1
|
Silva SA, Mondadori RG, Noleto GS, Barbosa IP, Gonçalves RL, Gasperin BG, Rovani MT, Paz EF, Gomes LS, Pfeifer LFM. GnRH34 with or without estradiol cypionate in timed AI in Bos indicus beef cows. Theriogenology 2023; 209:134-140. [PMID: 37392531 DOI: 10.1016/j.theriogenology.2023.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/03/2023]
Abstract
Two experiments were performed to evaluate the effects of GnRH treatment on the fertility of suckled Nelore beef cows treated with an estradiol/progesterone (E2/P4)-based protocol for timed artificial insemination (TAI). Experiment 1 focused on determining the effects of estradiol cypionate (EC) on ovulation in TAI cows treated with GnRH 34 h after removal of the intravaginal P4 device (IPD). Suckled cows (n = 26) were treated with 2 mg estradiol benzoate (EB) and IPD containing 1 g P4. After 8 days, IPDs were removed, and all cows were treated with 150 μg of d-cloprostenol (prostaglandin F2 alpha analog) and 300 IU of equine chorionic gonadotropin (eCG), then separated into two treatment groups consisting of cows who received 1) saline 0.9% i.m. (GnRH34 group) or 2) 0.6 mg i.m. of EC (EC-GnRH34 group). On day 9 (05:00 p.m.), all cows were given GnRH (10.5 μg of buserelin acetate) i.m. No differences were observed between the groups (P > 0.05) in the time of ovulation after IPD removal or in the proportion of cows ovulating. Experiment 2 focused on determining the effects of GnRH34 along with or in the absence of EC on day 8 on pregnancy per AI (P/AI) in postpartum beef cows. Cows (n = 981) were treated similarly to those in Experiment 1, but an additional group, the EC-GnRH48 group, was included, in which cows received EC on day 8 whereas those that did not show estrus received GnRH at TAI. Thus, in this experiment, groups consisted of GnRH34 (n = 322), EC-GnRH34 (n = 335), and EC-GnRH48 (n = 324). A higher rate of estrus expression was observed in cows treated with EC following IPD removal (EC-GnRH34: 69%, EC-GnRH48: 64.8%) than in cows in the GnRH34 group (45.6%). No difference in P/AI was observed between the treatment groups (P = 0.45), but P/AI in cows in the EC-GnRH34 group (64.2%) tended to be greater (P = 0.1) than in cows in the GnRH34 group (58%). In summary, although ovulation synchrony did not differ among the groups, P/AI in cows treated with EC and GnRH 34 h after IPD removal tended to be greater than in cows treated solely with GnRH; this was most likely due to a shorter proestrus/estrus period, considering the lower proportion of cows that displayed estrus in the GnRH34 group. Finally, given that P/AI did not differ between the EC-GnRH34 and EC-GnRH48 groups, our results suggest that, for cows not displaying estrus, administration of EC at the time of IPD removal followed by treatment with GnRH 48 h afterward represents the most cost-efficient TAI strategy for South American Zebu-based beef operations.
Collapse
Affiliation(s)
- Samira A Silva
- Universidade Federal de Pelotas - UFPEL, PPG em Veterinária, Pelotas, RS, Brazil
| | - Rafael G Mondadori
- Universidade Federal de Pelotas - UFPEL, PPG em Veterinária, Pelotas, RS, Brazil
| | - Gabrielly S Noleto
- Universidade Federal de Rondonia - UNIR, PPG em Desenvolvimento Regional e Meio Ambiente, Porto Velho, RO, Brazil
| | - Ingrid P Barbosa
- Universidade Federal do Acre, UFAC, PPGESPA, Rio Branco, Acre, Brazil
| | | | - Bernardo G Gasperin
- Universidade Federal de Pelotas - UFPEL, PPG em Veterinária, Pelotas, RS, Brazil
| | - Monique T Rovani
- Universidade Federal do Rio Grande do Sul - UFRGS, PPG em Ciências Veterinárias, Porto Alegre, RS, Brazil
| | - Eanes F Paz
- Technical Assistance and Rural Extension Professional, Machadinho do Oeste, RO, Brazil
| | - Leonardo S Gomes
- Embrapa Rondonia, Brazilian Agricultural Research Corporation, Porto Velho, RO, Brazil
| | - Luiz F M Pfeifer
- Embrapa Rondonia, Brazilian Agricultural Research Corporation, Porto Velho, RO, Brazil.
| |
Collapse
|
2
|
Lee EB, Chakravarthi VP, Wolfe MW, Rumi MAK. ERβ Regulation of Gonadotropin Responses during Folliculogenesis. Int J Mol Sci 2021; 22:ijms221910348. [PMID: 34638689 PMCID: PMC8508937 DOI: 10.3390/ijms221910348] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
Gonadotropins are essential for regulating ovarian development, steroidogenesis, and gametogenesis. While follicle stimulating hormone (FSH) promotes the development of ovarian follicles, luteinizing hormone (LH) regulates preovulatory maturation of oocytes, ovulation, and formation of corpus luteum. Cognate receptors of FSH and LH are G-protein coupled receptors that predominantly signal through cAMP-dependent and cAMP-independent mechanisms that activate protein kinases. Subsequent vital steps in response to gonadotropins are mediated through activation or inhibition of transcription factors required for follicular gene expression. Estrogen receptors, classical ligand-activated transcriptional regulators, play crucial roles in regulating gonadotropin secretion from the hypothalamic-pituitary axis as well as gonadotropin function in the target organs. In this review, we discuss the role of estrogen receptor β (ERβ) regulating gonadotropin response during folliculogenesis. Ovarian follicles in Erβ knockout (ErβKO) mutant female mice and rats cannot develop beyond the antral state, lack oocyte maturation, and fail to ovulate. Theca cells (TCs) in ovarian follicles express LH receptor, whereas granulosa cells (GCs) express both FSH receptor (FSHR) and LH receptor (LHCGR). As oocytes do not express the gonadotropin receptors, the somatic cells play a crucial role during gonadotropin induced oocyte maturation. Somatic cells also express high levels of estrogen receptors; while TCs express ERα and are involved in steroidogenesis, GCs express ERβ and are involved in both steroidogenesis and folliculogenesis. GCs are the primary site of ERβ-regulated gene expression. We observed that a subset of gonadotropin-induced genes in GCs, which are essential for ovarian follicle development, oocyte maturation and ovulation, are dependent on ERβ. Thus, ERβ plays a vital role in regulating the gonadotropin responses in ovary.
Collapse
Affiliation(s)
- Eun B. Lee
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
| | - V. Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael W. Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA;
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - M. A. Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA; (E.B.L.); (V.P.C.)
- Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Correspondence: ; Tel.: +1-913-588-8059
| |
Collapse
|
3
|
Biswas S, Maitra S. Altered redox homeostasis in steroid-depleted follicles attenuates hCG regulation of follicular events: Cross-talk between endocrine and IGF axis in maturing oocytes. Free Radic Biol Med 2021; 172:675-687. [PMID: 34289395 DOI: 10.1016/j.freeradbiomed.2021.07.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 01/11/2023]
Abstract
Steroids and insulin-like growth factors (Igfs) are indispensable for folliculogenesis and reproductive fitness in the vertebrate ovary. The intrafollicular redox balance is also of immense importance for ovarian follicles wherein low levels of ROS are being utilized for cell signalling and regulation of gene expression; its excess may interfere with normal physiological processes leading to ovotoxicity. However, the functional relevance of ovarian steroidogenesis in maintaining the follicular microenvironment with coordinated redox homeostasis and intra-ovarian growth factors axis is relatively less understood. Using zebrafish full-grown (FG) ovarian follicles in vitro, our study shows that blocking steroid biosynthesis with anti-steroidal drugs, DL-aminoglutethimide (AG) or Trilostane (Trilo), prevents hCG (LH analogue)-induced StAR expression concomitant with a robust increase in intrafollicular ROS levels. Congruent with heightened intracellular levels of superoxide anions (O2•-) and hydrogen peroxide (H2O2), priming with AG or Trilo abrogates the transcript abundance of major antioxidant enzyme genes (SOD1, SOD2, and CAT) in hCG-stimulated follicles. Significantly, blocking steroidogenesis attenuates transcript abundance of HSP70 but elevates NOX4 expression potentially through ERα-mediated pathway. Importantly, disrupted redox balance in AG/Trilo pre-incubated FG follicles negatively impacts hCG-mediated activation of PKA/CREB signaling and transcriptional activation of igf ligands. Elevated ROS attenuation of antioxidant defense parameters and impaired endocrine and autocrine/paracrine homeostasis converge upon reduced p34cdc2 (Thr-161) phosphorylation, a reliable marker for MPF activation, and resumption of meiotic G2-M1 transition in hCG-treated follicles. Collectively, altered redox homeostasis in steroid-depleted follicles has a significant negative influence on GTH (LH) regulation of follicular events, specifically Igf synthesis, meiotic maturational competence and ovarian fitness.
