1
|
Lim HJ, Park JE, Han JS. HM-chromanone alleviates hyperglycemia and inflammation in mice with endotoxin-induced insulin resistance. Toxicol Res (Camb) 2023; 12:665-674. [PMID: 37663814 PMCID: PMC10470335 DOI: 10.1093/toxres/tfad057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 09/05/2023] Open
Abstract
This study was designed to investigate whether (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone alleviates inflammation and hyperglycemia in mice with endotoxin-induced insulin resistance. (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone (10, 30, and 50 mg/kg bodyweight) was orally pre-administered to C57BL/6 J mice. An hour later, lipopolysaccharides (20 mg/kg bodyweight) was administered intraperitoneally to induce endotoxins. Blood samples were collected from the tail vein of the mice every 0, 30, and 90 min. The results indicated that (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone effectively regulated blood glucose levels in mice with endotoxin-induced insulin resistance. Furthermore, (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone significantly reduced the phosphorylation of mammalian target of rapamycin, ribosomal protein S6 kinase 1, and protein kinase C θ. Additionally, (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone suppressed the phosphorylation of c-Jun-NH2-terminal kinase and IkB kinase β, thereby decreasing the phosphorylation of inhibitor of nuclear factor kappa-B α and activating the nuclear factor-κB and activator protein-1 in the liver. Therefore, the expression of tumor necrosis factor-α, interleukin-6, and interleukin-1β was significantly reduced by suppressing the nuclear factor-κB and activator protein 1 activity. Suppression of mammalian target of rapamycin, S6 kinase 1, protein kinase C θ, c-Jun-NH2-terminal kinase, and IkB kinase β also ameliorated insulin resistance by reducing the phosphorylation of insulin receptor substrate-1 serine 307, thereby decreasing hyperglycemia. These findings suggest that (E)-5-hydroxy-7-methoxy-3-(2'-hydroxybenzyl)-4-chromanone can alleviate hyperglycemia and inflammation in mice with endotoxin-induced insulin resistance.
Collapse
Affiliation(s)
- Ha J Lim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, The Republic of Korea
| | - Jae E Park
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, The Republic of Korea
| | - Ji S Han
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, The Republic of Korea
| |
Collapse
|
2
|
Jeevanandam J, Chan YS, Danquah MK. Cytotoxicity and insulin resistance reversal ability of biofunctional phytosynthesized MgO nanoparticles. 3 Biotech 2020; 10:489. [PMID: 33123456 DOI: 10.1007/s13205-020-02480-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/12/2020] [Indexed: 12/22/2022] Open
Abstract
The present study investigates the cytotoxicity of hexagonal MgO nanoparticles synthesized via Amaranthus tricolor leaf extract and spherical MgO nanoparticles synthesized via Amaranthus blitum and Andrographis paniculata leaf extracts. In vitro cytotoxicity analysis showed that the hexagonal MgO nanoparticles synthesized from A. tricolor extract demonstrated the least toxicity to both diabetic and non-diabetic cells at 600 μl/ml dosage. The viability of the diabetic cells (3T3-L1) after incubation with varying dosages of MgO nanoparticles was observed to be 55.3%. The viability of normal VERO cells was 86.6% and this stabilized to about 75% even after exposure to MgO nanoparticles dosage of up to 1000 μl/ml. Colorimetric glucose assay revealed that the A. tricolor extract synthesized MgO nanoparticles resulted in ~ 28% insulin resistance reversal. A reduction in the expression of GLUT4 protein at 54 KDa after MgO nanopaSrticles incubation with diabetic cells was observed via western blot analysis to confirm insulin reversal ability. Fluorescence microscopic analysis with propidium iodide and acridine orange dyes showed the release of reactive oxygen species as a possible mechanism of the cytotoxic effect of MgO nanoparticles. It was inferred that the synergistic effect of the phytochemicals and MgO nanoparticles played a significant role in delivering enhanced insulin resistance reversal capability in adipose cells.
