1
|
Shelton MA, Horan N, Xue X, Maturin L, Eacret D, Michaud J, Singh N, Williams BR, Gamble MC, Seggio JA, Fish MK, Phan BN, Tseng GC, Blendy JA, Solberg Woods LC, Palmer AA, George O, Logan RW, Seney ML. Sex-Specific Concordance of Striatal Transcriptional Signatures of Opioid Addiction in Human and Rodent Brains. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100476. [PMID: 40248277 PMCID: PMC12005289 DOI: 10.1016/j.bpsgos.2025.100476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/23/2025] [Accepted: 02/15/2025] [Indexed: 04/19/2025] Open
Abstract
Background Opioid use disorder (OUD) has emerged as a severe, ongoing public health emergency. Current treatments for OUD are unsuccessful in leading to lasting abstinence in most users. This underscores the lasting effects of chronic opioid use and emphasizes the need to understand the molecular mechanisms of drug seeking and taking and how those alterations persist through acute and protracted withdrawal. Methods Here, we used RNA sequencing in postmortem human tissue from males (n = 10) and females (n = 10) with OUD and age- and sex-matched control subjects. We compared molecular alterations associated with human OUD in the nucleus accumbens (NAc) to mouse and rat models of nonvolitional (n = 4-5 per group per sex) and volitional (n = 5-6 per group per sex) exposure to opioids across distinct stages of opioid use and withdrawal (acute and prolonged). Results We found that the molecular signature in the NAc of females with OUD mirrored effects seen in the NAc of female rodents in a nonvolitional paradigm at all stages of exposure. Conversely, males with OUD showed an expression profile similar to that of rodents with volitional exposure but only during the acute withdrawal phase. Shared coexpression networks were involved in posttranscriptional modification of RNA and epigenetic modification of chromatin state. Conclusions Our results provide fundamental insight into the conserved molecular pathways altered by opioids across species, with evidence suggesting that alterations in females with OUD may be driven by drug exposure, while alterations in males with OUD may be driven by volitional intake.
Collapse
Affiliation(s)
- Micah A. Shelton
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Nicole Horan
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Center for Neuroscience at University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lisa Maturin
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Darrell Eacret
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julie Michaud
- Department of Biology, Bridgewater State University, Bridgewater, Massachusetts
| | - Navsharan Singh
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts
| | - Benjamin R. Williams
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Mackenzie C. Gamble
- Department of Pharmacology, Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Joseph A. Seggio
- Department of Biology, Bridgewater State University, Bridgewater, Massachusetts
| | - Madeline K. Fish
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - BaDoi N. Phan
- Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Julie A. Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California
- Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Ryan W. Logan
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, Massachusetts
- Department of Neurobiology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Marianne L. Seney
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
- Center for Neuroscience at University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
2
|
Zallar LJ, Rivera-Irizarry JK, Hamor PU, Pigulevskiy I, Rico Rozo AS, Mehanna H, Liu D, Welday JP, Bender R, Asfouri JJ, Levine OB, Skelly MJ, Hadley CK, Fecteau KM, Nelson S, Miller J, Ghazal P, Bellotti P, Singh A, Hollmer LV, Erikson DW, Geri J, Pleil KE. Rapid nongenomic estrogen signaling controls alcohol drinking behavior in mice. Nat Commun 2024; 15:10725. [PMID: 39737915 PMCID: PMC11686278 DOI: 10.1038/s41467-024-54737-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/19/2024] [Indexed: 01/01/2025] Open
Abstract
Ovarian-derived estrogen can signal non-canonically at membrane-associated receptors in the brain to rapidly regulate neuronal function. Early alcohol drinking confers greater risk for alcohol use disorder in women than men, and binge alcohol drinking is correlated with high estrogen levels, but a causal role for estrogen in driving alcohol drinking has not been established. We found that female mice displayed greater binge alcohol drinking and reduced avoidance when estrogen was high during the estrous cycle than when it was low. The pro-drinking, but not anxiolytic, effect of high endogenous estrogen occurred via rapid signaling at membrane-associated estrogen receptor alpha in the bed nucleus of the stria terminalis, which promoted synaptic excitation of corticotropin-releasing factor neurons and facilitated their activity during alcohol drinking. Thus, this study demonstrates a rapid, nongenomic signaling mechanism for ovarian-derived estrogen in the brain controlling behavior in gonadally intact females.
Collapse
Affiliation(s)
- Lia J Zallar
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jean K Rivera-Irizarry
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Peter U Hamor
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irena Pigulevskiy
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ana-Sofia Rico Rozo
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Hajar Mehanna
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Dezhi Liu
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Jacqueline P Welday
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Rebecca Bender
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Joseph J Asfouri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Olivia B Levine
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Mary Jane Skelly
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Psychology Department, Iona University, New Rochelle, NY, USA
| | - Colleen K Hadley
- Weill Cornell/Rockefeller/Sloan Kettering Tri-institutional MD-PhD Program, New York, NY, 10065, USA
| | - Kristopher M Fecteau
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Scottie Nelson
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - John Miller
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Pasha Ghazal
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Department of Biosciences, COMSATS University Islamabad (CUI), Islamabad, Pakistan
| | - Peter Bellotti
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Ashna Singh
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Lauren V Hollmer
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - David W Erikson
- Endocrine Technologies Core, Oregon National Primate Research Center, Beaverton, OR, USA
| | - Jacob Geri
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Kristen E Pleil
- Pharmacology Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Neuroscience Graduate Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Pharmacology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
3
|
Logan R, Shelton M, Horan N, Xue X, Maturin L, Eacret D, Michaud J, Singh N, Williams B, Gamble M, Seggio J, Kuppe-Fish M, Phan B, Tseng G, Blendy J, Woods LS, Palmer A, George O, Seney M. Sex-specific Concordance of Striatal Transcriptional Signatures of Opioid Addiction in Human and Rodent Brains. RESEARCH SQUARE 2024:rs.3.rs-5006061. [PMID: 39399686 PMCID: PMC11469374 DOI: 10.21203/rs.3.rs-5006061/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Opioid use disorder (OUD) has emerged as a severe, ongoing public health emergency. Current, frontline addiction treatment strategies fail to produce lasting abstinence in most users. This underscores the lasting effects of chronic opioid exposure and emphasizes the need to understand the molecular mechanisms of drug seeking and taking, but also how those alterations persist through acute and protracted withdrawal. Here, we used RNA sequencing in post-mortem human tissue from males (n=10) and females (n=10) with OUD and age and sex-matched comparison subjects. We compared molecular alterations in the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC) between humans with OUD and rodent models across distinct stages of opioid use and withdrawal (acute and prolonged) using differential gene expression and network-based approaches. We found that the molecular signature in the NAc of females with OUD mirrored effects seen in the NAc of female mice at all stages of exposure. Conversely, males with OUD showed strong overlap in expression profile with rats in acute withdrawal. Co-expression networks involved in post-transcriptional modification of RNA and epigenetic modification of chromatin state. This study provides fundamental insight into the converging molecular pathways altered by opioids across species. Further, this work helps to disentangle which alterations observed in humans with OUD are driven by acute drug exposure and which alterations are consequences of chronic exposure.
