). IGFBPs interact with many proteins, including their canonical ligands insulin-like growth factor 1 (IGF-I) and IGF-II. Together with insulin-like growth factor 1 (IGF1) receptor (IGF1R), IGF2R, and ligands (IGF1 and IGF2), IGFBPs participate in a complex signaling axis called IGF-IGFR-IGFBP. Numerous studies have demonstrated that the IGF-IGFR-IGFBP axis is relevant in gastrointestinal (GI) and other cancers. The presence of different IGFBPs have been reported in gastrointestinal cancers, including esophageal squamous cell carcinoma (ESCC), esophageal adenocarcinoma (EAD or EAC), and gastric adenocarcinoma (GAD or GAC). A literature-based survey clearly indicates that an urgent need exists for a focused review of the role of IGFBPs in gastrointestinal cancers. The aim of this review is to present the biochemical and molecular characteristics of IGFBPs with an emphasis specifically on the role of these proteins in the pathophysiology and tumorigenesis of gastroesophageal cancers.
Collapse
Affiliation(s)
- Manoj K Kashyap
- Moores Cancer Center, University of California San Diego, 3855 Health Science Drive, La Jolla, CA, 92093-0820, USA.
- Department of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, India.
| |
Collapse
|
34
|
Hoeflich A, Russo VC. Physiology and pathophysiology of IGFBP-1 and IGFBP-2 - consensus and dissent on metabolic control and malignant potential. Best Pract Res Clin Endocrinol Metab 2015; 29:685-700. [PMID: 26522454 DOI: 10.1016/j.beem.2015.07.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
IGFBP-1 and IGFBP-2 are suppressed by growth hormone and therefore represent less prominent members of the IGFBP family when compared to IGFBP-3 that carries most of the IGFs during circulation under normal conditions in humans in vivo. As soon as the GH signal is decreased expression of IGF-I and IGFBP-3 is reduced. Under conditions of lowered suppression by GH the time seems come for IGFBP-1 and IGFBP-2. Both IGFBPs are potent effectors of growth and metabolism. Secretion of IGFBP-1 and IGFBP-2 is further suppressed by insulin and diminished with increasing obesity. Both IGFBP family members share the RGD sequence motif that mediates binding to integrins and is linked to PTEN/PI3K signalling. In mice, IGFBP-2 prevents age- and diet-dependent glucose insensitivity and blocks differentiation of preadipocytes. The latter function is modulated by two distinct heparin-binding domains of IGFBP-2 which are lacking in IGFBP-1. IGFBP-2 is further regulated by leptin and has been demonstrated to affect insulin sensitivity and glucose tolerance, further supporting a particular role of IGFBP-2 in glucose and fat metabolism. Since IGFBP-2 is controlled by sex steroids as well, we devised a scheme to compare IGFBP effects in breast, ovarian and prostate cancer. While a positive association does not seem to exist with IGFBP-1 and risk of cancers within these reproductive tissues, a relationship between IGFBP-2 and breast cancer, ovarian cancer and prostate cancer does indeed appear to be present. To date, the specific roles of IGFBP-2 in estrogen signalling are unclear, though there is accumulating evidence for an effect of IGFBP-2 on PI3K signalling via PTEN, particularly in breast cancer.
Collapse
Affiliation(s)
- Andreas Hoeflich
- Institute for Genome Biology, Leibniz-Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany.