Collapse
Affiliation(s)
- Jaison Jeevanandam
- CQM - Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Yen San Chan
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, CDT 250, 98009 Miri, Sarawak Malaysia
| | - Michael K Danquah
- Chemical Engineering Department, University of Tennessee, Chattanooga, TN 37403 USA
| |
Collapse
|
3
|
Lozano-Bartolomé J, Llauradó G, Portero-Otin M, Altuna-Coy A, Rojo-Martínez G, Vendrell J, Jorba R, Rodríguez-Gallego E, Chacón MR. Altered Expression of miR-181a-5p and miR-23a-3p Is Associated With Obesity and TNFα-Induced Insulin Resistance. J Clin Endocrinol Metab 2018; 103:1447-1458. [PMID: 29409019 DOI: 10.1210/jc.2017-01909] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/26/2018] [Indexed: 02/08/2023]
Abstract
CONTEXT The proinflammatory cytokine TNFα is a key player in insulin resistance (IR). The role of miRNAs in inflammation associated with IR is poorly understood. OBJECTIVE To investigate miR-181a-5p and miR-23a-3p expression profiles in obesity and to study their role in TNFα-induced IR in adipocytes. DESIGN Two separate cohorts were used. Cohort 1 was used in adipose tissue (AT) expression studies and included 28 subjects with body mass index (BMI) <30 kg/m2 and 30 with BMI ≥30 kg/m2. Cohort 2 was used in circulating serum miRNA studies and included 101 subjects with 4 years of follow-up (48 case subjects and 53 control subjects). miR-181a-5p and miR-23a-3p expression was assessed in subcutaneous and visceral AT. Functional analysis was performed in adipocytes, using miRNA mimics and inhibitors. Key molecules of the insulin pathway, AKT, PTEN, AS160, and S6K, were analyzed. RESULTS Expression of miR-181a-5p and miR-23a-3p was reduced in adipose tissue from obese and diabetic subjects and was inversely correlated to adiposity and homeostasis model assessment of IR index. Overexpression of miR-181a-5p and miR-23a-3p in adipocytes upregulated insulin-stimulated AKT activation and reduced TNFα-induced IR, regulating PTEN and S6K expression. Serum levels of miR-181a-5p were reduced in case vs control subjects at baseline, suggesting a prognostic value. Variable importance in projection scores revealed miR-181a-5p had more effect on the model than insulin or glucose at 120 minutes. CONCLUSION miR-181a-5p and miR-23a-3p may prevent TNFα-induced IR in adipocytes through modulation of PTEN and S6K expression.
Collapse
Affiliation(s)
| | - Gemma Llauradó
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas, Madrid, Spain
- Department of Endocrinology and Nutrition, Hospital del Mar, Institut d'Investigacions Mèdiques, Barcelona, Spain
| | - Manel Portero-Otin
- Department of Experimental Medicine, Universitat de Lleida-IRBLleida, Lleida, Spain
| | | | - Gemma Rojo-Martínez
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas, Madrid, Spain
- UGCI of Endocrinology and Nutrition, Instituto de Biomedicina de Málaga, Hospital Regional Universitario, Málaga, Spain
| | - Joan Vendrell
- Joan XXIII University Hospital, IISPV, Tarragona, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas, Madrid, Spain
| | - Rosa Jorba
- Surgery Unit, Joan XXIII University Hospital, Tarragona, Spain
| | - Esther Rodríguez-Gallego
- Infectious Diseases and HIV/AIDS Unit, Department of Internal Medicine, Joan XXIII University Hospital, Universitat Rovira i Virgili, Tarragona, Spain
| | | |
Collapse
|
4
|
Watanabe M, Hisatake M, Fujimori K. Fisetin Suppresses Lipid Accumulation in Mouse Adipocytic 3T3-L1 Cells by Repressing GLUT4-Mediated Glucose Uptake through Inhibition of mTOR-C/EBPα Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:4979-4987. [PMID: 25945786 DOI: 10.1021/acs.jafc.5b00821] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
3,7,3',4'-Tetrahydroxyflavone (fisetin) is a flavonoid found in vegetables and fruits having broad biological activities. Here the effects of fisetin on adipogenesis and its regulatory mechanism in mouse adipocytic 3T3-L1 cells are studied. Fisetin inhibited the accumulation of intracellular lipids and lowered the expression of adipogenic genes such as peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein (C/EBP) α and fatty acid-binding protein 4 (aP2) during adipogenesis. Moreover, the mRNA levels of genes such as acetyl-CoA carboxylase, fatty acid synthase, and stearoyl-CoA desaturase involved in the fatty acid biosynthesis (lipogenesis) were reduced by the treatment with fisetin. The expression level of the glucose transporter 4 (GLUT4) gene was also decreased by fisetin, resulting in down-regulation of glucose uptake. Furthermore, fisetin inhibited the phosphorylation of the mammalian target of rapamycin (mTOR) and that of p70 ribosomal S6 kinase, a target of the mTOR complex, the inhibition of which was followed by a decreased mRNA level of the C/EBPα gene. The results obtained from a chromatin immunoprecipitation assay demonstrated that the ability of C/EBPα to bind to the GLUT4 gene promoter was reduced by the treatment with fisetin, which agreed well with those obtained when 3T3-L1 cells were allowed to differentiate into adipocytes in medium in the presence of rapamycin, an inhibitor for mTOR. These results indicate that fisetin suppressed the accumulation of intracellular lipids by inhibiting GLUT4-mediated glucose uptake through inhibition of the mTOR-C/EBPα signaling in 3T3-L1 cells.