Collapse
Affiliation(s)
- Subhasri Biswas
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India
| | - Sudipta Maitra
- Molecular and Cellular Endocrinology Laboratory, Department of Zoology, Visva-Bharati University, Santiniketan, 731235, India.
| |
Collapse
|
4
|
Li YX, Guo X, Gulappa T, Menon B, Menon KMJ. SREBP Plays a Regulatory Role in LH/hCG Receptor mRNA Expression in Human Granulosa-Lutein Cells. J Clin Endocrinol Metab 2019; 104:4783-4792. [PMID: 31150065 PMCID: PMC6736214 DOI: 10.1210/jc.2019-00913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 05/24/2019] [Indexed: 01/29/2023]
Abstract
CONTEXT LH receptor (LHR) expression has been shown to be regulated posttranscriptionally by LHR mRNA binding protein (LRBP) in rodent and human ovaries. LRBP was characterized as mevalonate kinase. The gene that encodes mevalonate kinase is a member of a family of genes that encode enzymes involved in lipid synthesis and are regulated by the transcription factor sterol regulatory element binding proteins (SREBPs). OBJECTIVE The current study examined the regulation of LHR mRNA expression in human granulosa-lutein cells in response to alterations in cholesterol metabolism. DESIGN Using atorvastatin, an inhibitor of 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase to inhibit cholesterol biosynthesis, we examined its effect on LHR mRNA expression. The effect of atorvastatin on SREBP and mRNA expression as well as LHR mRNA binding protein expression was examined. Finally, the effect of atorvastatin on human chorionic gonadotropin (hCG)-stimulated progesterone production and the expression of key steroidogenic enzymes was also examined. RESULTS Statin treatment reduced LHR mRNA expression by increasing the levels of SREBP1a and SREBP2, leading to an increase in LRBP. RNA gel shift assay showed that increased binding of LHR mRNA to LRBP occurred in response to atorvastatin, leading to LHR mRNA degradation. The granulosa-lutein cells pretreated with atorvastatin also showed decreased responsiveness to hCG by decreasing the mRNA and protein expression of steroidogenic enzymes. Atorvastatin also attenuated LH/hCG-induced progesterone production. CONCLUSION These results imply that LHR mRNA expression by the human granulosa-lutein cells is regulated by cholesterol, through a mechanism involving SREBP and SREBP cleavage activating protein serving as the cholesterol sensor.
Collapse
Affiliation(s)
- Yin-Xia Li
- Departments of Obstetrics and Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Xingzi Guo
- Departments of Obstetrics and Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Thippeswamy Gulappa
- Departments of Obstetrics and Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - Bindu Menon
- Departments of Obstetrics and Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
| | - K M J Menon
- Departments of Obstetrics and Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan
- Correspondence and Reprint Requests: K. M. J. Menon, PhD, Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, 6428 Medical Sciences Building I, 1301 Catherine Street, Ann Arbor, Michigan 48109. E-mail:
| |
Collapse
|
5
|
Meske V, Albert F, Gerstenberg S, Kallwellis K, Ohm TG. NPC1-deficient neurons are selectively vulnerable for statin treatment. Neuropharmacology 2019; 151:159-170. [DOI: 10.1016/j.neuropharm.2019.04.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 03/07/2019] [Accepted: 04/10/2019] [Indexed: 10/27/2022]
|
6
|
Hattori K, Orisaka M, Fukuda S, Tajima K, Yamazaki Y, Mizutani T, Yoshida Y. Luteinizing Hormone Facilitates Antral Follicular Maturation and Survival via Thecal Paracrine Signaling in Cattle. Endocrinology 2018; 159:2337-2347. [PMID: 29668890 DOI: 10.1210/en.2018-00123] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/09/2018] [Indexed: 11/19/2022]
Abstract
LH supplementation in assisted reproductive technology cycles improves the ongoing pregnancy rate in women with poor ovarian response (POR). However, our knowledge of the precise role of LH during the follicular phase of the menstrual cycle is incomplete. To explore the role of LH in the maturation of small antral follicles, we used an in vitro two-cell system that involved coculturing bovine granulosa cells (GCs) and theca cells (TCs) on a collagen membrane. Treatment of TCs with LH stimulated androgen production in TCs by inducing the expression of androgenic factors, subsequently increasing estrogen biosynthesis in GCs by providing androgen substrates, and inducing aromatase expression. LH stimulation of TCs induced functional LH receptor expression in GCs, a response modulated by the synthesis and action of estrogen. In the presence of TCs, LH stimulation of TCs and FSH stimulation of GCs increased the expression of IGF-1, IGF-2, and IGF-1 receptor in GCs. LH-induced expression of thecal IGF-1 protected GCs from apoptosis and promoted GC survival. Furthermore, LH stimulation of TCs increased FSH sensitivity in GCs. Thus, the LH-TC axis may be involved in the acquisition of LH dependence and the survival of small antral follicles by upregulating androgen/estrogen biosynthesis and activating the IGF system. The use of LH supplementation in ovarian stimulation may increase gonadotropin sensitivity in small antral follicles and promote follicular growth and survival by suppressing GC apoptosis and follicular atresia, resulting in multiple follicular development, even in patients with POR.
Collapse
Affiliation(s)
- Katsushige Hattori
- Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
- Department of Obstetrics and Gynecology, Japanese Red Cross Fukui Hospital, Fukui, Japan
| | - Makoto Orisaka
- Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| | - Shin Fukuda
- Department of Obstetrics and Gynecology, Japanese Red Cross Fukui Hospital, Fukui, Japan
| | - Kimihisa Tajima
- Department of Obstetrics and Gynecology, Japanese Red Cross Fukui Hospital, Fukui, Japan
| | - Yukiko Yamazaki
- Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| | - Tetsuya Mizutani
- Department of Cell Biology and Biochemistry, University of Fukui, Fukui, Japan
| | - Yoshio Yoshida
- Department of Obstetrics and Gynecology, University of Fukui, Fukui, Japan
| |
Collapse
|
7
|
Snaebjornsson MT, Schulze A. Non-canonical functions of enzymes facilitate cross-talk between cell metabolic and regulatory pathways. Exp Mol Med 2018; 50:1-16. [PMID: 29657328 PMCID: PMC5938058 DOI: 10.1038/s12276-018-0065-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/22/2017] [Indexed: 12/25/2022] Open
Abstract
The metabolic rewiring that occurs during cell transformation is a hallmark of cancer. It is diverse in different cancers as it reflects different combinations of oncogenic drivers, tumor suppressors, and the microenvironment. Metabolic rewiring is essential to cancer as it enables uncontrolled proliferation and adaptation to the fluctuating availability of nutrients and oxygen caused by poor access to the vasculature due to tumor growth and a foreign microenvironment encountered during metastasis. Increasing evidence now indicates that the metabolic state in cancer cells also plays a causal role in tumor growth and metastasis, for example through the action of oncometabolites, which modulate cell signaling and epigenetic pathways to promote malignancy. In addition to altering the metabolic state in cancer cells, some multifunctional enzymes possess non-metabolic functions that also contribute to cell transformation. Some multifunctional enzymes that are highly expressed in cancer, such as pyruvate kinase M2 (PKM2), have non-canonical functions that are co-opted by oncogenic signaling to drive proliferation and inhibit apoptosis. Other multifunctional enzymes that are frequently downregulated in cancer, such as fructose-bisphosphatase 1 (FBP1), are tumor suppressors, directly opposing mitogenic signaling via their non-canonical functions. In some cases, the enzymatic and non-canonical roles of these enzymes are functionally linked, making the modulation of non-metabolic cellular processes dependent on the metabolic state of the cell.