| | - Vincenzo C Russo
- Hormone Research, Murdoch Childrens Research Institute, Department of Paediatrics, University of Melbourne, Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
35
|
Reyer A, Schindler N, Ohde D, Walz C, Kunze M, Tuchscherer A, Wirthgen E, Brenmoehl J, Hoeflich A. The RGD sequence present in IGFBP-2 is required for reduced glucose clearance after oral glucose administration in female transgenic mice. Am J Physiol Endocrinol Metab 2015; 309:E409-17. [PMID: 26105006 DOI: 10.1152/ajpendo.00168.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/22/2015] [Indexed: 12/21/2022]
Abstract
Recent studies suggest that insulin-like growth factor-binding protein-2 (IGFBP-2) affects both growth and metabolism. Whereas negative growth effects are primarily due to negative interference with IGF-I, the mechanisms for metabolic interference of IGFBP-2 are less clear. As we demonstrate, overexpression of IGFBP-2 in transgenic mice is correlated with a decelerated clearance of blood glucose after oral administration. IGFBP-2 carries an integrin-binding domain (RGD motif), which has been shown to also mediate IGF-independent effects. We thus asked if higher serum levels of IGFBP-2 without an intact RGD motif would also partially block blood glucose clearance after oral glucose application. In fact, transgenic mice overexpressing mutated IGFBP-2 with higher levels of IGFBP-2 carrying an RGE motif instead of an RGD were not characterized by decelerated glucose clearance. Impaired glucose tolerance was correlated with lower levels of GLUT4 present in plasma membranes isolated from muscle tissues after glucose challenge. At the same time, activation of TBC1D1 was depressed in mice overexpressing wild-type but not mutated IGFBP-2. Although we do not have reason to assume altered activation of IGF-I receptor or PDK1/Akt activation in both models, we have identified increased levels of integrin-linked kinase and focal adhesion kinase dependent on the presence of the RGD motif. From our results we conclude that impaired glucose clearance in female IGFBP-2 transgenic mice is dependent on the presence of the RGD motif and that translocation of GLUT4 in the muscle may be regulated by IGFBP-2 via RGD-dependent mechanisms.
Collapse
Affiliation(s)
- Anja Reyer
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Nancy Schindler
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Daniela Ohde
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Christina Walz
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Martin Kunze
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute for Genetics and Biometry, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany; and
| | - Elisa Wirthgen
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany; Ligandis GbR, Gülzow-Prüzen, Germany
| | - Julia Brenmoehl
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Andreas Hoeflich
- Institute for Genome Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany;
| |
Collapse
|
36
|
IGFBP-2: The dark horse in metabolism and cancer. Cytokine Growth Factor Rev 2015; 26:329-46. [DOI: 10.1016/j.cytogfr.2014.12.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/09/2014] [Indexed: 12/29/2022]
|
37
|
Patil SS, Railkar R, Swain M, Atreya HS, Dighe RR, Kondaiah P. Novel anti IGFBP2 single chain variable fragment inhibits glioma cell migration and invasion. J Neurooncol 2015; 123:225-35. [PMID: 25944386 DOI: 10.1007/s11060-015-1800-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Accepted: 04/20/2015] [Indexed: 11/29/2022]
Abstract
Insulin like growth factor binding protein 2 (IGFBP2) is highly up regulated in glioblastoma (GBM) tissues and has been one of the prognostic indicators. There are compelling evidences suggesting important roles for IGFBP2 in glioma cell proliferation, migration and invasion. Extracellular IGFBP2 through its carboxy terminal arginine glycine aspartate (RGD) motif can bind to cell surface α5β1 integrins and activate pathways downstream to integrin signaling. This IGFBP2 activated integrin signaling is known to play a crucial role in IGFBP2 mediated invasion of glioma cells. Hence a molecular inhibitor of carboxy terminal domain of IGFBP2 which can inhibit IGFBP2-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of IGFBP2, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I (Library size 1.47 × 10(8)) and Tomlinson J (Library size 1.37 × 10(8)) using human recombinant IGFBP2. After screening we obtained three IGFBP2 specific binders out of which one scFv B7J showed better binding to IGFBP2 at its carboxy terminal domain, blocked IGFBP2-cell surface association, reduced activity of matrix metalloprotease 2 in the conditioned medium of glioma cells and inhibited IGFBP2 induced migration and invasion of glioma cells. We demonstrate for the first time that in vitro inhibition of extracellular IGFBP2 activity by using human scFv results in significant reduction of glioma cell migration and invasion. Therefore, the inhibition of IGFBP2 can serve as a potential therapeutic strategy in the management of GBM.