Collapse
Affiliation(s)
- Marina Watanabe
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Mitsuhiro Hisatake
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Ko Fujimori
- Laboratory of Biodefense and Regulation, Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
5
|
Catalán V, Gómez-Ambrosi J, Rodríguez A, Ramírez B, Andrada P, Rotellar F, Valentí V, Moncada R, Martí P, Silva C, Salvador J, Frühbeck G. Expression of S6K1 in human visceral adipose tissue is upregulated in obesity and related to insulin resistance and inflammation. Acta Diabetol 2015; 52:257-66. [PMID: 25118997 DOI: 10.1007/s00592-014-0632-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 07/14/2014] [Indexed: 02/08/2023]
Abstract
The ribosomal protein S6 kinase 1 (S6K1) is a component of the insulin signalling pathway that has been proposed as a key molecular factor in insulin resistance development under conditions of nutrient overload. The aim was to evaluate the involvement of S6K1 in obesity as well as to explore their association with visceral adipose tissue (VAT) inflammation. Samples obtained from 40 subjects were used. Gene expression levels of RPS6KB1 and key inflammatory markers were analysed in VAT. The effect of insulin on transcript levels of RPS6KB1 in human differentiated adipocytes was also explored. RPS6KB1 mRNA levels in VAT were increased (P < 0.05) in obese patients. Insulin treatment significantly enhanced (P < 0.01) gene expression levels of RPS6KB1 and a positive association (P < 0.05) of RPS6KB1 expression with different markers of insulin resistance was observed. Moreover, RPS6KB1 gene expression levels were positively correlated with VAT gene expression levels of the inflammatory markers CCL2, CD68, MMP2, MMP9, VEGFA and CHI3L1 as well as with mRNA levels of MTOR and MAPK8, representative players involved in signalling pathways related to S6K1. The increased levels of S6K1 in obesity and its positive association with insulin resistance and inflammation suggest a role for this protein in the changes that take place in VAT in obesity establishing a link between inflammation and a higher risk for the development of metabolic diseases.
Collapse
Affiliation(s)
- Victoria Catalán
- Metabolic Research Laboratory, Clínica Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Tsai CW, Liu KL, Lin YR, Kuo WC. The mechanisms of carnosic acid attenuates tumor necrosis factor-α-mediated inflammation and insulin resistance in 3T3-L1 adipocytes. Mol Nutr Food Res 2013; 58:654-64. [DOI: 10.1002/mnfr.201300356] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/31/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Affiliation(s)
- Chia-Wen Tsai
- Department of Nutrition; China Medical University; Taichung Taiwan
| | - Kai-Li Liu
- Department of Nutrition; Chung Shan Medical University; Taichung Taiwan
| | - Yu-Ru Lin
- Department of Nutrition; China Medical University; Taichung Taiwan
| | - Wen-Cheng Kuo
- Department of Nutrition; China Medical University; Taichung Taiwan
| |
Collapse
|
7
|
Bartke A, Westbrook R. Metabolic characteristics of long-lived mice. Front Genet 2012; 3:288. [PMID: 23248643 PMCID: PMC3521393 DOI: 10.3389/fgene.2012.00288] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/23/2012] [Indexed: 12/31/2022] Open
Abstract
Genetic suppression of insulin/insulin-like growth factor signaling (IIS) can extend longevity in worms, insects, and mammals. In laboratory mice, mutations with the greatest, most consistent, and best documented positive impact on lifespan are those that disrupt growth hormone (GH) release or actions. These mutations lead to major alterations in IIS but also have a variety of effects that are not directly related to the actions of insulin or insulin-like growth factor I. Long-lived GH-resistant GHR-KO mice with targeted disruption of the GH receptor gene, as well as Ames dwarf (Prop1df) and Snell dwarf (Pit1dw) mice lacking GH (along with prolactin and TSH), are diminutive in size and have major alterations in body composition and metabolic parameters including increased subcutaneous adiposity, increased relative brain weight, small liver, hypoinsulinemia, mild hypoglycemia, increased adiponectin levels and insulin sensitivity, and reduced serum lipids. Body temperature is reduced in Ames, Snell, and female GHR-KO mice. Indirect calorimetry revealed that both Ames dwarf and GHR-KO mice utilize more oxygen per gram (g) of body weight than sex- and age-matched normal animals from the same strain. They also have reduced respiratory quotient, implying greater reliance on fats, as opposed to carbohydrates, as an energy source. Differences in oxygen consumption (VO2) were seen in animals fed or fasted during the measurements as well as in animals that had been exposed to 30% calorie restriction or every-other-day feeding. However, at the thermoneutral temperature of 30°C, VO2 did not differ between GHR-KO and normal mice. Thus, the increased metabolic rate of the GHR-KO mice, at a standard animal room temperature of 23°C, is apparently related to increased energy demands for thermoregulation in these diminutive animals. We suspect that increased oxidative metabolism combined with enhanced fatty acid oxidation contribute to the extended longevity of GHR-KO mice.