Collapse
Affiliation(s)
- Marteinn T Snaebjornsson
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany.,Comprehensive Cancer Center Mainfranken, Josef-Schneider Strasse 6, 97080, Würzburg, Germany
| | - Almut Schulze
- Department of Biochemistry and Molecular Biology, Theodor-Boveri-Institute, Biocenter, Am Hubland, 97074, Würzburg, Germany. .,Comprehensive Cancer Center Mainfranken, Josef-Schneider Strasse 6, 97080, Würzburg, Germany.
| |
Collapse
|
8
|
Menon KMJ, Menon B, Gulappa T. Regulation of Luteinizing Hormone Receptor mRNA Expression in the Ovary: The Role of miR-122. VITAMINS AND HORMONES 2018; 107:67-87. [PMID: 29544643 DOI: 10.1016/bs.vh.2018.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The expression of luteinizing hormone receptor (LHR) in the mammalian ovary is regulated in response to changes in the secretion of follicle-stimulating hormone and luteinizing hormone by the anterior pituitary, at least in part, through posttranscriptional mechanisms. The steady-state levels of LHR mRNA are maintained by controlling its rate of degradation by an RNA-binding protein designated as LHR mRNA-binding protein (LRBP). LRBP forms a complex with LHR mRNA and targets it for degradation in the p bodies. miR-122, an 18 nucleotide noncoding RNA, regulates the expression of LRBP. Thus, the levels of miR-122 determine the cellular levels of LHR mRNA expression. This phenomenon has been examined during the induction of LHR mRNA expression that occurs during follicle maturation in response to rising levels of FSH. In this situation, miR-122 and LRBP levels decrease as LHR mRNA expression undergoes downregulation in response to preovulatory LH surge. miR-122 expression as well as LRBP levels show robust increases. The mechanism of induction of LRBP by miR-122 has also been discussed.
Collapse
Affiliation(s)
- K M J Menon
- The University of Michigan Medical School, Ann Arbor, MI, United States.
| | - Bindu Menon
- The University of Michigan Medical School, Ann Arbor, MI, United States
| | | |
Collapse
|
9
|
Kishi H, Kitahara Y, Imai F, Nakao K, Suwa H. Expression of the gonadotropin receptors during follicular development. Reprod Med Biol 2017; 17:11-19. [PMID: 29371816 PMCID: PMC5768975 DOI: 10.1002/rmb2.12075] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 10/26/2017] [Indexed: 12/23/2022] Open
Abstract
Background Gonadotropins induce follicular development that leads to ovulation and luteinization. In women, the level of gonadotropins, along with the expression of their receptors, changes dynamically throughout the menstrual cycle. This study aimed to clarify the mechanisms underlying these phenomena. Methods The literature was reviewed, including that published by the authors. Main findings (Results) Follicle‐stimulating hormone receptor expression in the granulosa cells was induced by androgens that were derived from growth differentiation factor‐9‐stimulated theca cells. In the theca cells, luteinizing hormone receptor (LHR) expression was noted from their appearance. In the granulosa cells, follicle‐stimulating hormone (FSH) stimulation was essential for LHR expression. However, FSH alone was not sufficient to respond to the luteinizing hormone (LH) surge for oocyte maturation, ovulation, and subsequent luteinization. To achieve these stages, various local factors that were derived from the granulosa and theca cells in response to FSH and LH stimulation had to work synergistically in an autocrine/paracrine manner to strongly induce LHR expression. Following the LH surge, the LHR expression decreased markedly; miRNAs were involved in this transient LHR downregulation. Following ovulation, LHR expression drastically increased again toward luteinization. Conclusion The expression of gonadotropin receptors is controlled by sophisticated and complicated systems; a breakdown of this system could lead to ovulation disorders.
Collapse
Affiliation(s)
- Hiroshi Kishi
- Department of Obstetrics and Gynecology Gunma University Hospital Gunma Japan
| | - Yoshikazu Kitahara
- Department of Obstetrics and Gynecology Gunma University Hospital Gunma Japan
| | - Fumiharu Imai
- Department of Obstetrics and Gynecology Gunma University Hospital Gunma Japan
| | - Kohshiro Nakao
- Department of Obstetrics and Gynecology Gunma University Hospital Gunma Japan
| | - Hiroto Suwa
- Department of Obstetrics and Gynecology Gunma University Hospital Gunma Japan
| |
Collapse
|
10
|
Acosta DAV, Schneider A, Jacometo CB, Rincon JA, Cardoso F, Corrêa MN. Effect of bovine somatotropin injection in late pregnant Holstein heifers on metabolic parameters and steroidogenic potential of the first postpartum dominant follicle. Theriogenology 2017; 104:164-172. [PMID: 28863349 DOI: 10.1016/j.theriogenology.2017.08.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 08/17/2017] [Accepted: 08/25/2017] [Indexed: 02/03/2023]
Abstract
The aim of this study was to determine the effect of pre-partum injections of bovine somatotropin (bST) in dairy heifers on metabolic markers and the steroidogenic potential of the first postpartum dominant follicle. Heifers were assigned to two groups: bST (ST; n = 29), that received two doses of bST (500 mg/dose) at -28 and -14 days relative to calving; and control (CTL; n = 30), that did not received bST. Follicular development was monitored via ultrasound every 3 days starting at 8 days in milk (DIM) in a subset of 20 heifers until the day the first large follicle reached a diameter of 16 mm. From these cows follicular fluid was aspirated and the follicular cells recovered (ST; n = 8 and CTL; n = 10). Blood samples were collected weekly for all heifers. Follicular fluid IGF-I concentrations of the first postpartum dominant follicle was higher (P = 0.05) in ST (87.1 ± 7.7 mg/mL) than CTL cows (64.3 ± 6.8 mg/mL). Also, E2 concentration in the follicular fluid was higher (P = 0.02) for ST (199.7 ± 55.9 ng/mL) than CTL cows (74.5 ± 37.7 ng/mL). The expression of LHCGR and STAR mRNA in follicular cells was higher (P < 0.05) in ST than CTL cows. Nonetheless, HSD3B, P450scc, P450c17, IGFr and CYP19A1 mRNA expression was not different between groups (P > 0.05). Serum IGF-I concentration was higher in ST treated heifers during the pre-partum period (P = 0.01) and no difference was observed in the postpartum period (P = 0.19). In conclusion, pre-partum bST treatment in dairy heifers increased intrafollicular IGF-I and expression of LHCGR and STAR mRNA in follicular cells of the first postpartum dominant follicle. These changes were associated to increased intrafollicular and serum E2 concentration, which can potentially increase the chance of ovulation of the first follicular wave.
Collapse
Affiliation(s)
- Diego Andres Velasco Acosta
- The Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, 250047, Colombia; Research Center, Education and Extension in Livestock (NUPEEC), College of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Augusto Schneider
- Department of Nutrition, College of Nutrition, Federal University of Pelotas, Pelotas, RS, Brazil; Research Center, Education and Extension in Livestock (NUPEEC), College of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Carolina Bespalhok Jacometo
- Facultad Ciencias Agropecuarias, Universidad de La Salle, Bogotá, 110231, Colombia; Research Center, Education and Extension in Livestock (NUPEEC), College of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Joao Alvarado Rincon
- Department of Clinics, College of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil; Research Center, Education and Extension in Livestock (NUPEEC), College of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Felipe Cardoso
- Department of Animal Sciences, University of Illinois, Urbana, IL, USA
| | - Marcio Nunes Corrêa
- The Colombian Corporation for Agricultural Research (CORPOICA), Bogotá, 250047, Colombia; Research Center, Education and Extension in Livestock (NUPEEC), College of Veterinary Medicine, Federal University of Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
11
|
Gulappa T, Menon B, Menon KMJ. LHCGR Expression During Follicle Stimulating Hormone-Induced Follicle Growth Is Negatively Regulated by Eukaryotic Initiation Factor 5A. Endocrinology 2017; 158:2672-2679. [PMID: 28605466 PMCID: PMC5551546 DOI: 10.1210/en.2017-00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 06/06/2017] [Indexed: 01/01/2023]
Abstract
We have shown that the transient changes in the expression of luteinizing hormone/choriogonadotropin receptor (LHCGR) messenger RNA (mRNA) during the ovarian cycle occurs, at least in part, through a posttranscriptional mechanism involving an LHCGR mRNA-binding protein (LRBP). Eukaryotic initiation factor 5A (eIF5A), an LRBP-interacting protein, participates in this process. eIF5A undergoes hypusination, a unique posttranslational modification that is necessary for its functions. This study examined the role of eIF5A in follicle-stimulating hormone (FSH)-induced LHCGR expression during follicular growth. Treatment of primary cultures of rat granulosa cells with FSH and 17β-estradiol (E2) showed a time-dependent increase in LHCGR mRNA expression. Conversely, inhibition of endogenous hypusination of eIF5A using N1-guanyl-1,7-diaminoheptane (GC7), a hypusination inhibitor, showed a greater increase in LHCGR mRNA expression over that produced by FSH and E2 alone. Further studies were carried out to determine the mechanism by which inhibition of hypusination of eIF5A causes an increase in LHCGR mRNA expression. Because LHCGR expression is negatively regulated by LRBP, the effect of inhibiting hypusination of eIF5A on LRBP expression was examined. The results showed a decrease in the expression of LRBP mRNA and protein when hypusination of eIF5A was inhibited by GC7. Because LRBP promotes LHCGR mRNA degradation, the results of this study support the notion that by inhibiting eIF5A hypusination, FSH reduces the expression of LRBP. This increases LHCGR mRNA expression by abrogating the inhibitory action of LRBP.