Collapse
Affiliation(s)
- Shilpa S Patil
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bangalore, 560012, India
| | | | | | | | | | | |
Collapse
|
38
|
Brahmkhatri VP, Prasanna C, Atreya HS. Insulin-like growth factor system in cancer: novel targeted therapies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:538019. [PMID: 25866791 PMCID: PMC4383470 DOI: 10.1155/2015/538019] [Citation(s) in RCA: 172] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 10/13/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
Insulin-like growth factors (IGFs) are essential for growth and survival that suppress apoptosis and promote cell cycle progression, angiogenesis, and metastatic activities in various cancers. The IGFs actions are mediated through the IGF-1 receptor that is involved in cell transformation induced by tumour. These effects depend on the bioavailability of IGFs, which is regulated by IGF binding proteins (IGFBPs). We describe here the role of the IGF system in cancer, proposing new strategies targeting this system. We have attempted to expand the general viewpoint on IGF-1R, its inhibitors, potential limitations of IGF-1R, antibodies and tyrosine kinase inhibitors, and IGFBP actions. This review discusses the emerging view that blocking IGF via IGFBP is a better option than blocking IGF receptors. This can lead to the development of novel cancer therapies.
Collapse
Affiliation(s)
| | - Chinmayi Prasanna
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Hanudatta S. Atreya
- NMR Research Centre, Indian Institute of Science, Bangalore 560012, India
- Solid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
39
|
Wiedmer P, Schwarz F, Große B, Schindler N, Tuchscherer A, Russo VC, Tschöp MH, Hoeflich A. Gender-specific effects on food intake but no inhibition of age-related fat accretion in transgenic mice overexpressing human IGFBP-2 lacking the Cardin-Weintraub sequence motif. J Cell Commun Signal 2015; 9:143-50. [PMID: 25663268 DOI: 10.1007/s12079-015-0264-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 01/14/2015] [Indexed: 11/24/2022] Open
Abstract
IGFBP-2 affects growth and metabolism and is thought to impact on energy homeostasis and the accretion of body fat via its heparin binding domains (HBD). In order to assess the function of the HBD present in the linker domain (HBD1) we have generated transgenic mice overexpressing mutant human IGFBP-2 lacking the PKKLRP sequence and carrying a PNNLAP sequence instead. Transgenic mice expressed high amounts of human IGFBP-2, while endogenous IGFBP-2 or IGF-I serum concentrations were not affected. In both genders we performed a longitudinal analysis of growth and metabolism including at least 4 separate time points between the age of 10 and 52 weeks. Body composition was assessed by nuclear magnetic resonance (NMR) analysis. Food intake was recorded by an automated online-monitoring. We describe negative effects of mutant human IGFBP-2 on body weight, longitudinal growth and lean body mass (p < 0.05). Very clearly, negative effects of mutant IGFBP-2 were not observed for fat mass accretion throughout life. Instead, relative fat mass was increased in transgenic mice of both genders (p < 0.05). In male mice transgene expression significantly increased absolute mass of total body fat over all age groups (p < 0.05). Food intake was increased in female but decreased in male transgenic mice at an age of 11 weeks. Thus our study clearly provides gender- and time-specific effects of HBD1-deficient hIGFBP-2 (H1d-BP-2) on fat mass accretion and food intake. While our data are in principal agreement with current knowledge on the role of HB-domains for fat accretion we now may also speculate on a role of HBD1 for the control of eating behavior.
