1
|
Deal CK, Volkoff H. Effects of thyroxine and propylthiouracil on feeding behavior and the expression of hypothalamic appetite-regulating peptides and thyroid function in goldfish (Carassius auratus). Peptides 2021; 142:170578. [PMID: 34033875 DOI: 10.1016/j.peptides.2021.170578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/07/2021] [Accepted: 05/18/2021] [Indexed: 11/29/2022]
Abstract
There is poor evidence for an association between thyroidal state, feeding and appetite regulation in fish. We assessed how an altered thyroid state influences feeding behavior, food intake and expression of hypothalamic appetite-regulating peptides (Klotho-α and Klotho-β; orexin, OX; cholecystokinin, CCK; agouti-related peptide, AgRP; cannabinoid receptor 1, CB1) in goldfish. We also measured the expressions of hypothalamic, pituitary and liver transcripts that regulate the thyroid [thyrotropin-releasing hormone (TRH), thyrotropin-releasing hormone receptor (TRH-R) type 1, thyroid stimulating hormone beta (TSHβ), deiodinases (DIO2, DIO3), UDP-glucuronosyltransferase (UGT1A1), thyroid receptor alpha and beta (TRα, TRβ)], and circulating levels of total thyroxine (tT4) and total triiodothyronine (tT3). Goldfish were implanted with propylthiouracil (PTU) or T4 osmotic pumps for 12 days. T4- treatment increased feeding behavior but not food intake, increased central TSHβ and DIO2, and hepatic DIO2 transcript expression and increased central DIO3 mRNA. Under hyperthyroid conditions, hypothalamic Klotho and CCK expressions were downregulated, suggesting an increased metabolic state and a hypothalamic response to regulate energy balance. AgRP, OX and CB1 were not affected by T4 treatment. PTU had no effect on any of the parameters examined, suggesting it is not a sensitive thyroid inhibitor in fish. Overall, we show that unlike in mammals, hyperthyroid conditions in goldfish do not lead to an increased desire or need to consume food, furthering evidence for a weak link between the thyroid and appetite.
Collapse
Affiliation(s)
- Cole K Deal
- Departments of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Helene Volkoff
- Departments of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada; Departments of Biochemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| |
Collapse
|
2
|
Echeverry-Alzate V, Bühler KM, Calleja-Conde J, Huertas E, Maldonado R, Rodríguez de Fonseca F, Santiago C, Gómez-Gallego F, Santos A, Giné E, López-Moreno JA. Adult-onset hypothyroidism increases ethanol consumption. Psychopharmacology (Berl) 2019; 236:1187-1197. [PMID: 30470859 DOI: 10.1007/s00213-018-5123-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 11/14/2018] [Indexed: 12/29/2022]
Abstract
RATIONALE Only in Europe it can be estimated that more than 20 million of people would be affected by hypothyroidism in some moment of their life. Given that ethanol consumption is so frequent, it would be reasonable to ask what the consequences of ethanol consumption in those individuals affected by hypothyroidism are. OBJECTIVES To study the interaction between hypothyroidism and ethanol consumption. METHODS We study ethanol consumption in a rat model of methyl-mercaptoimidazole-induced-adult-onset hypothyroidism and thyroid T4/T3 hormone supplementation. Also, we studied the effects of ethanol on motor activity, memory, and anxiety. RESULTS We found that hypothyroidism increased the voluntary ethanol consumption and that this was enhanced by thyroid hormone supplementation. Hypothyroidism was associated with motor hyperactivity which was prevented either by T4/T3 supplementation or ethanol. The relationship between hypothyroidism, ethanol, and anxiety was more complex. In an anxiogenic context, hypothyroidism and T4/T3 supplementation would increase immobility, an anxiety-like behavior, while in a less anxiogenic context would decrease rearing, a behavior related to anxiety. Regarding memory, acute ethanol administration did not alter episodic-like memory in hypothyroid rats. Gene expression of enzymes involved in the metabolism of ethanol, i.e., Adh1 and Aldh2, were altered by hypothyroidism and T4/T3 supplementation. CONCLUSIONS Our results suggest that hypothyroid patients would need personalized attention in terms of ethanol consumption. In addition, they point that it would be useful to embrace the thyroid axis in the study of ethanol addiction, including as a possible therapeutic target for the treatment of alcoholism and its comorbid disorders.