Collapse
Affiliation(s)
- Ryan Logan
- University of Massachusetts Chan Medical School
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Peedikayil-Kurien S, Setty H, Oren-Suissa M. Environmental experiences shape sexually dimorphic neuronal circuits and behaviour. FEBS J 2024; 291:1080-1101. [PMID: 36582142 DOI: 10.1111/febs.16714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/05/2022] [Accepted: 12/23/2022] [Indexed: 12/31/2022]
Abstract
Dimorphic traits, shaped by both natural and sexual selection, ensure optimal fitness and survival of the organism. This includes neuronal circuits that are largely affected by different experiences and environmental conditions. Recent evidence suggests that sexual dimorphism of neuronal circuits extends to different levels such as neuronal activity, connectivity and molecular topography that manifest in response to various experiences, including chemical exposures, starvation and stress. In this review, we propose some common principles that govern experience-dependent sexually dimorphic circuits in both vertebrate and invertebrate organisms. While sexually dimorphic neuronal circuits are predetermined, they have to maintain a certain level of fluidity to be adaptive to different experiences. The first layer of dimorphism is at the level of the neuronal circuit, which appears to be dictated by sex-biased transcription factors. This could subsequently lead to differences in the second layer of regulation namely connectivity and synaptic properties. The third regulator of experience-dependent responses is the receptor level, where dimorphic expression patterns determine the primary sensory encoding. We also highlight missing pieces in this field and propose future directions that can shed light onto novel aspects of sexual dimorphism with potential benefits to sex-specific therapeutic approaches. Thus, sexual identity and experience simultaneously determine behaviours that ultimately result in the maximal survival success.
Collapse
Affiliation(s)
| | - Hagar Setty
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
5
|
Sneddon EA, Masters BM, Shi H, Radke AK. Removal of the ovaries suppresses ethanol drinking and promotes aversion-resistance in C57BL/6J female mice. Psychopharmacology (Berl) 2023; 240:2607-2616. [PMID: 37653347 PMCID: PMC11170684 DOI: 10.1007/s00213-023-06456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
RATIONALE Female rodents consume more ethanol (EtOH) than males and exhibit greater aversion-resistant drinking in some paradigms. Ovarian hormones promote EtOH drinking but the contribution of ovarian hormones to aversion-resistant drinking has not been assessed. OBJECTIVES We aimed to investigate the role of ovarian hormones to aversion-resistant drinking in female mice in a drinking in the dark (DID) task. METHODS Female C57BL/6 J mice first underwent an ovariectomy (OVX, n = 16) or sham (SHAM, n = 16) surgery. Four weeks following surgery, mice underwent a DID paradigm where they were given access to water and 15% EtOH 3 h into the dark cycle for up to 4 h across 15 drinking sessions. To assess frontloading behavior, bottles were weighed at 30 min, 2 h, and 4 h. Aversion-resistance was tested by adding escalating concentrations of quinine (0, 100, 250, and 500 µM) to the 15% EtOH bottle on sessions 16 - 19. RESULTS Removal of the ovaries reduced EtOH consumption in OVX subjects. When assessing aversion-resistant EtOH drinking, mice with ovarian hormones (SHAM) reduced consumption of 250 and 500 µM quinine in EtOH, while OVX subjects exhibited aversion-resistance at all quinine concentrations. OVX mice had greater frontloading for quinine + EtOH at higher concentrations of quinine. CONCLUSIONS These results indicate that circulating ovarian hormones may be protective against the development of aversion-resistant EtOH drinking and call for further investigation of the role of ovarian hormones in models of addictive behavior.
Collapse
Affiliation(s)
- Elizabeth A Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, 45056, USA
| | - Brianna M Masters
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, 45056, USA
| | - Haifei Shi
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, 45056, USA
- Department of Biology, Miami University, Oxford, OH, USA
| | - Anna K Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, 90 N Patterson Ave, Oxford, OH, 45056, USA.
| |
Collapse
|
6
|
Arnold ME, Decker Ramirez EB, Beugelsdyk LA, Siano Kuzolitz MV, Jiang Q, Schank JR. Estradiol mediates sex differences in aversion-resistant alcohol intake. Front Neurosci 2023; 17:1282230. [PMID: 38027489 PMCID: PMC10651753 DOI: 10.3389/fnins.2023.1282230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Alcohol consumption despite negative consequences is a core symptom of alcohol use disorder. This can be modeled in mice by pairing aversive stimuli with alcohol consumption, such as adding the bitter tastant quinine to the alcohol solution. If an animal continues to drink alcohol despite such negative stimuli, this is typically considered aversion-resistant, or inflexible, drinking behavior. Previous studies in our lab have found that females are more aversion-resistant than males in that they tolerate higher concentrations of quinine before they suppress their alcohol intake. Interestingly, we did not observe any differences in intake across the estrous cycle. In regards to neuronal activation patterns during quinine-alcohol intake, we have found that male mice show higher levels of activation in the ventromedial prefrontal cortex and posterior insular cortex, while females show higher levels of activation in the ventral tegmental area. Methods In the experiments presented here, we conducted ovariectomies to further examine the role of circulating sex hormones in aversion-resistant alcohol intake and neuronal activation patterns. Furthermore, we used hormonal addback of estradiol or progesterone to determine which ovarian sex hormone mediates aversion-resistant consumption. Results We found that ovariectomy reduced quinine-adulterated alcohol intake, demonstrating that circulating sex hormones play a role in this behavior. We also observed reduced neuronal activation in the VTA of ovariectomized mice compared to sham females, and that estradiol supplementation reversed the effect of ovariectomy on quinine-alcohol intake. Discussion Taken together with our prior data, these findings suggest that circulating estradiol contributes to the expression of aversion-resistant alcohol intake and neuronal activity in the VTA. However, since this behavior is not affected by the estrous cycle, we believe this is due to a threshold level of this hormone, as opposed to fluctuations that occur across the estrous cycle.
Collapse
Affiliation(s)
| | | | | | | | | | - Jesse R. Schank
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Sneddon EA, Masters BM, Ream KD, Fennell KA, DeMedio JN, Cash MM, Hollingsworth BP, Pandrangi S, Thach CM, Shi H, Radke AK. Sex chromosome and gonadal hormone contributions to binge-like and aversion-resistant ethanol drinking behaviors in Four Core Genotypes mice. Front Psychiatry 2023; 14:1098387. [PMID: 36960454 PMCID: PMC10027717 DOI: 10.3389/fpsyt.2023.1098387] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/15/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction While substantial research has focused on the contribution of sex hormones to driving elevated levels of alcohol drinking in female rodents, fewer studies have investigated how genetic influences may underlie sex differences in this behavior. Methods We used the Four Core Genotypes (FCG) mouse model to explore the contribution of sex chromosome complement (XX/XY) and gonad type [ovaries (Sry-)/testes (Sry+)] to ethanol (EtOH) consumption and quinine-resistant drinking across two voluntary self-administration tasks: limited access consumption in the home cage and an operant response task. Results For limited access drinking in the dark, XY/Sry + (vs. XX/Sry +) mice consumed more 15% EtOH across sessions while preference for 15% EtOH vs. water was higher in XY vs. XX mice regardless of gonad type. XY chromosomes promoted quinine-resistant drinking in mice with ovaries (Sry-) and the estrous cycle did not affect the results. In the operant response task, responding for EtOH was concentration dependent in all genotypes except XX/Sry + mice, which maintained consistent response levels across all concentrations (5-20%) of EtOH. When increasing concentrations of quinine (100-500 μM) were added to the solution, FCG mice were insensitive to quinine-punished EtOH responding, regardless of sex chromosome complement. Sry + mice were further found to be insensitive to quinine when presented in water. Importantly, these effects were not influenced by sensitivity to EtOH's sedative effect, as no differences were observed in the time to lose the righting reflex or the time to regain the righting reflex between genotypes. Additionally, no differences in EtOH concentration in the blood were observed between any of the genotypes once the righting reflex was regained. Discussion These results provide evidence that sex chromosome complement regulates EtOH consumption, preference, and aversion resistance and add to a growing body of literature suggesting that chromosomal sex may be an important contributor to alcohol drinking behaviors. Examination of sex-specific genetic differences may uncover promising new therapeutic targets for high-risk drinking.