Collapse
Affiliation(s)
- Thippeswamy Gulappa
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Bindu Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - K M J Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan 48109
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109
| |
Collapse
|
12
|
Analysis of LH receptor in canine ovarian follicles throughout the estrous cycle. Theriogenology 2017; 93:71-77. [DOI: 10.1016/j.theriogenology.2017.01.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 01/15/2017] [Accepted: 01/15/2017] [Indexed: 12/25/2022]
|
13
|
Menon B, Gulappa T, Menon KMJ. Molecular regulation of LHCGR expression by miR-122 during follicle growth in the rat ovary. Mol Cell Endocrinol 2017; 442:81-89. [PMID: 27940300 PMCID: PMC5371357 DOI: 10.1016/j.mce.2016.12.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/05/2016] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
Abstract
We have previously reported that LHCGR expression in the ovary is regulated through a post-transcriptional mechanism involving an mRNA binding protein designated as LRBP, which is regulated, at least in part, by a non-coding RNA, miR-122. Our present study examined the regulatory role of miR-122 in FSH-induced LHCGR expression during follicle development. Treatment of rat granulosa cells concurrently with FSH and 17β estradiol showed, as expected, a time-dependent increase in LHCGR mRNA levels as well as hCG-induced progesterone production. However, miR-122 expression was decreased during the early time periods, which preceded the increased expression of LHCGR mRNA. The role of miR-122 in FSH-induced LHCGR mRNA expression was then examined by overexpressing miR-122 prior to FSH stimulation by infecting granulosa cells with an adenoviral vector containing a miR-122 insert (AdmiR-122). Pretreatment with AdmiR-122 resulted in complete abrogation of FSH- mediated upregulation of LHCGR. AdmiR-122 also blocked FSH-induced decrease in LRBP expression and increased the binding of LHCGR mRNA to LRBP. Based on these results, we conclude that miR-122 plays a regulatory role in LHCGR expression by modulating LRBP levels during FSH-induced follicle growth.
Collapse
Affiliation(s)
- Bindu Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA
| | - Thippeswamy Gulappa
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA
| | - K M J Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, 48109-0617, USA.
| |
Collapse
|
14
|
López-Doval S, Salgado R, Lafuente A. The expression of several reproductive hormone receptors can be modified by perfluorooctane sulfonate (PFOS) in adult male rats. CHEMOSPHERE 2016; 155:488-497. [PMID: 27151425 DOI: 10.1016/j.chemosphere.2016.04.081] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/02/2016] [Accepted: 04/20/2016] [Indexed: 06/05/2023]
Abstract
This study was undertaken to evaluate the possible role of several reproductive hormone receptors on the disruption of the hypothalamic-pituitary-testis (HPT) axis activity induced by perfluorooctane sulfonate (PFOS). The studied receptors are the gonadotropin-releasing hormone receptor (GnRHr), luteinizing hormone receptor (LHr), follicle-stimulating hormone receptor (FSHr), and the androgen receptor (Ar). Adult male rats were orally treated with 1.0; 3.0 and 6.0 mg of PFOS kg(-1) d(-1) for 28 days. In general terms, PFOS can modify the relative gene and protein expressions of these receptors in several tissues of the reproductive axis. At the testicular level, apart from the expected inhibition of both gene and protein expressions of FSHr and Ar, PFOS also stimulates the GnRHr protein and the LHr gene expression. The receptors of the main hormones involved in the HPT axis may have an important role in the disruption exerted by PFOS on this axis.
Collapse
MESH Headings
- Alkanesulfonic Acids/chemistry
- Alkanesulfonic Acids/pharmacology
- Animals
- Blotting, Western
- Fluorocarbons/chemistry
- Fluorocarbons/pharmacology
- Follicle Stimulating Hormone/metabolism
- Gene Expression Regulation/drug effects
- Gonadotropin-Releasing Hormone/metabolism
- Luteinizing Hormone/metabolism
- Male
- Polymerase Chain Reaction
- Rats
- Rats, Sprague-Dawley
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Receptors, LHRH/genetics
- Receptors, LHRH/metabolism
- Reproduction/drug effects
- Testis/drug effects
- Testis/metabolism
Collapse
Affiliation(s)
- S López-Doval
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas s/n, 32004 Ourense, Spain
| | - R Salgado
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas s/n, 32004 Ourense, Spain
| | - A Lafuente
- Laboratory of Toxicology, Sciences School, University of Vigo, Las Lagunas s/n, 32004 Ourense, Spain.
| |
Collapse
|
15
|
Li W, Chen S, Li H, Liu Z, Zhao Y, Chen L, Zhou X, Li C. A new insertion/deletion fragment polymorphism of inhibin-α gene associated with follicular cysts in Large White sows. J Vet Med Sci 2015; 78:473-6. [PMID: 26521695 PMCID: PMC4868885 DOI: 10.1292/jvms.14-0489] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ovarian follicular cysts are anovulatory follicular structures that lead to infertility.
Hormones play key roles in the formation and persistence of cysts. Inhibins are
heterodimeric gonadal glycoprotein hormones that belong to the transforming growth
factor-β superfamily. These hormones suppress the secretion of follicle-stimulating
hormone. In this report, partial fragment of inhibin-α (INHA) subunit gene of Large White
pig was detected from the genomic DNA by polymerase chain reaction. The sequence showed a
283 bp fragment insertion/deletion (I/D) polymorphism in INHA subunit gene. A total of 49
Large White sows with cystic follicles and 152 normal sows were screened for this
polymorphism. The relationship of INHA I/D polymorphisms with follicular cysts was
investigated. The distribution of I/D was significantly different between cystic and
normal sows, thereby suggesting that the INHA subunit gene might be a potential biological
marker for breeding programs in pig.
Collapse
Affiliation(s)
- Wanhong Li
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, 5333 Xian Road, Changchun, Jilin 130062, P. R. of China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Menon B, Gulappa T, Menon KMJ. miR-122 Regulates LH Receptor Expression by Activating Sterol Response Element Binding Protein in Rat Ovaries. Endocrinology 2015; 156:3370-80. [PMID: 26125464 PMCID: PMC4541618 DOI: 10.1210/en.2015-1121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
LH/human chorionic gonadotropin receptor (LHR) undergoes down-regulation during preovulatory LH surge or in response to exposure to a supraphysiological concentration of its ligands through a posttranscriptional mechanism involving an RNA binding protein designated as LHR mRNA binding protein (LRBP). miR-122, a short noncoding RNA, has been shown to mediate the up-regulation of LRBP. In the present study, we show that inhibition of miR-122 using a locked nucleic acid (LNA)-conjugated antagomir suppressed human chorionic gonadotropin (hCG)-induced up-regulation of LRBP as well as its association with LHR mRNA, as analyzed by RNA EMSA. Most importantly, inhibition of miR-122 resulted in the abolishment of hCG-mediated LHR mRNA down-regulation. We also show that the transcription factor, sterol regulatory element binding protein (SREBP) (SREBP-1a and SREBP-2 isoforms), is an intermediate in miR-122-mediated LHR mRNA regulation. HCG-stimulated increase in the activation of both SREBP-1a and SREBP-2 was inhibited by pretreatment with the miR-122 antagomir. The inhibition of cAMP/protein kinase A (PKA) and ERK pathways, upstream activators of miR-122, abolished SREBP activation after hCG treatment. SREBP-mediated regulation of LRBP expression is mediated by recruitment of LRBP promoter element to SREBP-1a, because chromatin immunoprecipitation assay revealed that association of LRBP promoter to SREBP was increased by hCG treatment. Pretreatment with miR-122 antagomir suppressed this response. Inhibition of SREBP activation by pretreating the rats with a chemical compound, fatostatin abrogated hCG-induced up-regulation of LRBP mRNA and protein. Fatostatin also inhibited LHR-LRBP mRNA-protein complex formation and LHR down-regulation. These results conclusively show that miR-122 plays a regulatory role in LH/hCG-induced LHR mRNA down-regulation by increasing LRBP expression through the activation of SREBP pathway.