Collapse
Affiliation(s)
- Petra Wiedmer
- Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, A.-Scheunert-Allee 114-116, D14558, Nuthetal, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Yau SW, Azar WJ, Sabin MA, Werther GA, Russo VC. IGFBP-2 - taking the lead in growth, metabolism and cancer. J Cell Commun Signal 2015; 9:125-42. [PMID: 25617050 DOI: 10.1007/s12079-015-0261-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022] Open
Abstract
The activity of the Insulin-like Growth Factors (IGFs) ligands elicited via their receptors and transduced by various intracellular signal pathways is modulated by the IGF Binding Proteins (IGFBPs). Among all the IGFBPs, IGFBP-2 has been implicated in the regulation of IGF activity in most tissue and organs. Besides binding to IGFs in the circulation these IGF-regulatory activities of IGFBP-2 involve interactions with components of the extracellular matrix, cell surface proteoglycans and integrin receptors. In addition to these local peri-cellular activities, IGFBP-2 exerts other key functions within the nucleus, where IGFBP-2 directly or indirectly promotes transcriptional activation of specific genes. All of these IGFBP-2 activities, intrinsic or dependent on IGFs, contribute to its functional roles in growth/development, metabolism and malignancy as evidenced by studies in IGFBP-2 animal models and also by many in vitro studies. Finally, preclinical studies have demonstrated that IGFBP-2 administration can be beneficial in improving metabolic responses (inhibition of adipogenesis and enhanced insulin sensitivity), while blockade of IGFBP-2 appears to be an effective approach to inhibiting tumour growth and metastasis.
Collapse
Affiliation(s)
- Steven W Yau
- Deparment of Cell Biology, Hormone Research, Murdoch Childrens Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | | | | | | | | |
Collapse
|
41
|
Chen W, Li W, Zhang Z, Jiang X, Li M. Cloning, molecular characterization and expression analysis of insulin-like growth factor binding protein-2 (IGFBP-2) cDNA in goldfish, Carassius auratus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1669-1681. [PMID: 24992902 DOI: 10.1007/s10695-014-9958-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
In the present study, a full-length cDNA encoding the insulin-like growth factor binding protein-2 (IGFBP-2) was cloned from the liver of goldfish (Carassius auratus) by rapid amplification of cDNA ends technique. The goldfish IGFBP-2 cDNA sequence was 1,513 bp long and had an open reading frame of 825 bp encoding a predicted polypeptide of 274 amino acid residues. Semi-quantitative RT-PCR results revealed that goldfish IGFBP-2 mRNA was expressed in all detected tissues. In liver, central nervous system and pituitary gland, goldfish IGFBP-2 expressed at high levels, followed by anterior intestine, middle intestine and kidney. In posterior intestine, ovary, skin, fat, spleen, muscle and gill, the goldfish IGFBP-2 expression levels were very low. Fasting and refeeding experiment showed that the mRNA expression of goldfish IGFBP-2 was up-regulated significantly in liver compared to the fed group and restored rapidly to normal level after refed. However, the mRNA expressions of IGFBP-2 in hypothalamus and pituitary of goldfish were insensitive to fasting. Furthermore, the mRNA expressions of IGFBP-2 in hypothalamus, pituitary and liver were varied in periprandial changes and significantly down-regulated at 2 and 4 h after meal. These results imply that the IGFBP-2 mRNA expression may be associated with anabolic and catabolic metabolism and regulated by metabolic factors in goldfish.
Collapse
Affiliation(s)
- Wenbo Chen
- Department of Biology, Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454000, Henan, People's Republic of China,
| | | | | | | | | |
Collapse
|
42
|
Change of fate commitment in adult neural progenitor cells subjected to chronic inflammation. J Neurosci 2014; 34:11571-82. [PMID: 25164655 DOI: 10.1523/jneurosci.0231-14.2014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural progenitor cells (NPCs) have regenerative capabilities that are activated during inflammation. We aimed at elucidating how NPCs, with special focus on the spinal cord-derived NPCs (SC-NPCs), are affected by chronic inflammation modeled by experimental autoimmune encephalomyelitis (EAE). NPCs derived from the subventricular zone (SVZ-NPCs) were also included in the study as a reference from a distant inflammatory site. We also investigated the transcriptional and functional difference between the SC-NPCs and SVZ-NPCs during homeostatic conditions. NPCs were isolated and propagated from the SVZ and cervical, thoracic, and caudal regions of the SC from naive rats and rats subjected to EAE. Using Affymetrix microarray analyses, the global transcriptome was measured in the different NPC populations. These analyses were paralleled by NPC differentiation studies. Assessment of basal transcriptional and functional differences between NPC populations in naive rat revealed a higher neurogenic potential in SVZ-NPCs compared with SC-NPCs. Conversely, during EAE, the neurogenicity of the SC-NPCs was increased while their gliogenicity was decreased. We detected an overall increase of inflammation and neurodegeneration-related genes while the developmentally related profile was decreased. Among the decreased functions, we isolated a gliogenic signature that was confirmed by differentiation assays where the SC-NPCs from EAE generated fewer oligodendrocytes and astrocytes but more neurons than control cultures. In summary, NPCs displayed differences in fate-regulating genes and differentiation potential depending on their rostrocaudal origin. Inflammatory conditions downregulated gliogenicity in SC-NPCs, promoting neurogenicity. These findings give important insight into neuroinflammatory diseases and the mechanisms influencing NPC plasticity during these conditions.