Collapse
Affiliation(s)
- Elizabeth A. Sneddon
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Brianna M. Masters
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Kiara D. Ream
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Kaila A. Fennell
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Jenelle N. DeMedio
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Miranda M. Cash
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Brynn P. Hollingsworth
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Sai Pandrangi
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Chloe M. Thach
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| | - Haifei Shi
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
- Department of Biology, Miami University, Oxford, OH, United States
| | - Anna K. Radke
- Department of Psychology, Miami University, Oxford, OH, United States
- Center for Neuroscience and Behavior, Miami University, Oxford, OH, United States
| |
Collapse
|
8
|
Towers EB, Setaro B, Lynch WJ. Estradiol Enhances the Development of Addiction-Like Features in a Female Rat Model of Opioid Use Disorder. Neuroendocrinology 2023; 113:1099-1111. [PMID: 36878201 PMCID: PMC10644281 DOI: 10.1159/000529997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
INTRODUCTION Women are more vulnerable than men in many aspects of opioid use disorder (OUD); a major theory of sex differences in substance use disorders is that these differences are due to ovarian hormones with estradiol enhancing vulnerability in females. However, most of this evidence is for psychostimulants and alcohol; evidence with opioids is sparse. Thus, the goal of this study was to determine the impact of estradiol on vulnerability in females in a rat model of OUD. METHOD Following self-administration training, ovariectomized (OVX) females with (E) or without (V) estradiol replacement were given extended (24 h/day), intermittent access (2, 5-min trials/h) to fentanyl for 10 days. Then, the development of three key features of OUD were assessed, including physical dependence, defined by the magnitude and time course of weight loss during withdrawal; an enhanced motivation for fentanyl, assessed using a progressive-ratio schedule; and relapse vulnerability, assessed using an extinction/cue-induced reinstatement procedure. These later two characteristics were examined following 14 days of withdrawal when the phenotypes are known to be highly expressed. RESULTS OVX+E females self-administered markedly higher levels of fentanyl under extended, intermittent-access conditions and showed a longer time course of physical dependence, a greater increase in motivation for fentanyl, and an enhanced sensitivity to the reinstating effects of fentanyl-associated cues compared to OVX+V rats. Severe health complications were also observed in OVX+E, but not OVX+V females, during withdrawal. CONCLUSION These results indicate that, as with findings with psychostimulants and alcohol, estradiol enhances vulnerability in females to developing opioid addiction-like features and serious opioid-related health complications.
Collapse
Affiliation(s)
- Eleanor Blair Towers
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA, USA
| | - Ben Setaro
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| | - Wendy J. Lynch
- Psychiatry and Neurobehavioral Sciences, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
9
|
Towers EB, Williams IL, Qillawala EI, Rissman EF, Lynch WJ. Sex/Gender Differences in the Time-Course for the Development of Substance Use Disorder: A Focus on the Telescoping Effect. Pharmacol Rev 2023; 75:217-249. [PMID: 36781217 PMCID: PMC9969523 DOI: 10.1124/pharmrev.121.000361] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 10/05/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Sex/gender effects have been demonstrated for multiple aspects of addiction, with one of the most commonly cited examples being the "telescoping effect" where women meet criteria and/or seek treatment of substance use disorder (SUD) after fewer years of drug use as compared with men. This phenomenon has been reported for multiple drug classes including opioids, psychostimulants, alcohol, and cannabis, as well as nonpharmacological addictions, such as gambling. However, there are some inconsistent reports that show either no difference between men and women or opposite effects and a faster course to addiction in men than women. Thus, the goals of this review are to evaluate evidence for and against the telescoping effect in women and to determine the conditions/populations for which the telescoping effect is most relevant. We also discuss evidence from preclinical studies, which strongly support the validity of the telescoping effect and show that female animals develop addiction-like features (e.g., compulsive drug use, an enhanced motivation for the drug, and enhanced drug-craving/vulnerability to relapse) more readily than male animals. We also discuss biologic factors that may contribute to the telescoping effect, such as ovarian hormones, and its neurobiological basis focusing on the mesolimbic dopamine reward pathway and the corticomesolimbic glutamatergic pathway considering the critical roles these pathways play in the rewarding/reinforcing effects of addictive drugs and SUD. We conclude with future research directions, including intervention strategies to prevent the development of SUD in women. SIGNIFICANCE STATEMENT: One of the most widely cited gender/sex differences in substance use disorder (SUD) is the "telescoping effect," which reflects an accelerated course in women versus men for the development and/or seeking treatment for SUD. This review evaluates evidence for and against a telescoping effect drawing upon data from both clinical and preclinical studies. We also discuss the contribution of biological factors and underlying neurobiological mechanisms and highlight potential targets to prevent the development of SUD in women.
Collapse
Affiliation(s)
- Eleanor Blair Towers
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Ivy L Williams
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Emaan I Qillawala
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Emilie F Rissman
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| | - Wendy J Lynch
- Psychiatry and Neurobehavioral Sciences (E.B.T., I.L.W., E.I.Q., W.J.L.) and Medical Scientist Training Program (E.B.T.), University of Virginia, Charlottesville, Virginia, and Center for Human Health and the Environment and Program in Genetics, North Carolina State University, Raleigh, North Carolina (E.F.R.)