Collapse
Affiliation(s)
- Andrzej Bartke
- Division of Geriatrics Research, Department of Internal Medicine, Southern Illinois University School of Medicine Springfield, IL, USA
| | | |
Collapse
|
8
|
Moreno-Navarrete JM, Ortega F, Sánchez-Garrido MÁ, Sabater M, Ricart W, Zorzano A, Tena-Sempere M, Fernández-Real JM. Phosphorylated S6K1 (Thr389) is a molecular adipose tissue marker of altered glucose tolerance. J Nutr Biochem 2012; 24:32-8. [PMID: 22705322 DOI: 10.1016/j.jnutbio.2012.01.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 12/05/2011] [Accepted: 01/03/2012] [Indexed: 12/25/2022]
Abstract
Molecular tissue markers of altered glucose metabolism will be useful as potential targets for antidiabetic drugs. S6K1 is a downstream signal of insulin action. We aimed to evaluate (pThr389)S6K1 and total S6K1 levels in human and rat fat depots as candidate markers of altered glucose metabolism. (pThr389)S6K1 and total S6K1 levels were measured using enzyme linked immune sorbent assay (ELISA) in 49 adipose tissue samples from subjects with morbid obesity and in 18 peri-renal white adipose tissue samples from rats. The effects of high glucose and rosiglitazone have been explored in human preadipocytes. (pThr389)S6K1/(total)S6K1 in subcutaneous adipose tissue was significantly increased subjects with Type 2 diabetes (0.78 ± 0.26 vs. 0.55 ± 0.14, P=.02) and associated with fasting glucose (r=0.46, P=.04) and glycated hemoglobin (r=0.63, P=.02) in SAT. Similar associations with fasting glucose (r=0.43, P=.03) and IRS1 (r=-0.41, P=.04) gene expression were found in visceral adipose tissue. In addition, rat experiments confirmed the higher (pThr389)S6K1/totalS6K1 levels in adipose tissue in association with obesity-associated metabolic disturbances. (pThr389)S6K1/totalS6K1 was validated using western blot in rat adipose tissue. Both ELISA and western blot data significantly correlated (r=0.85, P=.005). In human preadipocytes, high glucose medium led to increased (pThr389)S6K1/total S6K1 levels in comparison with normal glucose medium, which was significantly decreased under rosiglitazone administration. In conclusion, in human and rat adipose tissue, phosphorylated S6K1 is a marker for increased glucose levels.