Collapse
Affiliation(s)
- V Echeverry-Alzate
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain
| | - K M Bühler
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain
| | - J Calleja-Conde
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain
| | - E Huertas
- Department of Experimental Psychology, Cognitive Processes & Speech Therapy, School of Psychology, Complutense University of Madrid, 28223, Madrid, Spain
| | - R Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - F Rodríguez de Fonseca
- Fundación IMABIS, Laboratorio de Medicina Regenerativa, Hospital Regional Universitario Carlos Haya, 29010, Málaga, Spain
| | - C Santiago
- Department of Basic Biomedical Science, Faculty of Biomedical and Health Sciences, Universidad Europea de Madrid, Villaviciosa de Odón, 28670, Madrid, Spain
| | - F Gómez-Gallego
- Facultad de Ciencias de la Salud, Universidad Internacional de la Rioja (UNIR), La Rioja, Spain
| | - A Santos
- Department of Biochemistry & Molecular Biology, Faculty of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - E Giné
- Department of Cellular Biology, School of Medicine, Complutense University of Madrid, 28040, Madrid, Spain
| | - J A López-Moreno
- Department of Psychobiology & Behavioral Sciences Methods, School of Psychology, Campus de Somosaguas, Complutense University of Madrid, 28223, Madrid, Spain.
| |
Collapse
|
3
|
Giné E, Echeverry-Alzate V, Lopez-Moreno JA, Rodriguez de Fonseca F, Perez-Castillo A, Santos A. The CB1 receptor is required for the establishment of the hyperlocomotor phenotype in developmentally-induced hypothyroidism in mice. Neuropharmacology 2016; 116:132-141. [PMID: 28017790 DOI: 10.1016/j.neuropharm.2016.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 12/12/2016] [Accepted: 12/19/2016] [Indexed: 12/17/2022]
Abstract
Alterations in motor functions are well-characterized features observed in humans and experimental animals with thyroid hormone dysfunctions during development. We have previously suggested the implication of the endocannabinoid system in the hyperlocomotor phenotype observed in developmentally induced hypothyroidism in rats. In this work we have further analyzed the implication of endocannabinoids in the effect of hypothyroidism on locomotor activity. To this end, we evaluated the locomotor activity in adult mice lacking the cannabinoid receptor type 1 (CB1R-/-) and in their wild type littermates (CB1R+/+), whose hypothyroidism was induced in day 12 of gestation and maintained during the experimental period. Our results show that hypothyroidism induced a hyperlocomotor phenotype only in CB1R+/+, but not in CB1R-/- mice. In contrast with our previous results in rats, the expression of CB1R in striatum and the motor response to the cannabinoid agonist HU210 was unaltered in hypothyroid CB1R+/+ mice suggesting that the cannabinoid system is not altered by hypothyroidism. Also, no effect of HU210 was observed in locomotion of CB1R-/- mice. Finally, since the dopaminergic system plays a major role in the control of locomotor activity we studied its function in hypothyroid wild type and knockout animals. Our results show no alteration in the behavioral response induced by the dopamine D1 receptor agonist SKF38393. However we observed a decreased response to the dopamine D2 receptor antagonist haloperidol only in hypothyroid CB1R+/+ mice, which might indicate potential alterations in D2R signaling in these animals. In conclusion, our data suggest that the cannabinoid system is necessary for the induction of hyperlocomotor phenotype in mice with developmentally induced hypothyroidism.
Collapse
Affiliation(s)
- Elena Giné
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Victor Echeverry-Alzate
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Spain
| | | | - Fernando Rodriguez de Fonseca
- Departamento de Psicobiología, Facultad de Psicología, Universidad Complutense de Madrid, Spain; Fundación IMABIS, Laboratorio de Medicina Regenerativa, Hospital Regional Universitario Carlos Haya, Malaga, Spain
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Cientificas-Universidad Autónoma de Madrid, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Spain.