| |
Collapse
|
10
|
Sneddon EA, Rasizer LN, Cavalco NG, Jaymes AH, Ostlie NJ, Minshall BL, Masters BM, Hughes MR, Hrncir H, Arnold AP, Radke AK. Gonadal hormones and sex chromosome complement differentially contribute to ethanol intake, preference, and relapse-like behaviour in four core genotypes mice. Addict Biol 2022; 27:e13222. [PMID: 36001422 PMCID: PMC9413386 DOI: 10.1111/adb.13222] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/21/2022] [Indexed: 01/15/2023]
Abstract
Alcohol use and high-risk alcohol drinking behaviours among women are rapidly rising. In rodent models, females typically consume more ethanol (EtOH) than males. Here, we used the four core genotypes (FCG) mouse model to investigate the influence of gonadal hormones and sex chromosome complement on EtOH drinking behaviours. FCG mice were given access to escalating concentrations of EtOH in a two-bottle, 24-h continuous access drinking paradigm to assess consumption and preference. Relapse-like behaviour was measured by assessing escalated intake following repeated cycles of deprivation and re-exposure. Twenty-four-hour EtOH consumption was greater in mice with ovaries (Sry-), relative to those with testes, and in mice with the XX chromosome complement, relative to those with XY sex chromosomes. EtOH preference was higher in XX versus XY mice. For both consumption and preference, the influences of the Sry gene and sex chromosomes were concentration dependent. Escalated intake following repeated cycles of deprivation and re-exposure emerged only in XX mice (vs. XY). Mice with ovaries (Sry- FCG mice and C57BL/6J females) were also found to consume more water than mice with testes. These results demonstrate that aspects of EtOH drinking behaviour may be independently regulated by sex hormones and chromosomes and inform our understanding of the neurobiological mechanisms which contribute to EtOH dependence in male and female mice. Future investigation of the contribution of sex chromosomes to EtOH drinking behaviours is warranted. We used the FCG mouse model to investigate the influence of gonadal hormones and sex chromosome complement on EtOH drinking behaviours, including the alcohol deprivation effect. Escalated intake following repeated cycles of deprivation and re-exposure emerged only in XX mice (vs. XY). These results demonstrate that aspects of EtOH drinking behaviour may be independently regulated by sex hormones and chromosomes.
Collapse
Affiliation(s)
- Elizabeth A. Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Lindsay N. Rasizer
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Natalie G. Cavalco
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Asa H. Jaymes
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Noah J. Ostlie
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Brianna L. Minshall
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | - Brianna M. Masters
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| | | | - Haley Hrncir
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Arthur P. Arnold
- Department of Integrative Biology and Physiology, and Laboratory of Neuroendocrinology of the Brain Research Institute, University of California, Los Angeles, CA, USA
| | - Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH, USA
| |
Collapse
|
11
|
Weinland C, Mühle C, Kornhuber J, Lenz B. Progesterone serum levels correlate negatively with craving in female postmenopausal in-patients with alcohol use disorder: A sex- and menopausal status-separated study. Prog Neuropsychopharmacol Biol Psychiatry 2021; 110:110278. [PMID: 33571605 DOI: 10.1016/j.pnpbp.2021.110278] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/26/2021] [Accepted: 02/05/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Alcohol use disorder (AUD) shows a high prevalence and often takes a severe and chronic course. However, the underlying mechanisms still need to be better understood. There is increasing evidence for a role of sex hormones in AUD and for the importance of sex-separated concepts in addiction research. Nevertheless, only few data give insight into how progesterone is involved in AUD. METHOD Serum progesterone levels were measured at baseline (during early abstinence) in 186 in-patients with AUD (19% premenopausal females, 20% postmenopausal females, 61% males) and at median 5 days later. They were compared with those of 233 healthy control subjects (24% premenopausal females, 19% postmenopausal females, 57% males). We quantified craving with the Obsessive Compulsive Drinking Scale (OCDS) and visual analogue scales (VAS). Alcohol-related hospital readmissions within a 24-month period following initial in-patient treatment were recorded. We conducted analyses separately for sex and for menopausal status in female participants. RESULTS Postmenopausal females with AUD reported higher craving than premenopausal females. In postmenopausal females, higher baseline progesterone levels correlated with lower OCDS total craving and VAS craving, i.e., lower state craving and lower average, maximum, and less frequent craving during withdrawal. In males with AUD, progesterone levels at baseline tended to be higher than in controls and declined to follow-up. Alcohol-related readmissions were not significantly associated with serum progesterone levels. CONCLUSION We provide first evidence that progesterone levels correlate with craving in females with AUD.
Collapse
Affiliation(s)
- Christian Weinland
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany.
| | - Christiane Mühle
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany
| | - Bernd Lenz
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Germany; Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health (CIMH), Medical Faculty Mannheim, Heidelberg University, Germany
| |
Collapse
|
12
|
Radke AK, Sneddon EA, Frasier RM, Hopf FW. Recent Perspectives on Sex Differences in Compulsion-Like and Binge Alcohol Drinking. Int J Mol Sci 2021; 22:ijms22073788. [PMID: 33917517 PMCID: PMC8038761 DOI: 10.3390/ijms22073788] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022] Open
Abstract
Alcohol use disorder remains a substantial social, health, and economic problem and problem drinking levels in women have been increasing in recent years. Understanding whether and how the underlying mechanisms that drive drinking vary by sex is critical and could provide novel, more targeted therapeutic treatments. Here, we examine recent results from our laboratories and others which we believe provide useful insights into similarities and differences in alcohol drinking patterns across the sexes. Findings for binge intake and aversion-resistant, compulsion-like alcohol drinking are considered, since both are likely significant contributors to alcohol problems in humans. We also describe studies regarding mechanisms that may underlie sex differences in maladaptive alcohol drinking, with some focus on the importance of nucleus accumbens (NAcb) core and shell regions, several receptor types (dopamine, orexin, AMPA-type glutamate), and possible contributions of sex hormones. Finally, we discuss how stressors such as early life stress and anxiety-like states may interact with sex differences to contribute to alcohol drinking. Together, these findings underscore the importance and critical relevance of studying female and male mechanisms for alcohol and co-morbid conditions to gain a true and clinically useful understanding of addiction and neuropsychiatric mechanisms and treatment.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
- Correspondence:
| | - Elizabeth A. Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, OH 45040, USA;
| | - Raizel M. Frasier
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| | - Frederic W. Hopf
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (R.M.F.); (F.W.H.)