Collapse
|
43
|
Lund J, Søndergaard MT, Conover CA, Overgaard MT. Heparin-binding mechanism of the IGF2/IGF-binding protein 2 complex. J Mol Endocrinol 2014; 52:345-55. [PMID: 24604839 DOI: 10.1530/jme-13-0184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
IGF1 and IGF2 are potent stimulators of diverse cellular activities such as differentiation and mitosis. Six IGF-binding proteins (IGFBP1-IGFBP6) are primary regulators of IGF half-life and receptor availability. Generally, the binding of IGFBPs inhibits IGF receptor activation. However, it has been shown that IGFBP2 in complex with IGF2 (IGF2/IGFBP2) stimulates osteoblast function in vitro and increases skeletal mass in vivo. IGF2 binding to IGFBP2 greatly increases the affinity for 2- or 3-carbon O-sulfated glycosaminoglycans (GAGs), e.g. heparin and heparan sulfate, which is hypothesized to preferentially and specifically target the IGF2/IGFBP2 complex to the bone matrix. In order to obtain a more detailed understanding of the interactions between the IGF2/IGFBP2 complex and GAGs, we investigated heparin-binding properties of IGFBP2 and the IGF2/IGFBP2 complex in a quantitative manner. For this study, we mutated key positively charged residues within the two heparin-binding domains (HBDs) in IGFBP2 and in one potential HBD in IGF2. Using heparin affinity chromatography, we demonstrate that the two IGFBP2 HBDs contribute differentially to GAG binding in free IGFBP2 and the IGF2/IGFBP2 protein complex. Moreover, we identify a significant contribution from the HBD in IGF2 to the increased IGF2/IGFBP2 heparin affinity. Using molecular modeling, we present a novel model for the IGF2/IGFBP2 interaction with heparin where all three proposed HBDs constitute a positively charged and surface-exposed area that would serve to promote the increased heparin affinity of the complex compared with free intact IGFBP2.
Collapse
Affiliation(s)
- Jacob Lund
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Mads T Søndergaard
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheryl A Conover
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael T Overgaard
- Department of BiotechnologyChemistry, and Environmental Engineering, Aalborg University, Sohngaardsholmsvej 49, DK-9000 Aalborg, DenmarkDivision of EndocrinologyEndocrine Research Unit, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
44
|
Exogenous administration of protease-resistant, non-matrix-binding IGFBP-2 inhibits tumour growth in a murine model of breast cancer. Br J Cancer 2014; 110:2855-64. [PMID: 24853186 PMCID: PMC4056053 DOI: 10.1038/bjc.2014.232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 04/06/2014] [Accepted: 04/08/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Insulin-like growth factors (IGF-I and IGF-II) signal via the type 1 IGF receptor (IGF-1R) and IGF-II also activates the insulin receptor isoform A (IR-A). Signalling via both receptors promotes tumour growth, survival and metastasis. In some instances IGF-II action via the IR-A also promotes resistance to anti-IGF-1R inhibitors. This study assessed the efficacy of two novel modified IGF-binding protein-2 (IGFBP-2) proteins that were designed to sequester both IGFs. The two modified IGFBP-2 proteins were either protease resistant alone or also lacked the ability to bind extracellular matrix (ECM). METHODS The modified IGFBP-2 proteins were tested in vitro for their abilities to inhibit cancer cell proliferation and in vivo to inhibit MCF-7 breast tumour xenograft growth. RESULTS Both mutants retained low nanomolar affinity for IGF-I and IGF-II (0.8-2.1-fold lower than IGFBP-2) and inhibited cancer cell proliferation in vitro. However, the combined protease resistant, non-matrix-binding mutant was more effective in inhibiting MCF-7 tumour xenograft growth and led to inhibition of angiogenesis. CONCLUSIONS By removing protease cleavage and matrix-binding sites, modified IGFBP-2 was effective in inhibiting tumour growth and reducing tumour angiogenesis.