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, CIBERNED, Spain; Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense de Madrid, Spain.
| |
Collapse
|
4
|
Hernandez-Encinas E, Aguilar-Morante D, Morales-Garcia JA, Gine E, Sanz-SanCristobal M, Santos A, Perez-Castillo A. Complement component 3 (C3) expression in the hippocampus after excitotoxic injury: role of C/EBPβ. J Neuroinflammation 2016; 13:276. [PMID: 27769255 PMCID: PMC5073972 DOI: 10.1186/s12974-016-0742-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 10/04/2016] [Indexed: 02/08/2023] Open
Abstract
Background The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor implicated in the control of proliferation, differentiation, and inflammatory processes mainly in adipose tissue and liver; although more recent results have revealed an important role for this transcription factor in the brain. Previous studies from our laboratory indicated that CCAAT/enhancer-binding protein β is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. More recently, we have shown that the complement component 3 gene (C3) is a downstream target of CCAAT/enhancer-binding protein β and it could be a mediator of the proinflammatory effects of this transcription factor in neural cells. Methods Adult male Wistar rats (8–12 weeks old) were used throughout the study. C/EBPβ+/+ and C/EBPβ–/– mice were generated from heterozygous breeding pairs. Animals were injected or not with kainic acid, brains removed, and brain slices containing the hippocampus analyzed for the expression of both CCAAT/enhancer-binding protein β and C3. Results In the present work, we have further extended these studies and show that CCAAT/enhancer-binding protein β and C3 co-express in the CA1 and CA3 regions of the hippocampus after an excitotoxic injury. Studies using CCAAT/enhancer-binding protein β knockout mice demonstrate a marked reduction in C3 expression after kainic acid injection in these animals, suggesting that indeed this protein is regulated by C/EBPβ in the hippocampus in vivo. Conclusions Altogether these results suggest that CCAAT/enhancer-binding protein β could regulate brain disorders, in which excitotoxic and inflammatory processes are involved, at least in part through the direct regulation of C3. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0742-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Present Address: Departamento de Fisiología Médica y Biofísica, Instituto de Biomedicina de Sevilla, IBiS, (Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla), 41013, Sevilla, Spain
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Elena Gine
- Departamento de Biología Celular, Facultad de Medicina, UCM, 28040, Madrid, Spain
| | - Marina Sanz-SanCristobal
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain.,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, 28040, Madrid, Spain.
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
5
|
Hernandez-Encinas E, Aguilar-Morante D, Cortes-Canteli M, Morales-Garcia JA, Gine E, Santos A, Perez-Castillo A. CCAAT/enhancer binding protein β directly regulates the expression of the complement component 3 gene in neural cells: implications for the pro-inflammatory effects of this transcription factor. J Neuroinflammation 2015; 12:14. [PMID: 25617152 PMCID: PMC4348118 DOI: 10.1186/s12974-014-0223-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/16/2014] [Indexed: 11/10/2022] Open
Abstract
Background The CCAAT/enhancer-binding protein β (C/EBPβ) is a transcription factor, which was first identified as a regulator of differentiation and inflammatory processes mainly in adipose tissue and liver; however, its function in the brain was largely unknown for many years. Previous studies from our laboratory indicated that C/EBPβ is implicated in inflammatory process and brain injury, since mice lacking this gene were less susceptible to kainic acid-induced injury. Methods We first performed cDNA microarrays analysis using hippocampal RNA isolated from C/EBPβ+/+ and C/EBPβ−/− mice. Immunocytochemical and immunohistochemical studies were done to evaluate C/EBPβ and C3 levels. Transient transfection experiments were made to analyze transcriptional regulation of C3 by C/EBPβ. To knockdown C/EBPβ and C3 expression, mouse astrocytes were infected with lentiviral particles expressing an shRNA specific for C/EBPβ or an siRNA specific for C3. Results Among the genes displaying significant changes in expression was complement component 3 (C3), which showed a dramatic decrease in mRNA content in the hippocampus of C/EBPβ−/− mice. C3 is the central component of the complement and is implicated in different brain disorders. In this work we have found that C/EBPβ regulates C3 levels in rodents glial in vitro and in the rat Substantia nigra pars compacta (SNpc) in vivo following an inflammatory insult. Analysis of the mouse C3 promoter showed that it is directly regulated by C/EBPβ through a C/EBPβ consensus site located at position −616/-599 of the gene. In addition, we show that depletion of C/EBPβ by a specific shRNA results in a significant decrease in the levels of C3 together with a reduction in the increased levels of pro-inflammatory agents elicited by lipopolysaccharide treatment. Conclusions Altogether, these results indicate that C3 is a downstream target of C/EBPβ, and it could be a mediator of the pro-inflammatory effects of this transcription factor in neural cells.