| |
Collapse
|
13
|
Abstract
Animal models of addictive behaviors are useful for uncovering neural mechanisms involved in the development of dependence and for identifying risk factors for drug abuse. One such risk factor is biological sex, which strongly moderates drug self-administration behavior in rodents. Female rodents are more likely to acquire drug self-administration behaviors, consume higher amounts of drug, and reinstate drug-seeking behavior more readily. Despite this female vulnerability, preclinical addiction research has largely been done in male animals. The study of sex differences in rodent models of addictive behavior is increasing, however, as more investigators are choosing to include both male and female animals in experiments. This commentary is meant to serve as an introductory guide for preclinical investigators new to the study of sex differences in addiction. We provide an overview of self-administration models, a broad view of female versus male self-administration behaviors, and suggestions for study design and implementation. Inclusion of female subjects in preclinical addiction research is timely, as problem drug and alcohol use in women is increasing. With proper attention, design, and analysis, the study of sex differences in addiction has the potential to uncover novel neural mechanisms and lead to greater translational success for addiction research. © 2021 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Anna K. Radke
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio
| | - Elizabeth A. Sneddon
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio
| | - Sean C. Monroe
- Department of Psychology and Center for Neuroscience and Behavior, Miami University, Oxford, Ohio
| |
Collapse
|
14
|
Vandegrift BJ, Hilderbrand ER, Satta R, Tai R, He D, You C, Chen H, Xu P, Coles C, Brodie MS, Lasek AW. Estrogen Receptor α Regulates Ethanol Excitation of Ventral Tegmental Area Neurons and Binge Drinking in Female Mice. J Neurosci 2020; 40:5196-5207. [PMID: 32482639 PMCID: PMC7329299 DOI: 10.1523/jneurosci.2364-19.2020] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/25/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Elevations in estrogen (17β-estradiol, E2) are associated with increased alcohol drinking by women and experimentally in rodents. E2 alters the activity of the dopamine system, including the VTA and its projection targets, which plays an important role in binge drinking. A previous study demonstrated that, during high E2 states, VTA neurons in female mice are more sensitive to ethanol excitation. However, the mechanisms responsible for the ability of E2 to enhance ethanol sensitivity of VTA neurons have not been investigated. In this study, we used selective agonists and antagonists to examine the role of ER subtypes (ERα and ERβ) in regulating the ethanol sensitivity of VTA neurons in female mice and found that ERα promotes the enhanced ethanol response of VTA neurons. We also demonstrated that enhancement of ethanol excitation requires the activity of the metabotropic glutamate receptor, mGluR1, which is known to couple with ERα at the plasma membrane. To investigate the behavioral relevance of these findings, we administered lentivirus-expressing short hairpin RNAs targeting either ERα or ERβ into the VTA and found that knockdown of each receptor in the VTA reduced binge-like ethanol drinking in female, but not male, mice. Reducing ERα in the VTA had a more dramatic effect on binge-like drinking than reducing ERβ, consistent with the ability of ERα to alter ethanol sensitivity of VTA neurons. These results provide important insight into sex-specific mechanisms that drive excessive alcohol drinking.SIGNIFICANCE STATEMENT Estrogen has potent effects on the dopamine system and increases the vulnerability of females to develop addiction to substances, such as alcohol. We investigated the mechanisms by which estrogen increases the response of neurons in the VTA to ethanol. We found that activation of the ERα increased the ethanol-induced excitation of VTA neurons. 17β-Estradiol-mediated enhancement of ethanol-induced excitation required the metabotropic glutamate receptor mGluR1. We also demonstrated that ERs in the VTA regulate binge-like alcohol drinking by female, but not male, mice. The influence of ERs on binge drinking in female mice suggests that treatments for alcohol use disorder in women may need to account for this sex difference.
Collapse
Affiliation(s)
- Bertha J Vandegrift
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
- Department of Physiology and Biophysics
| | | | - Rosalba Satta
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Rex Tai
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Donghong He
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Chang You
- Department of Physiology and Biophysics
| | - Hu Chen
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Pingwen Xu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Cassandre Coles
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Mark S Brodie
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
- Department of Physiology and Biophysics
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| |
Collapse
|
15
|
Erol A, Ho AMC, Winham SJ, Karpyak VM. Sex hormones in alcohol consumption: a systematic review of evidence. Addict Biol 2019; 24:157-169. [PMID: 29280252 PMCID: PMC6585852 DOI: 10.1111/adb.12589] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/20/2017] [Accepted: 11/20/2017] [Indexed: 02/02/2023]
Abstract
Sex hormones play an important role in establishing sex‐distinctive brain structural and functional variations that could contribute to the sex differences in alcohol consumption behavior. Here, we systematically reviewed articles that studied sex hormone impacts on alcohol consumption and alcohol use disorder (AUD). An extensive literature search conducted in MEDLINE, PubMed, Scopus and CINAHL databases identified 776 articles, which were then evaluated for pre‐specified criteria for relevance and quality assurance. A total of 50 articles, including 19 human studies and 31 animal studies, were selected for this review. Existing evidence supports the association of increased testosterone level and increased risk for alcohol use and AUD in males but results are inconclusive in females. In contrast, the evidence supports the association of increased estrogen level and increased alcohol use in females, with mixed findings reported in males. Much less is known about the impact of progestins on alcohol use and misuse in human subjects. Future observational and experimental studies conducted in both sexes with a comprehensive hormone panel are needed to elucidate the impact of the interplay between various sex hormone levels during various developmental stages on alcohol use‐related phenotypes and AUD.
Collapse
Affiliation(s)
- Almila Erol
- Department of Psychiatry and Psychology; Mayo Clinic; Rochester MN USA
- Department of Psychiatry; Ataturk Education and Research Hospital; Turkey
| | - Ada M.-C. Ho
- Department of Psychiatry and Psychology; Mayo Clinic; Rochester MN USA
- Department of Molecular Pharmacology and Experimental Therapeutics; Mayo Clinic; Rochester MN USA
| | - Stacey J. Winham
- Department of Health Sciences Research; Mayo Clinic; Rochester MN USA
| | - Victor M. Karpyak
- Department of Psychiatry and Psychology; Mayo Clinic; Rochester MN USA
| |
Collapse
|
16
|
Rhinehart EM, Nentwig TB, Wilson DE, Leonard KT, Chaney BN, Grisel JE. Sex and β-Endorphin Influence the Effects of Ethanol on Limbic Gabra2 Expression in a Mouse Binge Drinking Model. Front Genet 2018; 9:567. [PMID: 30555510 PMCID: PMC6281685 DOI: 10.3389/fgene.2018.00567] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 11/06/2018] [Indexed: 11/13/2022] Open
Abstract
Binge drinking is a widespread problem linked to increased risk for alcohol-related complications, including development of alcohol use disorders. In the last decade, binge drinking has increased significantly, specifically in women. Clinically, sexually dimorphic effects of alcohol are well-characterized, however, the underlying mechanisms for these dimorphisms in the physiological and behavioral effects of alcohol are poorly understood. Among its many effects, alcohol consumption reduces anxiety via the inhibitory neurotransmitter GABA, most likely acting upon receptors containing the α-2 subunit (Gabra2). Previous research from our laboratory indicates that female mice lacking the endogenous opioid peptide β-endorphin (βE) have an overactive stress axis and enhanced anxiety-like phenotype, coupled with increased binge-like alcohol consumption. Because βE works via GABA signaling to reduce anxiety, we sought to determine whether sexually dimorphic binge drinking behavior in βE deficient mice is coupled with differences in CNS Gabra2 expression. To test this hypothesis, we used βE knock-out mice in a "drinking in the dark" model where adult male and female C57BL/6J controls (βE +/+) and βE deficient (βE -/-; B6.129S2-Pomctm1Low/J) mice were provided with one bottle of 20% ethanol (EtOH) and one of water (EtOH drinkers) or two bottles of water (water drinkers) 3 h into the dark cycle for four consecutive days. Following a binge test on day 4, limbic tissue was collected and frozen for subsequent qRT-PCR analysis of Gabra2 mRNA expression. Water-drinking βE +/+ females expressed more Gabra2 in central nucleus of the amygdala and the bed nucleus of the stria terminalis than males, but this sex difference was absent in the βE -/- mice. Genotype alone had no effect on alcohol consumption or drug-induced increase in Gabra2 expression. In contrast, βE expression had bi-directional effects in females: in wildtypes, Gabra2 mRNA was reduced by binge EtOH consumption, while EtOH increased expression in βE -/- females to levels commensurate with drug-naïve βE +/+ females. These results support the contention that βE plays a role in sexually dimorphic binge-like EtOH consumption, perhaps through differential expression of GABAA α2 subunits in limbic structures known to play key roles in the regulation of stress and anxiety.