Collapse
Affiliation(s)
- Bindu Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0617
| | - Thippeswamy Gulappa
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0617
| | - K M J Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan 48109-0617
| |
Collapse
|
17
|
Nakao K, Kishi H, Imai F, Suwa H, Hirakawa T, Minegishi T. TNF-α Suppressed FSH-Induced LH Receptor Expression Through Transcriptional Regulation in Rat Granulosa Cells. Endocrinology 2015; 156:3192-202. [PMID: 26125466 DOI: 10.1210/en.2015-1238] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Several inflammatory cytokines regulate ovarian function. TNF-α is produced in granulosa cells under physiological conditions and has a reciprocal action on follicle development. In contrast, in pelvic inflammatory diseases, TNF-α is excessively produced in the pelvic cavity and has an adverse effect on reproductive functions. The objective of this study was to elucidate the mechanism of action of TNF-α on the expression of LH receptor (LHR) in immature rat granulosa cells. TNF-α suppressed FSH-induced LHR mRNA and protein expression and was not associated with cAMP accumulation. By using a luciferase assay, the construct containing base pairs -1389 to -1 of the rat Lhcgr promoter revealed that TNF-α decreased FSH-induced promoter activity. In response to TNF-α, nuclear factor (NF)-κB p65 was translocated to the nucleus, and the suppressive effect of TNF-α on LHR mRNA expression was abrogated by an NF-κB inhibitor. In a chromatin immunoprecipitation assay, TNF-α induced the association of NF-κB p65 with the rat Lhcgr transcriptional promoter region. NF-κB p65 and histone deacetylase (HDAC) interact to mediate expression of several genes at a transcriptional level. HDAC activity is thought to induce tight connections within local chromatin structures and repress gene transcription. Furthermore, the TNF-α-induced suppression of LHR mRNA expression was blocked by an HDAC inhibitor. Taken together, these results suggest that the interaction of NF-κB p65 with HDAC in the promoter region of rat Lhcgr might be responsible for TNF-α action on the regulation of LHR.
Collapse
Affiliation(s)
- Kohshiro Nakao
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroshi Kishi
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Fumiharu Imai
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroto Suwa
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takashi Hirakawa
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takashi Minegishi
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
18
|
Wang C, Li C, Li H, Ma W, Chen S, Zhao Y, Rao J, Zhou X. Downregulation of the expression of inhibin α subunit and betaglycan in porcine cystic follicles. J Vet Med Sci 2015; 77:1419-25. [PMID: 26097017 PMCID: PMC4667659 DOI: 10.1292/jvms.14-0617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Inhibins, as members of the transforming growth factor beta (TGF-β)
superfamily, downregulate the synthesis and secretion of follicle-stimulating hormone
(FSH) in an endocrine manner. The role of inhibin/betaglycan in the ovary regulation
recently gained attention. To date, no data exist on the function of inhibin α subunit and
betaglycan in cystic follicles. In this study, the expressions of inhibin α subunit and
betaglycan in cystic follicles were investigated using immunohistochemistry, real-time PCR
and Western blot analysis. Both inhibin α subunit and betaglycan immunoreactivities were
mainly localized in the granulosa cells of follicles. Expression of inhibin α subunit and
betaglycan was inferior in cystic follicles compared with that in normal large follicles.
However, the result of enzyme-linked immunosorbent assay showed no significant difference
in the decreasing in concentration of inhibin α subunit in cystic follicular fluid
compared with the control (P>0.05). In this study, we explored the
effects of FSH on betaglycan expression in granulosa cells in vitro. As
expected, a significant increase in the expressions of betaglycan mRNA and protein in
granulosa cells was observed in response to exogenous FSH (30
ng/ml) (P<0.05) compared with the
control. Consequently, this study provides evidence that the expressions of inhibin α
subunit and betaglycan are inferior in cystic follicles, and this may be caused by the
decrease in FSH in the presence of a cystic follicle.
Collapse
Affiliation(s)
- Chunqiang Wang
- College of Animal Sciences, Jilin Provincial Key Laboratory of Animal Embryo Engineering, Jilin University, 5333 Xian Road, Changchun, Jilin 130062, P.R. of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Mannelli C, Szóstek AZ, Lukasik K, Carotenuto C, Ietta F, Romagnoli R, Ferretti C, Paulesu L, Wołczynski S, Skarzynski DJ. Bisphenol A modulates receptivity and secretory function of human decidual cells: an in vitro study. Reproduction 2015; 150:115-25. [PMID: 26021997 DOI: 10.1530/rep-14-0601] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 05/28/2015] [Indexed: 12/29/2022]
Abstract
The human endometrium is a fertility-determining tissue and a target of steroid hormones' action. Endocrine disruptors (EDs) can exert adverse effects on the physiological function of the decidua at the maternal-fetal interface. We examined the potential effects of an ED, bisphenol A (BPA), on endometrial maturation/decidualization, receptivity, and secretion of decidual factors (biomarkers). In vitro decidualized, endometrial stromal cells from six hysterectomy specimens were treated with 1 pM-1 μM of BPA, for 24 h and assessed for cell viability and proliferation. Three non-toxic concentrations of BPA (1 μM, 1 nM, and 1 pM) were selected to study its influence on secretion of cell decidualization biomarkers (IGF-binding protein and decidual prolactin (dPRL)), macrophage migration inhibitory factor (MIF) secretion, and hormone receptors' expression (estrogen receptors (ERα and ERβ); progesterone receptors (PRA and PRB); and human chorionic gonadotropin (hCG)/LH receptor (LH-R)). The results showed a decrease in cell viability (P<0.001) in response to BPA at the level of 1 mM. At the non-toxic concentrations used, BPA perturbed the expression of ERα, ERβ, PRA, PRB, and hCG/LH-R (P<0.05). Furthermore, 1 μM of BPA reduced the mRNA transcription of dPRL (P<0.05). Secretion of MIF was stimulated by all BPA treatments, the lowest concentration (1 pM) being the most effective (P<0.001). The multi-targeted disruption of BPA on decidual cells, at concentrations commonly detected in the human population, raises great concern about the possible consequences of exposure to BPA on the function of decidua and thus its potential deleterious effect on pregnancy.
Collapse
Affiliation(s)
- Chiara Mannelli
- Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland
| | - Anna Z Szóstek
- Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland
| | - Karolina Lukasik
- Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland
| | - Claudiopietro Carotenuto
- Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland
| | - Francesca Ietta
- Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland
| | - Roberta Romagnoli
- Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland
| | - Cristina Ferretti
- Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland
| | - Luana Paulesu
- Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland
| | - Slawomir Wołczynski
- Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland
| | - Dariusz Jan Skarzynski
- Institute of Animal Reproduction and Food ResearchPolish Academy of Sciences, Tuwima Street 10, 10-748 Olsztyn, PolandDepartment of Life SciencesUniversity of Siena, Via A. Moro, 2, Siena 53100, ItalyObstetrics and Gynecology DivisionLocal Health Authority 7, Campostaggia Hospital, Siena, ItalyDepartment of Reproduction and Gynecological EndocrinologyMedical University, Bialystok, Poland
| |
Collapse
|
20
|
Troppmann B, Kossack N, Nordhoff V, Schüring AN, Gromoll J. MicroRNA miR-513a-3p acts as a co-regulator of luteinizing hormone/chorionic gonadotropin receptor gene expression in human granulosa cells. Mol Cell Endocrinol 2014; 390:65-72. [PMID: 24747085 DOI: 10.1016/j.mce.2014.04.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/17/2014] [Accepted: 04/07/2014] [Indexed: 12/26/2022]
Abstract
The luteinizing hormone/chorionic gonadotropin receptor (LHCGR) is essential for normal male and female reproductive processes. The spatial and temporal LHCGR gene expression is controlled by a complex system of regulatory mechanisms which are crucial for normal physiological function, especially during the female cycle. In this study, we aimed to elucidate whether microRNAs are involved in this network and play a role in regulating LHCGR expression. Computational analysis predicted that miR-513a-3p interacts with the LHCGR mRNA via three binding sites located in the 3'UTR region, enabling a synergistic action. Moreover, using a luciferase-based reporter assay we found that miR-513a-3p targets the LHCGR, resulting in a significant down-regulation of its expression. In human primary granulosa cell cultures we detected a dynamic, inversely associated expression pattern of miR-513a-3p and the LHCGR. In addition, transfection with miR-513a-3p or its specific inhibitor led to a down- or up-regulation at the LHCGR mRNA level, respectively. An increased amount of miR-513a-3p resulted in the down-regulation of the LHCGR mRNA, reflected by the attenuation of cAMP synthesis after hormonal stimulation. In conclusion, these data demonstrate that miR-513a-3p is involved in the control of the LHCGR expression by an inversely regulated mechanism at the post-transcriptional level and show for the first time that this kind of post-transcriptional process contributes to the multifaceted system of the human LHCGR regulation.