Collapse
Affiliation(s)
- Elena Hernandez-Encinas
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Diana Aguilar-Morante
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Marta Cortes-Canteli
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Present address: Laboratory of Neurobiology and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA.
| | - Jose A Morales-Garcia
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| | - Elena Gine
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Angel Santos
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain. .,Departamento de Bioquímica y Biologia Molecular, Facultad de Medicina, UCM, Plaza Ramón y Cajal s/n, 28040, Madrid, Spain.
| | - Ana Perez-Castillo
- Instituto de Investigaciones Biomédicas, (CSIC-UAM), Arturo Duperier, 4, 28029, Madrid, Spain. .,Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031, Madrid, Spain.
| |
Collapse
|
6
|
Giné E, Echeverry-Alzate V, López-Moreno JA, López-Jimenez A, Torres-Romero D, Perez-Castillo A, Santos A. Developmentally-induced hypothyroidism alters the expression of Egr-1 and Arc genes and the sensitivity to cannabinoid agonists in the hippocampus. Possible implications for memory and learning. Mol Cell Endocrinol 2013; 365:119-28. [PMID: 23079472 DOI: 10.1016/j.mce.2012.10.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 09/07/2012] [Accepted: 10/04/2012] [Indexed: 12/15/2022]
Abstract
We analyzed the role of the cannabinoid system in the cognitive deficits caused by developmentally-induced hypothyroidism. We studied in control and hypothyroid rats the effect of a cannabinoid agonist on spatial memory, hippocampal phosphorylation of CREB and expression of early genes. Our results show that, 1-basal hippocampal expression of early genes and spatial learning are decreased in hypothyroid rats; 2-hypothyroid rats are very sensitive to cannabinoid agonists. Low dose of cannabinoid agonist ineffective in controls altered spatial memory, CREB's phosphorylation and early gene expression in hypothyroids. These effects are not due a change in CB1 receptor (CB1R) content. 3-Treatment of hypothyroid rats with thyroid hormones normalized the biochemical and behavioral responses to cannabinoid agonists but did not correct the low basal levels of early gene transcripts and the deficits in spatial learning. All these data suggest that the hippocampal deregulation of early genes expression could play an important role in the basal cognitive deficits of hypothyroid rats.
Collapse
Affiliation(s)
- Elena Giné
- Departamento de Biología Celular, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
7
|
Viveros MP, Llorente R, Suarez J, Llorente-Berzal A, López-Gallardo M, de Fonseca FR. The endocannabinoid system in critical neurodevelopmental periods: sex differences and neuropsychiatric implications. J Psychopharmacol 2012; 26:164-76. [PMID: 21669929 DOI: 10.1177/0269881111408956] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
This review focuses on the endocannabinoid system as a crucial player during critical periods of brain development, and how its disturbance either by early life stressful events or cannabis consumption may lead to important neuropsychiatric signs and symptoms. First we discuss the advantages and limitations of animal models within the framework of neuropsychiatric research and the crucial role of genetic and environmental factors for the establishment of vulnerable phenotypes. We are becoming aware of important sex differences that have emerged in relation to the psychobiology of cannabinoids. We will discuss sexual dimorphisms observed within the endogenous cannabinoid system, as well as those observed with exogenously administered cannabinoids. We start with how the expression of cannabinoid CB(1) receptors is regulated throughout development. Then, we discuss recent results showing how an experimental model of early maternal deprivation, which induces long-term neuropsychiatric symptoms, interacts in a sex-dependent manner with the brain endocannabinoid system during development. This is followed by a discussion of differential vulnerability to the pathological sequelae stemming from cannabinoid exposure during adolescence. Next we talk about sex differences in the interactions between cannabinoids and other drugs of abuse. Finally, we discuss the potential implications that organizational and activational actions of gonadal steroids may have in establishing and maintaining sex dependence in the neurobiological actions of cannabinoids and their interaction with stress.