Collapse
Affiliation(s)
- Erin M Rhinehart
- Department of Biology, Susquehanna University, Selinsgrove, PA, United States
| | - Todd B Nentwig
- Department of Psychology, Neuroscience Program, Bucknell University, Lewisburg, PA, United States
| | - Diane E Wilson
- Department of Biology, Susquehanna University, Selinsgrove, PA, United States
| | - Kiarah T Leonard
- Department of Psychology, Neuroscience Program, Bucknell University, Lewisburg, PA, United States
| | - Bernie N Chaney
- Department of Psychology, Neuroscience Program, Bucknell University, Lewisburg, PA, United States
| | - Judith E Grisel
- Department of Psychology, Neuroscience Program, Bucknell University, Lewisburg, PA, United States
| |
Collapse
|
17
|
CRF modulation of central monoaminergic function: Implications for sex differences in alcohol drinking and anxiety. Alcohol 2018; 72:33-47. [PMID: 30217435 DOI: 10.1016/j.alcohol.2018.01.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/03/2018] [Accepted: 01/19/2018] [Indexed: 01/06/2023]
Abstract
Decades of research have described the importance of corticotropin-releasing factor (CRF) signaling in alcohol addiction, as well as in commonly co-expressed neuropsychiatric diseases, including anxiety and mood disorders. However, CRF signaling can also acutely regulate binge alcohol consumption, anxiety, and affect in non-dependent animals, possibly via modulation of central monoaminergic signaling. We hypothesize that basal CRF tone is particularly high in animals and humans with an inherent propensity for high anxiety and alcohol consumption, and thus these individuals are at increased risk for the development of alcohol use disorder and comorbid neuropsychiatric diseases. The current review focuses on extrahypothalamic CRF circuits, particularly those stemming from the bed nucleus of the stria terminalis (BNST), found to play a role in basal phenotypes, and examines whether the intrinsic hyperactivity of these circuits is sufficient to escalate the expression of these behaviors and steepen the trajectory of development of disease states. We focus our efforts on describing CRF modulation of biogenic amine neuron populations that have widespread projections to the forebrain to modulate behaviors, including alcohol and drug intake, stress reactivity, and anxiety. Further, we review the known sex differences and estradiol modulation of these neuron populations and CRF signaling at their synapses to address the question of whether females are more susceptible to the development of comorbid addiction and stress-related neuropsychiatric diseases because of hyperactive extrahypothalamic CRF circuits compared to males.
Collapse
|
18
|
Hilderbrand ER, Lasek AW. Estradiol enhances ethanol reward in female mice through activation of ERα and ERβ. Horm Behav 2018; 98:159-164. [PMID: 29305887 PMCID: PMC5829002 DOI: 10.1016/j.yhbeh.2018.01.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/27/2017] [Accepted: 01/01/2018] [Indexed: 11/16/2022]
Abstract
Alcohol use disorder (AUD) manifests differently in men and women, but little is known about sex differences in the brain's response to ethanol. It is known that the steroid hormone 17β-estradiol (E2) regulates voluntary ethanol consumption in female rodents. However, the role of E2 as a regulator of ethanol reward has not been investigated. In this study, we tested for the effects of E2 and agonists selective for the classical estrogen receptors, ERα and ERβ, on ethanol reward in ovariectomized (OVX) mice using the conditioned place preference (CPP) test. E2 enhanced ethanol CPP and, while specific activation of either receptor alone had no effect, co-activation of ERα and ERβ also enhanced ethanol CPP, suggesting that E2 enhances ethanol reward in female mice through actions at both ERα and ERβ. These results have implications for sex differences in the development of AUD, suggesting that women may find ethanol more rewarding than men because of higher circulating E2 levels.
Collapse
Affiliation(s)
- Elisa R Hilderbrand
- Graduate Program in Neuroscience, University of Illinois at Chicago, 1601 West Taylor Street, MC 912, Chicago, IL 60612, United States; Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, MC 912, Chicago, IL 60612, United States
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, MC 912, Chicago, IL 60612, United States.
| |
Collapse
|
19
|
Satta R, Hilderbrand ER, Lasek AW. Ovarian Hormones Contribute to High Levels of Binge-Like Drinking by Female Mice. Alcohol Clin Exp Res 2018; 42:286-294. [PMID: 29205408 DOI: 10.1111/acer.13571] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/27/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Recently, the incidence of binge drinking by women has increased. Binge drinking is detrimental to women's health, yet the biological mechanisms that promote excessive drinking by women are not well understood. One method of assessing binge-like ethanol (EtOH) consumption in mice is the drinking in the dark (DID) test, in which mice drink sufficient EtOH to achieve intoxication. In this study, we directly compared male, female, and ovariectomized (OVX) mice for DID and tested whether 17β-estradiol (E2) contributes to DID. We also measured whether DID varies throughout the estrous cycle and whether repeated intermittent DID impacts the estrous cycle. METHODS Male, female, and OVX C57BL/6J mice were tested for DID for 2 hours per day on days 1 to 3 and for 4 hours on day 4 using a single bottle containing 20% EtOH. To measure the effects of E2 on DID, OVX mice were treated with estradiol benzoate (EB) or vehicle daily starting 2 weeks prior to the drinking test and throughout the DID procedure. In a separate group of experiments, EtOH consumption and estrous cycle phase were measured in freely cycling mice that were drinking EtOH or water 5 days per week for 2 or 6 weeks. RESULTS Female mice consumed more EtOH than male and OVX mice. Treatment with EB increased EtOH consumption by OVX mice compared with vehicle-treated controls. However, EtOH intake did not vary across the estrous cycle, nor did long-term DID alter the estrous cycle. CONCLUSIONS These results demonstrate that ovarian hormones, specifically E2, contribute to increased EtOH consumption by female mice in the DID test. Although ovarian hormones contribute to this behavior, EtOH consumption is not affected by estrous cycle phase in freely cycling mice. This study provides a framework for understanding the factors that contribute to binge drinking in females.
Collapse
Affiliation(s)
- Rosalba Satta
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - Elisa R Hilderbrand
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois.,Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, Illinois
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
20
|
Vandegrift BJ, You C, Satta R, Brodie MS, Lasek AW. Estradiol increases the sensitivity of ventral tegmental area dopamine neurons to dopamine and ethanol. PLoS One 2017; 12:e0187698. [PMID: 29107956 PMCID: PMC5673180 DOI: 10.1371/journal.pone.0187698] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.