Collapse
Affiliation(s)
- B Troppmann
- Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - N Kossack
- Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - V Nordhoff
- Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - A N Schüring
- Department of Gynaecology and Obstetrics, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany
| | - J Gromoll
- Centre of Reproductive Medicine and Andrology, University Hospital Muenster, Albert-Schweitzer-Campus 1, 48149 Muenster, Germany.
| |
Collapse
|
21
|
Imai F, Kishi H, Nakao K, Nishimura T, Minegishi T. IL-6 up-regulates the expression of rat LH receptors during granulosa cell differentiation. Endocrinology 2014; 155:1436-44. [PMID: 24467743 DOI: 10.1210/en.2013-1821] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IL-6 is produced in granulosa cells under normal physiological conditions, including during ovulation. However, the roles of IL-6 in ovarian function, including regulation of LH receptor (LHR) expression in granulosa cells, have not been explored in detail. The aim of this study was to identify the mechanism underlying the effect of IL-6 on LHR expression in the granulosa cells of female Wistar rats. Our results indicated that IL-6 clearly enhanced the FSH-induced LHR mRNA expression in a dose-dependent manner and did not stimulate cAMP accumulation by itself. The membrane protein level of LHR, assessed by a binding assay, was increased by FSH and was further enhanced by association with IL-6. Results of the luciferase assay, using promoter constructs of LHR 281 bp upstream of the translational start site, revealed that IL-6 increased the promoter activity induced by FSH, but this effect was not observed with treatment by IL-6 alone. This ability of IL-6 to enhance FSH-induced LHR mRNA expression was blocked by the Janus tyrosine kinase (JAK) pathway inhibitor, but not by the ERK1/2 inhibitor. Thus, we speculated that this IL-6 activity might be mediated by the JAK/signal transducer and activator of transcription pathway. In addition, IL-6 augmented FSH-induced IL-6 receptor α mRNA expression and FSH elevated IL-6 production in granulosa cells, which indicates that IL-6 may positively regulate paracrine and autocrine actions in granulosa cells. These results suggest that IL-6 up-regulates FSH-induced LHR production by increasing mRNA transcription, and JAK/signal transducer and activator of transcription 3 signaling is required for up-regulation by IL-6 in granulosa cells.
Collapse
Affiliation(s)
- Fumiharu Imai
- Department of Obstetrics and Gynecology, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | |
Collapse
|
22
|
Choi J, Smitz J. Luteinizing hormone and human chorionic gonadotropin: origins of difference. Mol Cell Endocrinol 2014; 383:203-13. [PMID: 24365330 DOI: 10.1016/j.mce.2013.12.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/06/2013] [Accepted: 12/12/2013] [Indexed: 01/24/2023]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (hCG) are widely recognized for their roles in ovulation and the support of early pregnancy. Aside from the timing of expression, however, the differences between LH and hCG have largely been overlooked in the clinical realm because of their similar molecular structures and shared receptor. With technologic advancements, including the development of highly purified and recombinant gonadotropins, researchers now appreciate that these hormones are not as interchangeable as once believed. Although they bind to a common receptor, emerging evidence suggests that LH and hCG have disparate effects on downstream signaling cascades. Increased understanding of the inherent differences between LH and hCG will foster more effective diagnostic and prognostic assays for use in a variety of clinical contexts and support the individualization of treatment strategies for conditions such as infertility.
Collapse
Affiliation(s)
- Janet Choi
- The Center for Women's Reproductive Care at Columbia University, New York, NY, United States.
| | - Johan Smitz
- UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
23
|
Azhar S. MicroRNA-122: a new player in the negative regulation of LH receptor expression by the LH receptor mRNA binding protein (LRBP). Endocrinology 2013; 154:4439-42. [PMID: 24273230 PMCID: PMC3836070 DOI: 10.1210/en.2013-1897] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Salman Azhar
- GRECC-182B, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA 94304.
| |
Collapse
|
24
|
Kitahara Y, Nakamura K, Kogure K, Minegishi T. Role of microRNA-136-3p on the expression of luteinizing hormone-human chorionic gonadotropin receptor mRNA in rat ovaries. Biol Reprod 2013; 89:114. [PMID: 24025743 DOI: 10.1095/biolreprod.113.109207] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that interact with mRNAs and trigger either translation repression or RNA cleavage of target genes. In this study, we investigated whether miRNA was involved in down-regulation of the luteinizing hormone receptor (LHR) in rat ovaries. An miRNA microarray was used to analyze the overall miRNA expression profile of rat ovaries in association with the down-regulation of LHR mRNA. We found that 23 miRNAs were highly expressed during this period. Combining these results with data from a bioinformatics database, clustering analysis led us to focus on miR-136-3p for further analysis. In both in vivo and in vitro studies, miR-136-3p expression levels were increased at 6 h after human chorionic gonadotropin (hCG) administration, concurrent with down-regulation of LHR mRNA. Moreover, transfection of cultured granulosa cells with miR-136-3p resulted in a significant decrease in LHR mRNA levels in comparison with those of cells transfected with negative control. In contrast, transfection with a miR-136-3p inhibitor increased LHR mRNA levels. Finally, cotransfection of granulosa cells with a miR-136-3p inhibitor and a reporter vector containing the 3'-untranslated region (UTR) of LHR mRNA and Renilla luciferase coding sequence revealed that miR-136-3p bound directly to the 3'-UTR of LHR mRNA. These data demonstrated that miR-136-3p participated in the down-regulation of LHR mRNA by binding directly to LHR mRNA.
Collapse
|
25
|
Menon B, Sinden J, Menon KMJ. Association of luteinizing hormone receptor (LHR) mRNA with its binding protein leads to decapping and degradation of the mRNA in the p bodies. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1173-9. [PMID: 23376535 DOI: 10.1016/j.bbamcr.2013.01.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/21/2012] [Accepted: 01/22/2013] [Indexed: 01/08/2023]
Abstract
Luteinizing hormone receptor undergoes downregulation during preovulatory Luteinizing hormone surge through a post-transcriptional mechanism involving an RNA binding protein designated as LRBP. The present study examined the mechanism by which LRBP induces the degradation of Luteinizing hormone receptor mRNA, specifically the role of decapping of Luteinizing hormone receptor mRNA and the translocation of LRBP-bound Luteinizing hormone receptor mRNA to degradative machinery. Immunoprecipitation of the complex with the 5'cap structure antibody followed by real time PCR analysis showed progressive loss of capped Luteinizing hormone receptor mRNA during downregulation suggesting that Luteinizing hormone receptor mRNA undergoes decapping prior to degradation. RNA immunoprecipitation analysis confirmed dissociation of eukaryotic initiation factor 4E from the cap structure, a step required for decapping. Furthermore, RNA immunoprecipitation analysis using antibody against the p body marker protein, DCP1A showed that Luteinizing hormone receptor mRNA was associated with the p bodies, the cytoplasmic foci that contain RNA degradative enzymes and decapping complex. Immunohistochemical studies using antibodies against LRBP and DCP1A followed by confocal analysis showed colocalization of LRBP with DCP1A during downregulation. This was further confirmed by co-immunoprecipitation of LRBP with DCP1A. The association of LRBP and Luteinizing hormone receptor mRNA in the p bodies during downregulation was further confirmed by examining the association of a second p body component, rck/p54, using immunoprecipitation and RNA immunoprecipitation respectively. These data suggest that the association of LRBP with Luteinizing hormone receptor mRNA results in the translocation of the messenger ribonucleoprotein complex to the p bodies leading to decapping and degradation.