Collapse
Affiliation(s)
- M P Viveros
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
8
|
Andries A, Støving RK. Cannabinoid-1 receptor agonists: a therapeutic option in severe, chronic anorexia nervosa? ACTA ACUST UNITED AC 2011. [DOI: 10.2217/npy.11.50] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Casteels C, Martinez E, Bormans G, Camon L, de Vera N, Baekelandt V, Planas AM, Van Laere K. Type 1 cannabinoid receptor mapping with [18F]MK-9470 PET in the rat brain after quinolinic acid lesion: a comparison to dopamine receptors and glucose metabolism. Eur J Nucl Med Mol Imaging 2010; 37:2354-63. [PMID: 20680268 DOI: 10.1007/s00259-010-1574-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 07/15/2010] [Indexed: 12/11/2022]
Abstract
PURPOSE Several lines of evidence imply early alterations in metabolic, dopaminergic and endocannabinoid neurotransmission in Huntington's disease (HD). Using [18F]MK-9470 and small animal PET, we investigated cerebral changes in type 1 cannabinoid (CB1) receptor binding in the quinolinic acid (QA) rat model of HD in relation to glucose metabolism, dopamine D2 receptor availability and amphetamine-induced turning behaviour. METHODS Twenty-one Wistar rats (11 QA and 10 shams) were investigated. Small animal PET acquisitions were conducted on a Focus 220 with approximately 18 MBq of [18F]MK-9470, [18F]FDG and [11C]raclopride. Relative glucose metabolism and parametric CB1 receptor and D2 binding images were anatomically standardized to Paxinos space and analysed voxel-wise using Statistical Parametric Mapping (SPM2). RESULTS In the QA model, [18F]MK-9470 uptake, glucose metabolism and D2 receptor binding were reduced in the ipsilateral caudate-putamen by 7, 35 and 77%, respectively (all p<2.10(-5)), while an increase for these markers was observed on the contralateral side (>5%, all p<7.10(-4)). [18F]MK-9470 binding was also increased in the cerebellum (p=2.10(-5)), where it was inversely correlated to the number of ipsiversive turnings (p=7.10(-6)), suggesting that CB1 receptor upregulation in the cerebellum is related to a better functional outcome. Additionally, glucose metabolism was relatively increased in the contralateral hippocampus, thalamus and sensorimotor cortex (p=1.10(-6)). CONCLUSION These data point to in vivo changes in endocannabinoid transmission, specifically for CB1 receptors in the QA model, with involvement of the caudate-putamen, but also distant regions of the motor circuitry, including the cerebellum. These data also indicate the occurrence of functional plasticity on metabolism, D2 and CB1 neurotransmission in the contralateral hemisphere.
Collapse
Affiliation(s)
- Cindy Casteels
- Division of Nuclear Medicine, KU Leuven and University Hospital Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Giné E, Morales-Garcia JA, Perez-Castillo A, Santos A. Developmental hypothyroidism increases the expression of kainate receptors in the hippocampus and the sensitivity to kainic acid-induced seizures in the rat. Endocrinology 2010; 151:3267-76. [PMID: 20410204 DOI: 10.1210/en.2010-0070] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormones are essential for normal brain development, and multiple alterations at behavioral, cognitive, cellular, and molecular levels have been described in animals made hypothyroid during development. Here we analyzed the effect of developmental hypothyroidism in the rat on the sensitivity to kainic acid-induced limbic seizures and the expression of kainate receptors in the hippocampus. Our results show that hypothyroid rats are extremely sensitive to the proconvulsant and neurotoxic effects of kainic acid (KA). Hypothyroid rats entered in status epilepticus at a dose of KA three times lower than that required to reach status epilepticus in control animals. In accordance with this, high levels of glial activation and neuronal loss after low KA dose injections were observed only in the hippocampus of hypothyroid rats. These effects correlated with an increased expression of kainate receptor subunits, excluding GluR5, in the hippocampus of hypothyroid animals. The concentrations of GluR6, GluR7, KAR1, and KAR2 (ionotropic glutamate receptor subunits of the kainic acid subtype) mRNAs were increased between 50 and 250% in hypothyroid animals relative to the values in controls. In agreement with these results, Western blot and immunohistochemical analysis showed a clear increase in the hippocampal content of GluR6/7 proteins in hypothyroid animals.