Collapse
Affiliation(s)
- Bertha J. Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rosalba Satta
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mark S. Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Amy W. Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
21
|
Kent K, Butler K, Wood RI. Ethanol induces conditioned social preference in male mice. Alcohol Clin Exp Res 2014; 38:1184-92. [PMID: 24460901 DOI: 10.1111/acer.12342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 12/06/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND Affiliative social interactions promote alcohol consumption, and alcohol also promotes affiliative behavior. Furthermore, for most species, moderate doses of ethanol (EtOH) and social affiliation are each rewarding. However, animal studies of drug and EtOH reward typically test individuals in isolation. To address social dimensions of EtOH reward, this study tested EtOH-induced conditioned social preference in male C57BL/6 mice with (ORCHX+T) and without (ORCHX) testosterone. METHODS ORCHX+T males received EtOH (0, 1, 2, or 3 g/kg) intraperitoneally and were paired 4× for 30 minutes each with 1 of 2 stimulus males: with the CS- stimulus male after saline injection and with the CS+ male following EtOH. After pairing, time spent with CS+ and CS- males was measured in a 10-minute test. RESULTS ORCHX+T test males showed conditioned preference for the CS+ male in response to 3 g/kg EtOH (change in preference: +71.3 ± 30.0 s/10 min, p < 0.05), but not for 0, 1, or 2 g/kg. By contrast, ORCHX males did not demonstrate conditioned preference for 3 g/kg EtOH (+16.0 ± 24.3 s/10 min, p > 0.05). In separate groups of mice, stimulus males (IS+) received EtOH during pairing to determine whether test mice prefer another intoxicated mouse. Both ORCHX+T and ORCHX test mice showed an increase in preference score for the IS+ mouse (ORCHX+T: +68.1 ± 24.0 seconds; ORCHX: +58.9 ± 19.6 seconds, p < 0.05). CONCLUSIONS These data demonstrate that EtOH promotes social preference in male mice, as it does in females. Testosterone enhances this effect.
Collapse
Affiliation(s)
- Kelly Kent
- Department of Cell and Neurobiology , Keck School of Medicine of the University of Southern California, Los Angeles, California; Neuroscience Graduate Program, University of Southern California, Los Angeles, California
| | | | | |
Collapse
|
22
|
Mackie AR, Krishnamurthy P, Verma SK, Thorne T, Ramirez V, Qin G, Abramova T, Hamada H, Losordo DW, Kishore R. Alcohol consumption negates estrogen-mediated myocardial repair in ovariectomized mice by inhibiting endothelial progenitor cell mobilization and function. J Biol Chem 2013; 288:18022-34. [PMID: 23645678 DOI: 10.1074/jbc.m113.468009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
We have shown previously that estrogen (estradiol, E2) supplementation enhances voluntary alcohol consumption in ovariectomized female rodents and that increased alcohol consumption impairs ischemic hind limb vascular repair. However, the effect of E2-induced alcohol consumption on post-infarct myocardial repair and on the phenotypic/functional properties of endothelial progenitor cells (EPCs) is not known. Additionally, the molecular signaling of alcohol-estrogen interactions remains to be elucidated. This study examined the effect of E2-induced increases in ethanol consumption on post-infarct myocardial function/repair. Ovariectomized female mice, implanted with 17β-E2 or placebo pellets were given access to alcohol for 6 weeks and subjected to acute myocardial infarction. Left ventricular functions were consistently depressed in mice consuming ethanol compared with those receiving only E2. Alcohol-consuming mice also displayed significantly increased infarct size and reduced capillary density. Ethanol consumption also reduced E2-induced mobilization and homing of EPCs to injured myocardium compared with the E2-alone group. In vitro, exposure of EPCs to ethanol suppressed E2-induced proliferation, survival, and migration and markedly altered E2-induced estrogen receptor-dependent cell survival signaling and gene expression. Furthermore, ethanol-mediated suppression of EPC biology was endothelial nitric oxide synthase-dependent because endothelial nitric oxide synthase-null mice displayed an exaggerated response to post-acute myocardial infarction left ventricular functions. These data suggest that E2 modulation of alcohol consumption, and the ensuing EPC dysfunction, may negatively compete with the beneficial effects of estrogen on post-infarct myocardial repair.
Collapse
Affiliation(s)
- Alexander R Mackie
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Wood RI, Rice R. Ethanol-induced conditioned partner preference in female mice. Behav Brain Res 2013; 243:273-7. [PMID: 23369716 DOI: 10.1016/j.bbr.2013.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/16/2013] [Accepted: 01/21/2013] [Indexed: 01/14/2023]
Abstract
Drinking behavior and social context are intimately intertwined. Peer relations can promote drinking. Conversely, alcohol promotes social interaction. The present study tested female mice for ethanol-induced conditioned partner preference. Ovariectomized (OVX) C57Bl/6 females with chronic estradiol replacement (OVX+E) received saline or ethanol (1, 2 or 4 g/kg) ip and were paired 4 × for 30 min each with 1 of 2 stimulus females. The test female was paired with the CS- stimulus female following saline, and was paired with the CS+ female following ethanol. After pairing, we measured proximity of the test female to the CS+ and CS- females in a 10' test. In a second study, OVX and OVX+E females were tested for conditioned partner preference (CS+ vs. CS-) in response to 2.5 g/kg ethanol. In separate groups of mice, both test and stimulus females (IS+) received ethanol during pairing to determine if test mice develop conditioned partner preference for another intoxicated mouse. OVX+E test females showed conditioned partner preference for the CS+ female in response to ethanol at 2g/kg (change in preference score for CS+: +86.6 ± 30.0 s/10 min), but not at 0, 1 or 4 g/kg. At 2.5 g/kg ethanol, OVX+E females developed conditioned partner preference for either IS+ (+63.6 ± 24.0 s) or CS+ females (+93.8 ± 27.1 s). OVX test females demonstrated ethanol-induced conditioned partner preference only for the IS+ female (+153.8 ± 32.0 s). These data demonstrate that ethanol promotes social preference in female mice, and that estradiol enhances this effect.
Collapse
Affiliation(s)
- Ruth I Wood
- Department of Cell and Neurobiology, Keck School of Medicine at the University of Southern California, Los Angeles, CA 90033, United States.
| | | |
Collapse
|
24
|
Sharda DR, Miller-Lee JL, Kanski GM, Hunter JC, Lang CH, Kennett MJ, Korzick DH. Comparison of the agar block and Lieber-DeCarli diets to study chronic alcohol consumption in an aging model of Fischer 344 female rats. J Pharmacol Toxicol Methods 2012; 66:257-63. [PMID: 22951285 DOI: 10.1016/j.vascn.2012.08.166] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 08/08/2012] [Accepted: 08/13/2012] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Post-menopausal women have a greater risk of developing alcoholic complications compared to age-matched men. Unfortunately, animal models of chronic ethanol consumption with estrogen deficiency are lacking. Here, we characterize the ability of the agar block and Lieber-DeCarli models of chronic ethanol consumption to produce elevated blood alcohol content (BAC) and liver pathology in the F344 postmenopausal animal model of aging. METHODS Adult (3 mo) and aged (18 mo) F344 ovary-intact or ovariectomized rats were administered ethanol for 14-20 weeks as follows: diet 1, standard chow access, 10% ethanol in drinking water, and 40% ethanol in agar blocks; diet 2, diet 1 plus low phytoestrogen chow (known to affect ethanol metabolism) for the final 4 weeks; diet 3, Lieber-DeCarli all liquid diet with 36% kcal ethanol. Control animals were matched isocalorically with dextrin. RESULTS For the agar block diet, average BAC was 13±4 mg/dL across groups. BAC was unaffected by reducing dietary phytoestrogen content (12±4 mg/dL), which is known to interfere with ethanol metabolism. Liver pathology was unaffected by the agar block diet. In contrast, the Lieber-DeCarli diet resulted in BAC of 45±5 mg/dL in conjunction with more severe hepatopathology.223 DISCUSSION We conclude that the Lieber-DeCarli diet produces greater BAC and hepatopathology to study the effects of chronic ethanol administration in the F344 postmenopausal rodent model of aging when compared to an ethanol agar block diet.