Collapse
Affiliation(s)
- Bindu Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, MI 48109-0617, USA
| | | | | |
Collapse
|
26
|
Kogure K, Nakamura K, Ikeda S, Kitahara Y, Nishimura T, Iwamune M, Minegishi T. Glucose-Regulated Protein, 78-Kilodalton Is a Modulator of Luteinizing Hormone Receptor Expression in Luteinizing Granulosa Cells in Rats1. Biol Reprod 2013; 88:8. [DOI: 10.1095/biolreprod.112.101873] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
27
|
Segers I, Adriaenssens T, Wathlet S, Smitz J. Gene expression differences induced by equimolar low doses of LH or hCG in combination with FSH in cultured mouse antral follicles. J Endocrinol 2012; 215:269-80. [PMID: 22906696 DOI: 10.1530/joe-12-0150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In a natural cycle, follicle growth is coordinated by FSH and LH. Follicle growth stimulation in Assisted Reproductive Technologies (ART) requires antral follicles to be exposed to both FSH and LH bioactivity, especially after GNRH analog pretreatment. The main aim was to detect possible differences in gene expression in granulosa cells after exposing the follicle during antral growth to LH or hCG, as LH and hCG are different molecules acting on the same receptor. Effects of five gonadotropin treatments were investigated for 16 genes using a mouse follicle culture model. Early (day 6) antral follicles were exposed to high recombinant FSH combined or not with equimolar concentrations of recombinant LH (rLH) or recombinant hCG (rhCG) and to highly purified human menopausal gonadotropin (HP-hMG) for 6 h, 12 h, or 3 days. Expression differences were tested for genes involved in steroidogenesis: Mvk, Lss, Cyp11a1, Hsd3b1, Cyp19a1, Nr4a1, and Timp1; final granulosa differentiation: Lhcgr, Oxtr, Pgr, Egfr, Hif1a, and Vegfa; and cytokines: Cxcl12, Cxcr4, and Sdc4. Lhcgr was present and upregulated by gonadotropins. Nr4a1, Cxcl12, and Cxcr4 showed a different expression pattern if LH bioactivity was added to high FSH in the first hours after exposure. However, no signs of premature luteinization were present even after a 3-day treatment as shown by Cyp19a1, Oxtr, Pgr, and Egfr and by estrogen and progesterone measurements. The downstream signaling by rhCG or rLH through the LHCGR was not different for this gene selection. Granulosa cells from follicles exposed to HP-hMG showed an enhanced expression level for several genes compared with recombinant gonadotropin exposure, possibly pointing to enhanced cellular activity.
Collapse
Affiliation(s)
- Ingrid Segers
- Follicle Biology Laboratory, Vrije Universiteit Brussel, Jette, Belgium.
| | | | | | | |
Collapse
|
28
|
Menon KMJ, Menon B. Structure, function and regulation of gonadotropin receptors - a perspective. Mol Cell Endocrinol 2012; 356:88-97. [PMID: 22342845 PMCID: PMC3327826 DOI: 10.1016/j.mce.2012.01.021] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/13/2012] [Accepted: 01/24/2012] [Indexed: 11/19/2022]
Abstract
Luteinizing hormone receptor and follicle stimulating hormone receptor play a crucial role in female and male reproduction. Significant new information has emerged about the structure, mechanism of activation, and regulation of expression of these receptors. Here we provide an overview of the current information on those aspects with an in-depth discussion of the recent developments in the post-transcriptional mechanism of LH receptor expression mediated by a specific LH receptor mRNA binding protein, designated as LRBP. LRBP was identified by electrophoretic gel mobility shift assay using cytosolic fractions from ovaries in the down regulated state. LRBP was purified, its binding site on LH receptor mRNA was identified and characterized. During ligand-induced down regulation, LRBP expression is increased through the cAMP/PKA and ERK signaling pathway, is translocated to translating ribosomes, binds LH receptor mRNA and forms an untranslatable ribonucleoprotein complex. This complex is then routed to the mRNA degradation machinery resulting in diminished levels of both LHR mRNA and cell surface expression of LH receptor. The studies leading to these conclusions are presented.
Collapse
Affiliation(s)
- K M J Menon
- Departments of Obstetrics/Gynecology and Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109-0617, United States.
| | | |
Collapse
|
29
|
Kazeto Y, Kohara M, Tosaka R, Gen K, Yokoyama M, Miura C, Miura T, Adachi S, Yamauchi K. Molecular Characterization and Gene Expression of Japanese Eel (Anguilla japonica) Gonadotropin Receptors. Zoolog Sci 2012; 29:204-11. [DOI: 10.2108/zsj.29.204] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Liu KC, Lin SW, Ge W. Differential regulation of gonadotropin receptors (fshr and lhcgr) by estradiol in the zebrafish ovary involves nuclear estrogen receptors that are likely located on the plasma membrane. Endocrinology 2011; 152:4418-30. [PMID: 21878512 DOI: 10.1210/en.2011-1065] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
FSH and LH are gonadotropins (GTH) that control all major events of gonadal function. FSH and LH signal through their cognate receptors, FSH receptor and LH/choriogonadotropin receptor, respectively, across vertebrates. Compared with the information in mammals, very little is known about these receptors in fish, especially the regulation of their expression. In female zebrafish, fshr and lhcgr exhibit significant temporal difference in expression, with fshr increasing first when the follicles are activated to enter the vitellogenic growth phase and lhcgr lagging behind. This raises an interesting question on the differential regulation of these two GTH receptors (GTHR) during folliculogenesis. Using a primary follicle cell culture, the present study demonstrated that 17β-estradiol (E2), but not testosterone, was a potent endocrine hormone that differentially regulated the expression of fshr and lhcgr. Although E2 stimulated both receptors, its effect on the steady-state level of lhcgr mRNA was much higher (>8-fold up-regulation) than that of fshr (∼0.5-fold increase). E2 likely acted at the transcription level via its nuclear estrogen receptors (ERα and ERβ), because ICI 182,780 could abolish its effects. However, our evidence suggested that these receptors might be localized on the plasma membrane, because β-estradiol 6-(O-carboxy methyl)oxime:BSA could fully mimic the effects of E2. Demonstrating that E2 is likely one of the differentiating factors for the distinct expression of the two GTHR in the zebrafish ovary, this study sheds important light on the functions of the two GTH and their receptors in fish as well as the conservation and diverse aspects of GTHR regulation across vertebrates.
Collapse
MESH Headings
- Animals
- Estradiol/pharmacology
- Female
- Ovary/drug effects
- Ovary/metabolism
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Estrogen/genetics
- Receptors, Estrogen/metabolism
- Receptors, FSH/genetics
- Receptors, FSH/metabolism
- Receptors, LH/genetics
- Receptors, LH/metabolism
- Testosterone/pharmacology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- Ka-Cheuk Liu
- School of Life Sciences and Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | | | | |
Collapse
|
31
|
Buratini J, Price CA. Follicular somatic cell factors and follicle development. Reprod Fertil Dev 2011; 23:32-9. [DOI: 10.1071/rd10224] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Considerable attention is currently paid to oocyte-derived secreted factors that act upon cumulus and granulosa cells. Also important for follicle development are somatic cell-derived secreted factors. This is illustrated by the ability of granulosa cell-derived Kit ligand (KITL) to promote primordial follicle activation, and the loss of follicle development that accompanies KITL gene disruption. This review summarises our current understanding of somatic cell factors during both preantral and antral follicle growth, involving not only signalling from granulosa cells to the oocyte, but also signalling between granulosa and theca cells. Principal granulosa cell-derived factors include activin, anti-Müllerian hormone (AMH), bone morphogenetic proteins (BMPs) and fibroblast growth factors (FGFs). Theca cells also secrete BMPs and FGFs. The interplay between these factors is equally important for follicle growth as the activity of oocyte-derived factors.
Collapse
|
32
|
Menon B, Franzo-Romain M, Damanpour S, Menon KMJ. Luteinizing hormone receptor mRNA down-regulation is mediated through ERK-dependent induction of RNA binding protein. Mol Endocrinol 2010; 25:282-90. [PMID: 21147848 DOI: 10.1210/me.2010-0366] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The ligand-induced down-regulation of LH receptor (LHR) expression in the ovaries, at least in part, is regulated by a posttranscriptional process mediated by a specific LH receptor mRNA binding protein (LRBP). The LH-mediated signaling pathways involved in this process were examined in primary cultures of human granulosa cells. Treatment with 10 IU human chorionic gonadotropin (hCG) for 12 h resulted in the down-regulation of LHR mRNA expression while producing an increase in LHR mRNA binding to LRBP as well as a 2-fold increase in LRBP levels. The activation of ERK1/2 pathway in LH-mediated LHR mRNA down-regulation was also established by demonstrating the translocation of ERK1/2 from the cytosol to the nucleus using confocal microcopy. Inhibition of protein kinase A using H-89 or ERK1/2 by U0126 abolished the LH-induced LHR mRNA down-regulation. These treatments also abrogated both the increases in LRBP levels as well as the LHR mRNA binding activity. The abolishment of the hCG-induced increase in LRBP levels and LHR mRNA binding activity was further confirmed by transfecting granulosa cells with ERK1/2 specific small interfering RNA. This treatment also reversed the hCG-induced down-regulation of LHR mRNA. These data show that LH-regulated ERK1/2 signaling is required for the LRBP-mediated down-regulation of LHR mRNA.