Collapse
Affiliation(s)
- Elena Giné
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040 Madrid, Spain
| | | | | | | |
Collapse
|
11
|
Alén F, Santos A, Moreno-Sanz G, González-Cuevas G, Giné E, Franco-Ruiz L, Navarro M, López-Moreno JA. Cannabinoid-induced increase in relapse-like drinking is prevented by the blockade of the glycine-binding site of N-methyl-D-aspartate receptors. Neuroscience 2008; 158:465-73. [PMID: 18977415 DOI: 10.1016/j.neuroscience.2008.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Revised: 09/30/2008] [Accepted: 10/06/2008] [Indexed: 11/30/2022]
Abstract
The endocannabinoid system is a neuromodulatory system which controls the release of multiple neurotransmitters, including glutamate and both, the endocannabinoid and glutamatergic systems, have been implicated in alcohol relapse. Cannabinoid agonists induce an increase in relapse-like drinking whereas glutamate receptor antagonists could prevent it. Here we hypothesize that cannabinoid-induced increases in relapse-like alcohol drinking could be mediated by glutamatergic N-methyl-d-aspartate (NMDA) receptors. To test this hypothesis, Wistar rats with a background of alcohol operant self-administration were treated with the cannabinoid receptor agonist (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl), pyrrolo [1,2,3-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate (WIN 55.212-2, WIN) (2.0 mg/kg) during periods of alcohol deprivation. For five consecutive days, 30 min before the reintroduction of alcohol, rats were injected with the NMDA/glycine receptor antagonist 7-chloro-4-hydroxy-3-(3-phenoxy)phenylquinolin-2-[1H]-one (L-701) (1.25-5.0 mg/kg) and alcohol reinforcement was evaluated. Our results clearly show that L-701 prevented the cannabinoid-induced increase in relapse-like drinking in a dose-dependent manner, whereas L-701 alone, in the absence of WIN treatment, did not significantly alter alcohol intake. The potentiation of relapse-like drinking induced by WIN is not caused by nonspecific anxiogenic effects, since no effect was observed in the elevated-plus maze test. These alcohol-related behaviors are linked to differential changes in CNR1 and NR1 subunit mRNA transcripts. In WIN-treated rats, an increase in CNR1 transcript levels was observed in the hypothalamus and striatum, whereas in the amygdala and anterior cingulate cortex, brain regions involved in emotional processing, a decrease was observed. Interestingly, such changes were blocked after L-701 treatment. Finally, WIN treatment also caused a reduction in NR1 mRNA levels in the amygdala. In conclusion, pharmacological inactivation of the glycine-binding site of NMDA receptors may control cannabinoid-induced relapse-like drinking, which is associated with altered expression of CNR1 and NR1 gene expression as observed after WIN treatment.
Collapse
Affiliation(s)
- F Alén
- Departamento de Psicobiología, Facultad de Psicología, Facultad de Psicología, Campus Somosaguas Universidad Complutense de Madrid, E-28223 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Diez D, Grijota-Martinez C, Agretti P, De Marco G, Tonacchera M, Pinchera A, de Escobar GM, Bernal J, Morte B. Thyroid hormone action in the adult brain: gene expression profiling of the effects of single and multiple doses of triiodo-L-thyronine in the rat striatum. Endocrinology 2008; 149:3989-4000. [PMID: 18467437 DOI: 10.1210/en.2008-0350] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Thyroid hormones have profound effects on mood and behavior, but the molecular basis of thyroid hormone action in the adult brain is relatively unknown. In particular, few thyroid hormone-dependent genes have been identified in the adult brain despite extensive work carried out on the developing brain. In this work we performed global analysis of gene expression in the adult rat striatum in search for genomic changes taking place after administration of T(3) to hypothyroid rats. The hormone was administered in two different schedules: 1) a single, large dose of 25 microg per 100 g body weight (SD) or 2) 1.5 microg per 100 g body weight once daily for 5 d (RD). Twenty-four hours after the single or last of multiple doses, gene expression in the striatum was analyzed using Codelink microarrays. SD caused up-regulation of 149 genes and down-regulation of 88 genes. RD caused up-regulation of 18 genes and down-regulation of one gene. The results were confirmed by hybridization to Affymetrix microarrays and by TaqMan PCR. Among the genes identified are genes involved in circadian regulation and the regulation of signaling pathways in the striatum. These results suggest that thyroid hormone is involved in regulation of striatal physiology at multiple control points. In addition, they may explain the beneficial effects of large doses of thyroid hormone in bipolar disorders.
Collapse
Affiliation(s)
- Diego Diez
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|