Collapse
|
45
|
Abstract
The six members of the family of insulin-like growth factor (IGF) binding proteins (IGFBPs) were originally characterized as passive reservoirs of circulating IGFs, but they are now understood to have many actions beyond their endocrine role in IGF transport. IGFBPs also function in the pericellular and intracellular compartments to regulate cell growth and survival - they interact with many proteins, in addition to their canonical ligands IGF-I and IGF-II. Intranuclear roles of IGFBPs in transcriptional regulation, induction of apoptosis and DNA damage repair point to their intimate involvement in tumour development, progression and resistance to treatment. Tissue or circulating IGFBPs might also be useful as prognostic biomarkers.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, St Leonards, New South Wales 2065, Australia
| |
Collapse
|
46
|
Han S, Meng L, Han S, Wang Y, Wu A. Plasma IGFBP-2 levels after postoperative combined radiotherapy and chemotherapy predict prognosis in elderly glioblastoma patients. PLoS One 2014; 9:e93791. [PMID: 24690948 PMCID: PMC3972244 DOI: 10.1371/journal.pone.0093791] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/07/2014] [Indexed: 01/21/2023] Open
Abstract
It has been found that preoperative plasma IGFBP-2 levels correlate with prognosis in glioma patients. The prognostic value of plasma IGFBP-2 after postoperative combined radiotherapy and chemotherapy in glioma patients is unknown. Plasma IGFBP-2 levels in 83 glioblastoma patients after postoperative radiotherapy plus chemotherapy were analyzed using an IGFBP-2 ELISA kit. We found that after standard therapy plasma IGFBP-2 levels significantly correlated with the patient's age (R = 0.738, P<0.001) and Karnofsky performance status (KPS, R = −0.633, P<0.05). Cox proportional hazards models were used to calculate hazard ratios (HRs) of death according to plasma IGFBP-2 levels adjusted for patient clinical characteristics. Plasma IGFBP-2 levels significantly correlated with overall survival in glioblastoma patients (multivariate HR = 1.035; 95% CI, 1.024–1.047; P<0.001). The effect of plasma IGFBP-2 levels on survival seemed to differ according to patients' age. Among patients older than 60, high plasma IGFBP-2 levels were associated with a significant increase in overall mortality (HR = 1.097; 95% CI, 1.055–1.140; P<0.001). In contrast, plasma IGFBP-2 levels conferred no significant effect on mortality among patients younger than 60. Elevated plasma IGFBP-2 levels after combined postoperative radiotherapy and chemotherapy in elderly glioblastoma patients correlate with poor KPS score and predicts poor prognosis.