Collapse
Affiliation(s)
- José María Moreno-Navarrete
- Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació Biomèdica de Girona (IdIBGi), CIBERobn Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III (ISCIII), 17007, Girona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Kim JA, Jang HJ, Martinez-Lemus LA, Sowers JR. Activation of mTOR/p70S6 kinase by ANG II inhibits insulin-stimulated endothelial nitric oxide synthase and vasodilation. Am J Physiol Endocrinol Metab 2012; 302:E201-8. [PMID: 22028412 PMCID: PMC3340897 DOI: 10.1152/ajpendo.00497.2011] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Elevated tissue levels of angiotensin II (ANG II) are associated with impairment of insulin actions in metabolic and cardiovascular tissues. ANG II-stimulated activation of mammalian target of rapamycin (mTOR)/p70 S6 kinase (p70S6K) in cardiovascular tissues is implicated in cardiac hypertrophy and vascular remodeling. However, the role of ANG II-stimulated mTOR/p70S6K in vascular endothelium is poorly understood. In the present study, we observed that ANG II stimulated p70S6K in bovine aortic endothelial cells. ANG II increased phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser(636/639) and inhibited the insulin-stimulated phosphorylation of endothelial nitric oxide synthase (eNOS). An inhibitor of mTOR, rapamycin, attenuated the ANG II-stimulated phosphorylation of p70S6K and phosphorylation of IRS-1 (Ser(636/639)) and blocked the ability of ANG II to impair insulin-stimulated phosphorylation of eNOS, nitric oxide production, and mesenteric-arteriole vasodilation. Moreover, point mutations of IRS-1 at Ser(636/639) to Ala prevented the ANG II-mediated inhibition of insulin signaling. From these results, we conclude that activation of mTOR/p70S6K by ANG II in vascular endothelium may contribute to impairment of insulin-stimulated vasodilation through phosphorylation of IRS-1 at Ser(636/639). This ANG II-mediated impairment of vascular actions of insulin may help explain the role of ANG II as a link between insulin resistance and hypertension.
Collapse
Affiliation(s)
- Jeong-A Kim
- Department of Medicine, Division of Endocrinology, Diabetes, and Metabolism, Universityof Alabama at Birmingham Comprehensive Diabetes Center, AL 35294, USA.
| | | | | | | |
Collapse
|
10
|
Bartke A. Pleiotropic effects of growth hormone signaling in aging. Trends Endocrinol Metab 2011; 22:437-42. [PMID: 21852148 PMCID: PMC4337825 DOI: 10.1016/j.tem.2011.07.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 06/10/2011] [Accepted: 07/11/2011] [Indexed: 01/13/2023]
Abstract
Growth hormone (GH) affects somatic growth, sexual maturation, body composition and metabolism, as well as aging and longevity. Mice lacking GH or GH receptor outlive their normal siblings and exhibit symptoms of delayed aging associated with improved insulin signaling and increased stress resistance. Beneficial effects of eliminating the actions of GH are counterintuitive but conform to the concept of antagonistic pleiotropy. Evolutionary selection for traits promoting early-life fitness and reproductive success could account for post-reproductive deficits. Reciprocal relationships between GH signaling and longevity discovered in mutant mice apply also to normal mice, other mammalian species, and perhaps humans. This review summarizes the present understanding of the multifaceted relationship between somatotropic signaling and mammalian aging.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, 801 North Rutledge, PO Box 19628, Springfield, IL 62794-9628, USA.
| |
Collapse
|
11
|
Pulakat L, DeMarco VG, Whaley-Connell A, Sowers JR. The Impact of Overnutrition on Insulin Metabolic Signaling in the Heart and the Kidney. Cardiorenal Med 2011; 1:102-112. [PMID: 22258397 DOI: 10.1159/000327140] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Overnutrition characterized by overconsumption of food rich in fat and carbohydrates is a significant contributor to hypertension, type 2 diabetes, and the cardiorenal syndrome. Overnutrition activates the renin-angiotensin-aldosterone system (RAAS) and causes chronic exposure of cardiovascular and renal tissue to increased circulating nutrients, insulin (INS), and angiotensin II (ANG II). Emerging evidence suggests that overnutrition, aldosterone, and ANG II promote INS resistance, a chronic condition that underlies these co-morbidities, through activation of the mammalian target of the rapamycin (mTOR)/S6 kinase 1 (S6K1) signaling pathway in cardiovascular tissue and the kidney. However, a novel ANG II type 2 receptor (AT2R)-mediated cross talk between the RAAS and mTOR pathways ameliorates overnutrition-induced activation of mTOR/S6K1 signaling in cardiovascular tissue of rats, mice, and humans and confers cardioprotection.