Collapse
Affiliation(s)
- Bindu Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, Michigan 48109-0617, USA.
| | | | | | | |
Collapse
|
33
|
Menon KMJ, Menon B, Wang L, Gulappa T, Harada M. Molecular regulation of gonadotropin receptor expression: relationship to sterol metabolism. Mol Cell Endocrinol 2010; 329:26-32. [PMID: 20570710 PMCID: PMC2946426 DOI: 10.1016/j.mce.2010.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 11/21/2022]
Abstract
We have identified a specific LHR mRNA binding protein that selectively binds to the polypyrimidine-rich bipartite sequence in the coding region of the LHR mRNA and accelerates its degradation. This process has been shown to be one of the mechanisms that is responsible for the loss of the steady-state levels of LHR mRNA following the preovulatory LH surge or the down regulation of the receptor in response to the administration of a pharmacological dose of LH or hCG. The trans factor, designated as the LHR mRNA binding protein (LRBP), was purified and its identity was established as being mevalonate kinase, an enzyme involved in cholesterol biosynthesis. When mevalonate kinase expression was abolished by treating cultured luteal cells with 25-hydroxycholesterol, the ability to undergo LH-induced down regulation of LHR mRNA was completely abrogated. Examination of the crystal structure of mevalonate kinase coupled with mutagenesis of the critical residues in the catalytic site revealed that the catalytic site is in close proximity to the LHR mRNA binding site. Further studies revealed that mevalonate kinase causes LHR mRNA degradation by acting as a translational suppressor by forming an untranslatable ribonucleoprotein (RNP) complex which is then targeted for degradation. These studies show that LHR expression in the ovary is regulated by a post-transcriptional mechanism mediated by mevalonate kinase thereby linking LHR expression with cholesterol metabolism.
Collapse
Affiliation(s)
- K M J Menon
- Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI 48109-0617, United States.
| | | | | | | | | |
Collapse
|
34
|
Menon B, Peegel H, Menon KMJ. Evidence for the association of luteinizing hormone receptor mRNA-binding protein with the translating ribosomes during receptor downregulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1787-94. [PMID: 19716387 DOI: 10.1016/j.bbamcr.2009.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 08/13/2009] [Accepted: 08/17/2009] [Indexed: 01/28/2023]
Abstract
Luteinizing hormone receptor (LHR) mRNA is post-transcriptionally regulated during ligand-induced downregulation. This process involves interaction of LHR mRNA with a specific mRNA-binding protein (LRBP), identified as mevalonate kinase (MVK), resulting in inhibition of translation followed by targeting the ribonucleoprotein complex to accelerated degradation. The present study investigated the endogenous association of LRBP with the translational machinery and its interaction with LHR mRNA during LH/hCG-induced downregulation. Ovaries were collected from rats that were injected with the ligand, hCG, to induce downregulation of LHR mRNA expression. Western blot analysis showed significantly higher levels of LRBP in polysomes from downregulated ovaries compared to controls. Western blot analysis of ribosome-rich fractions from FPLC-assisted gel filtration of post-mitochondrial supernatants confirmed the presence of LRBP in translating ribosomes isolated from the downregulated state but not from controls. The association of LRBP with LHR mRNA in the downregulated polysomes was demonstrated by immunoprecipitation with LRBP antibody followed by qPCR analysis of the associated RNA. Increased association of LHR mRNA with LRBP during downregulation was also demonstrated by subjecting the polysome-associated RNAs to oligo(dT) cellulose chromatography followed by immunoprecipitation and qPCR analysis. Additionally, analysis of in vitro translation of LHR mRNA showed increased inhibition of translation by polysomes from downregulated ovaries compared to control. This study provides strong in vivo and in vitro evidence to show that during ligand-induced downregulation, LRBP translocates to ribosomes and associates with LHR mRNA to form an untranslatable ribonucleoprotein complex and inhibits LHR mRNA translation, paving the way to its degradation.
Collapse
Affiliation(s)
- Bindu Menon
- Department of Obstetrics/Gynecology, University of Michigan Medical School, Ann Arbor, MI 48109-0617, USA
| | | | | |
Collapse
|
35
|
Dickinson RE, Stewart AJ, Myers M, Millar RP, Duncan WC. Differential expression and functional characterization of luteinizing hormone receptor splice variants in human luteal cells: implications for luteolysis. Endocrinology 2009; 150:2873-81. [PMID: 19246536 DOI: 10.1210/en.2008-1382] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The human LH receptor (LHR) plays a key role in luteal function and the establishment of pregnancy through its interaction with the gonadotropins LH and human chorionic gonadotropin. We previously identified four splice variants of the LHR in human luteinized granulosa cells (LGCs) and corpora lutea (CL). Real-time quantitative PCR revealed that expression of the full-length LHR (LHRa) and the most truncated form (LHRd) changed significantly in CL harvested at different stages of the ovarian cycle (P < 0.01, ANOVA). LHRa expression was reduced in the late luteal CL (P < 0.05). Conversely, an increase in LHRd expression was observed in the late luteal CL (P < 0.01). Chronic manipulation of human chorionic gonadotropin in LGC primary cultures supported the in vivo findings. LHRd encodes a protein lacking the transmembrane and carboxyl terminal domains. COS-7 cells expressing LHRd were unable to produce cAMP in response to LH stimulation. COS-7 cells coexpressing LHRd and LHRa also failed to generate cAMP in response to LH, suggesting that this truncated form has a negative effect on the signaling of LHRa. Immunofluorescence staining of LGC and COS-7 cells implied that there is a reduction in cell surface expression of LHRa when LHRd is present. Overall, these results imply expression of LHR splice variants is regulated in the human CL. Furthermore, during functional luteolysis a truncated variant could modulate the cell surface expression and activity of full-length LHR.
Collapse
Affiliation(s)
- Rachel E Dickinson
- Department of Reproductive and DevelopmentalSciences, Division of Obstetrics and Gynaecology, Centre for Reproductive Biology,The Queen's Medical Research Institute, Edinburgh, United Kingdom.
| | | | | | | | | |
Collapse
|
36
|
Cannon JD, Seekallu SV, Vandevoort CA, Chaffin CL. Association of luteinizing hormone receptor gene expression with cell cycle progression in granulosa cells. Am J Physiol Endocrinol Metab 2009; 296:E1392-9. [PMID: 19293332 PMCID: PMC2692403 DOI: 10.1152/ajpendo.90965.2008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During hormonally induced ovarian follicle growth, granulosa cell proliferation increases and returns to baseline prior to the administration of an ovulatory stimulus. Several key genes appear to follow a similar pattern, including the luteinizing hormone receptor (LHCGR), suggesting an association between cell cycle progression and gene expression. The expression of LHCGR mRNA in granulosa cells isolated from immature rats and treated in culture with FSH increased in a time-dependent manner, whereas administration of the cell cycle inhibitor mimosine completely suppressed expression. Although forskolin was able to induce luteinization in cells treated with mimosine, human chorionic gonadotropin had no effect, indicating the functional loss of LHCGR. The effects of mimosine on cell cycle progression and LHCGR mRNA expression were reversible within 24 h of mimosine removal. Cell cycle inhibition did not alter the stability of LHCGR mRNA, indicating that the primary effect was at the transcriptional level. To determine whether the relationship between LHCGR expression and cell cycle were relevant in vivo, immature rats were given a bolus of PMSG, followed by a second injection of either saline or PMSG 24 h later to augment levels of proliferation. The expression of LHCGR mRNA was elevated in the ovaries of animals receiving a supplement of PMSG. Mimosine also blocked cell cycle progression and LHCGR mRNA expression in macaque granulosa cells isolated following controlled ovarian stimulation cycles and in two different mouse Leydig tumor lines. These data collectively indicate that LHCGR mRNA is expressed as a function of the passage of cells across the G1-S phase boundary.
Collapse
Affiliation(s)
- Jennifer D Cannon
- Dept. of Obstetrics, Gynecology, & Reproductive Sciences, Univ. of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|