Collapse
Affiliation(s)
- Sheng Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Lingxuan Meng
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Shuai Han
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Yunjie Wang
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
| | - Anhua Wu
- Department of Neurosurgery, The First Hospital of China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
47
|
Is insulin-like growth factor binding protein 2 associated with metastasis in lung cancer? Clin Exp Metastasis 2014; 31:535-41. [PMID: 24682597 DOI: 10.1007/s10585-014-9647-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 02/26/2014] [Indexed: 01/20/2023]
Abstract
Insulin-like growth factor binding protein 2 (IGFBP2) is involved in the progression of many epithelial cancers. However, its role in non-small cell lung cancer (NSCLC), another type of epithelial cancer, remains unclear. We detected IGFBP2 expression using immunohistochemistry in surgically resected tumors from 110 NSCLC patients, 37 of which had metastases. The positive rate of IGFBP2 expression was compared between the metastatic and the non-metastatic group, and correlations of IGFBP2 expression with metastasis and overall survival were analyzed. We also investigated the expression of IGFBP2 in microvesicles (MVs) collected from primary lung cancer cell cultures, and in different locations of newly resected NSCLC tumors, using immunoblotting. The overall positive rate of IGFBP2 expression in lung cancer was 51.8 % and it was significantly higher in the metastatic group than in the non-metastatic group (70.3 and 42.5 % respectively, p < 0.01). And the higher the lymph node stage, the higher the positive rate. Cytoplasmic expression was predominant in the majority of the tumors. Based on multivariate regression analysis, IGFBP2 was correlated with metastasis and poor overall survival (Hazard ratio: 3.56 and 3.23 respectively). IGFBP2 was detectable in the MVs collected from IGFBP2 positive cell lines, and its expression was most abundant in the marginal region of the newly resected tumors. IGFBP2 is associated with metastasis and poor survival of lung cancer. Its presence in MVs and high abundance in the marginal region of tumors suggest that its association with metastasis may be related to tumor microenviroment remodeling in NSCLC.
Collapse
|
48
|
Xi G, Solum MA, Wai C, Maile LA, Rosen CJ, Clemmons DR. The heparin-binding domains of IGFBP-2 mediate its inhibitory effect on preadipocyte differentiation and fat development in male mice. Endocrinology 2013; 154:4146-57. [PMID: 23981772 PMCID: PMC3800754 DOI: 10.1210/en.2013-1236] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
IGF-binding protein (IGFBP)-2 overexpression confers resistance to high-fat feeding and inhibits the differentiation of preadipocytes in vitro. However, whether administration of IGFBP-2 can regulate adipogenesis in vivo and the domains that mediate this response have not been defined. IGFBP-2 contains 2 heparin-binding domains (HBD), which are localized in the linker region (HBD1) and C-terminal region (HBD2) of IGFBP-2. To determine the relative importance of these domains, we used synthetic peptides as well as mutagenesis. Both HBD1 and HBD2 peptides inhibited preadipocyte differentiation, but the HBD2 peptide was more effective. Selective substitution of charged residues in the HBD1 or HBD2 regions attenuated the ability of the full-length protein to inhibit cell differentiation, but the HBD2 mutant had the greatest reduction. To determine their activities in vivo, pegylated forms of each peptide were administered to IGFBP-2(-/-) mice for 12 weeks. Magnetic resonance imaging scanning showed that only the HBD2 peptide significantly reduced (48 ± 9%, P < .05) gain in total fat mass. Both inguinal (32 ± 7%, P < .01) and visceral fat (44 ± 7%, P < .01) were significantly decreased by HBD2 whereas HBD1 reduced only visceral fat accumulation (24 ± 5%, P < .05). The HBD2 peptide was more effective peptide in reducing triglyceride content and serum adiponectin, but only the HBD2 peptide increased serum leptin. These findings demonstrate that the HBD2 domain of IGFBP-2 is the primary region that accounts for its ability to inhibit adipogenesis and that a peptide encompassing this region has activity that is comparable with native IGFBP-2.