Collapse
Affiliation(s)
- Daniel R Sharda
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
O'Tousa DS, Matson LM, Grahame NJ. Effects of intoxicating free-choice alcohol consumption during adolescence on drinking and impulsivity during adulthood in selectively bred high-alcohol preferring mice. Alcohol Clin Exp Res 2012; 37:141-9. [PMID: 22725646 DOI: 10.1111/j.1530-0277.2012.01857.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/27/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Abuse of alcohol during adolescence continues to be a problem, and it has been shown that earlier onset of drinking predicts increased alcohol abuse problems later in life. High levels of impulsivity have been demonstrated to be characteristic of alcoholics, and impulsivity has also been shown to predict later alcohol use in teenage subjects, showing that impulsivity may precede the development of alcohol use disorders. These experiments examined adolescent drinking in a high-drinking, relatively impulsive mouse population and assessed its effects on adult drinking and adult impulsivity. METHODS Experiment 1: Selectively bred high-alcohol preferring (HAPII) mice were given either alcohol (free-choice access) or water only for 2 weeks during middle adolescence or adulthood. All mice were given free-choice access to alcohol 30 days later, in adulthood. Experiment 2: Adolescent HAPII mice drank alcohol and water, or water alone, for 2 weeks, and were then trained to perform a delay discounting task as adults to measure impulsivity. In each experiment, effects of volitional ethanol (EtOH) consumption on later behavior were assessed. We expected adolescent alcohol exposure to increase subsequent drinking and impulsivity. RESULTS Mice consumed significant quantities of EtOH, reaching average blood ethanol concentrations (BECs) of 142 mg/dl (adolescent) or 154 mg/dl (adult) in Experiment 1. Adolescent mice in Experiment 2 reached an average of 108 mg/dl. Mice exposed to alcohol in either adolescence or adulthood showed a transient increase in EtOH consumption, but we observed no differences in impulsivity in adult mice as a function of whether mice drank alcohol during adolescence. CONCLUSIONS These findings indicate that HAPII mice drink intoxicating levels of alcohol during both adolescence and adulthood and that this volitional intake has long-term effects on subsequent drinking behavior. Nonetheless, this profound exposure to alcohol during adolescence does not increase impulsivity in adulthood, indicating that long-term changes in drinking are mediated by mechanisms other than impulsivity.
Collapse
|
26
|
Karatayev O, Baylan J, Weed V, Chang S, Wynick D, Leibowitz SF. Galanin knockout mice show disturbances in ethanol consumption and expression of hypothalamic peptides that stimulate ethanol intake. Alcohol Clin Exp Res 2009; 34:72-80. [PMID: 19860804 DOI: 10.1111/j.1530-0277.2009.01068.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND There is growing evidence suggesting that hypothalamic galanin (GAL), which is known to stimulate intake of a fat-rich diet, has a role in promoting the consumption of ethanol. The present study further examined this possibility in GAL knockout (GALKO) mice. METHODS Two groups of female and male GALKO mice, compared to wild-type (WT) controls, were trained to voluntarily drink increasing concentrations of ethanol, while maintained on lab chow and water. They were examined in terms of their daily ethanol intake and preference, acute consumption of a high-fat diet, preference for flavored solutions, and expression of different peptides shown to stimulate ethanol intake. RESULTS In the GALKO mice compared to WT, the results revealed: (i) a 35 to 45% decrease in ethanol intake and preference, which was evident only at the highest (15%) ethanol concentration, was stronger in female than in male mice, and was seen with comparisons to littermate as well as nonlittermate WT mice; (ii) a 48% decrease in acute intake of a fat-rich diet, again stronger in female than male mice; (iii) no difference in consumption of sucrose or quinine solutions in preference tests; (iv) a total loss of GAL mRNA in the hypothalamic paraventricular nucleus (PVN) of female and male mice; and (v) a gender-specific change in mRNA levels of peptides in the perifornical lateral hypothalamus (PFLH), orexin and melanin-concentrating hormone, which are known to stimulate ethanol and food intake and were markedly decreased in females while increased in males. CONCLUSIONS These results provide strong support for a physiological role of PVN GAL in stimulating the consumption of ethanol, as well as a fat-rich diet. Ablation of the GAL gene produced a behavioral phenotype, particularly in females, which may reflect the functional relationship of galanin to ovarian steroids. It also altered the peptides in the PFLH, with their reduced expression contributing to the larger behavioral effects observed in females and their increased expression attenuating these effects in males.
Collapse
Affiliation(s)
- Olga Karatayev
- Laboratory of Behavioral Neurobiology, Rockefeller University, New York, New York, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wang G, Chen D, Luo H, Liu J, Ji X, Fan J, Cui S. Low-dose ethanol suppresses 17β-estradiol activity in GH4C1 pituitary tumor cells. Cell Biol Toxicol 2009; 26:265-77. [DOI: 10.1007/s10565-009-9129-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 06/02/2009] [Indexed: 12/25/2022]
|
28
|
Bau PFD, Bau CHD, Rosito GA, Manfroi WC, Fuchs FD. Alcohol consumption, cardiovascular health, and endothelial function markers. Alcohol 2007; 41:479-88. [PMID: 17980786 DOI: 10.1016/j.alcohol.2007.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Revised: 08/23/2007] [Accepted: 08/23/2007] [Indexed: 12/11/2022]
Abstract
Cardiovascular diseases are among the worldwide leading causes of shorter life expectancy and loss of quality of life. Thus, any influence of diet or life habits on the cardiovascular system may have important implications for public health. Most world populations consume alcoholic beverages. Since alcohol may have both protective and harmful effects on cardiovascular health, the identification of biochemical mechanisms that could explain such paradoxical effects is warranted. The vascular endothelium is the target of important mediating pathways of differential ethanol concentrations, such as oxidative stress, lipoproteins, and insulin resistance. Alcohol-induced endothelial damage or protection may be related to the synthesis or action of several markers, such as nitric oxide, cortisol, endothelin-1, adhesion molecules, tumor necrosis factor alpha, interleukin-6, C-reactive protein, and haemostatic factors. The expression of these markers is consistent with the J-shaped curve between alcohol consumption and cardiovascular health. However, there is genetic and phenotypic heterogeneity in alcohol response, and despite the apparent beneficial biochemical effects of low doses of ethanol, there is not enough clinical and epidemiological evidence to allow the recommendation to consume alcoholic beverages for abstemious individuals. Considering the potential for addiction of alcoholic beverage consumption and other negative consequences of alcohol, it would be worthwhile to identify substances able to mimic the beneficial effects of low doses of ethanol without its adverse effects.
Collapse
Affiliation(s)
- Paulo F D Bau
- Department of Clinical Medicine, Health Sciences Centre, Universidade Federal de Santa Maria, Roraima Avenue 1000, Santa Maria, RS 97105-900, Brazil.
| | | | | | | | | |
Collapse
|