Collapse
Affiliation(s)
- Gang Xi
- MD, CB no. 7170, 8024 Burnett Womack, Division of Endocrinology, University of North Carolina, Chapel Hill, NC 27599-7170.
| | | | | | | | | | | |
Collapse
|
49
|
Lu H, Wang L, Gao W, Meng J, Dai B, Wu S, Minna J, Roth JA, Hofstetter WL, Swisher SG, Fang B. IGFBP2/FAK pathway is causally associated with dasatinib resistance in non-small cell lung cancer cells. Mol Cancer Ther 2013; 12:2864-73. [PMID: 24130049 DOI: 10.1158/1535-7163.mct-13-0233] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Insulin-like growth factor (IGF)-binding protein-2 (IGFBP2) expression is increased in various types of cancers, including in a subset of patients with lung cancer. Because IGFBP2 is involved in signal transduction of some critical cancer-related pathways, we analyzed the association between IGFBP2 and response to pathway-targeted agents in seven human non-small cell lung cancer (NSCLC) cell lines. Western blot analysis and ELISA showed that four of the seven NSCLC cell lines analyzed expressed high levels of IGFBP2, whereas the remaining three had barely detectable IGFBP2. Susceptibilities of those seven cell lines to nine anticancer agents targeting to IGF1R, Src, FAK, MEK, and AKT were determined by a dose-dependent cell viability assay. The results showed that high IGFBP2 levels were associated with resistance to dasatinib and, to a lesser degree, to sacaratinib, but not to other agents. Ectopic IGFBP2 overexpression or knockdown revealed that changing IGFBP2 expression levels reversed dasatinib susceptibility phenotype, suggesting a causal relationship between IGFBP2 expression and dasatinib resistance. Molecular characterization revealed that focal adhesion kinase (FAK) activation was associated with increased IGFBP2 expression and partially contributed to IGFBP2-mediated dasatinib resistance. Treatment with a combination of dasatinib and FAK inhibitor led to enhanced antitumor activity in IGFBP2-overexpressing and dasatinib-resistant NSCLC cells in vitro and in vivo. Our results showed that the IGFBP2/FAK pathway is causally associated with dasatinib resistance and may be used as biomarkers for identification of dasatinib responders among patients with lung cancer. Simultaneous targeting on Src and FAK will likely improve the therapeutic efficacy of dasatinib for treatment of lung cancer.
Collapse
Affiliation(s)
- Haibo Lu
- Corresponding Author: Bingliang Fang, Department of Thoracic and Cardiovascular Surgery, Unit 445, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chen X, Zheng J, Zou Y, Song C, Hu X, Zhang CC. IGF binding protein 2 is a cell-autonomous factor supporting survival and migration of acute leukemia cells. J Hematol Oncol 2013; 6:72. [PMID: 24191913 PMCID: PMC3851819 DOI: 10.1186/1756-8722-6-72] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 09/20/2013] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The role of IGF binding protein 2 (IGFBP2) in cancer development is intriguing. Previously we identified IGFBP2 as an extrinsic factor that supports the activity of hematopoietic stem cells (HSCs). METHODS AND RESULTS Here we investigated the role of IGFBP2 in in human leukemia cells and in the retroviral AML1-ETO9a transplantation acute myeloid leukemia (AML) mouse model. RESULTS IGFBP2 is highly expressed in certain human AML and acute lymphoblastic leukemia (ALL) cells. Inhibition of expression of endogenous IGFBP2 in human leukemia cells led to elevated apoptosis and decreased migration and, consistently, to decreased activation of AKT and other signaling molecules. We also studied the effects of IGFBP2 knockout in the retroviral AML1-ETO9a transplantation AML mouse model. The deletion of IGFBP2 in donor AML cells significantly decreased leukemia development in transplanted mice. Lack of IGFBP2 resulted in upregulation of PTEN expression and downregulation of AKT activation, in the mouse AML cells. The treatment of IGFBP2 deficient AML cells with a PTEN inhibitor restored the wild-type colony forming ability. The deletion of IGFBP2 also led to decreased AML infiltration into peripheral organs and tissues, suggesting that IGFBP2 is required for the migration of AML cells out of bone marrow. CONCLUSION IGFBP2 is a critical cell-autonomous factor that promotes the survival and migration of acute leukemia cells.
Collapse
Affiliation(s)
| | | | | | | | | | - Cheng Cheng Zhang
- Departments of Physiology and Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas 75390, TX, USA.
| |
Collapse
|