Collapse
|
12
|
Fat oxidation, fitness and skeletal muscle expression of oxidative/lipid metabolism genes in South Asians: implications for insulin resistance? PLoS One 2010; 5:e14197. [PMID: 21152018 PMCID: PMC2995737 DOI: 10.1371/journal.pone.0014197] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 11/11/2010] [Indexed: 01/16/2023] Open
Abstract
Background South Asians are more insulin resistant than Europeans, which cannot be fully explained by differences in adiposity. We investigated whether differences in oxidative capacity and capacity for fatty acid utilisation in South Asians might contribute, using a range of whole-body and skeletal muscle measures. Methodology/Principal Findings Twenty men of South Asian ethnic origin and 20 age and BMI-matched men of white European descent underwent exercise and metabolic testing and provided a muscle biopsy to determine expression of oxidative and lipid metabolism genes and of insulin signalling proteins. In analyses adjusted for age, BMI, fat mass and physical activity, South Asians, compared to Europeans, exhibited; reduced insulin sensitivity by 26% (p = 0.010); lower VO2max (40.6±6.6 vs 52.4±5.7 ml.kg−1.min−1, p = 0.001); and reduced fat oxidation during submaximal exercise at the same relative (3.77±2.02 vs 6.55±2.60 mg.kg−1.min−1 at 55% VO2max, p = 0.013), and absolute (3.46±2.20 vs 6.00±1.93 mg.kg−1.min−1 at 25 ml O2.kg−1.min−1, p = 0.021), exercise intensities. South Asians exhibited significantly higher skeletal muscle gene expression of CPT1A and FASN and significantly lower skeletal muscle protein expression of PI3K and PKB Ser473 phosphorylation. Fat oxidation during submaximal exercise and VO2max both correlated significantly with insulin sensitivity index and PKB Ser473 phosphorylation, with VO2max or fat oxidation during exercise explaining 10–13% of the variance in insulin sensitivity index, independent of age, body composition and physical activity. Conclusions/Significance These data indicate that reduced oxidative capacity and capacity for fatty acid utilisation at the whole body level are key features of the insulin resistant phenotype observed in South Asians, but that this is not the consequence of reduced skeletal muscle expression of oxidative and lipid metabolism genes.
Collapse
|
13
|
Boura-Halfon S, Shuster-Meiseles T, Beck A, Petrovich K, Gurevitch D, Ronen D, Zick Y. A novel domain mediates insulin-induced proteasomal degradation of insulin receptor substrate 1 (IRS-1). Mol Endocrinol 2010; 24:2179-92. [PMID: 20843941 PMCID: PMC5417385 DOI: 10.1210/me.2010-0072] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Accepted: 08/16/2010] [Indexed: 11/19/2022] Open
Abstract
Insulin receptor substrate-1 (IRS-1) plays a pivotal role in insulin signaling, therefore its degradation is exquisitely regulated. Here, we show that insulin-stimulated degradation of IRS-1 requires the presence of a highly conserved Ser/Thr-rich domain that we named domain involved in degradation of IRS-1 (DIDI). DIDI (amino acids 386-430 of IRS-1) was identified by comparing the intracellular degradation rate of several truncated forms of IRS-1 transfected into CHO cells. The isolated DIDI domain underwent insulin-stimulated Ser/Thr phosphorylation, suggesting that it serves as a target for IRS-1 kinases. The effects of deletion of DIDI were studied in Fao rat hepatoma and in CHO cells expressing Myc-IRS-1(WT) or Myc-IRS-1(Δ386-430). Deletion of DIDI maintained the ability of IRS-1(Δ386-434) to undergo ubiquitination while rendering it insensitive to insulin-induced proteasomal degradation, which affected IRS-1(WT) (80% at 8 h). Consequently, IRS-1(Δ386-434) mediated insulin signaling (activation of Akt and glycogen synthesis) better than IRS-1(WT). IRS-1(Δ386-434) exhibited a significant greater preference for nuclear localization, compared with IRS-1(WT). Higher nuclear localization was also observed when cells expressing IRS-1(WT) were incubated with the proteasome inhibitor MG-132. The sequence of DIDI is conserved more than 93% across species, from fish to mammals, as opposed to approximately 40% homology of the entire IRS-1. These findings implicate DIDI as a novel, highly conserved domain of IRS-1, which mediates its cellular localization, rate of degradation, and biological activity, with a direct impact on insulin signal transduction.
Collapse
Affiliation(s)
- Sigalit Boura-Halfon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | | | | | | | | | |
Collapse
|
14
|
Cleveland-Donovan K, Maile LA, Tsiaras WG, Tchkonia T, Kirkland JL, Boney CM. IGF-I activation of the AKT pathway is impaired in visceral but not subcutaneous preadipocytes from obese subjects. Endocrinology 2010; 151:3752-63. [PMID: 20555032 PMCID: PMC2940538 DOI: 10.1210/en.2010-0043] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Obesity morbidity is associated with excess visceral adiposity, whereas sc adipose tissue is much less metabolically hazardous. Human abdominal sc preadipocytes have greater capacity for proliferation, differentiation, and survival than omental preadipocytes. IGF-I is a critical mediator of preadipocyte proliferation, differentiation, and survival through multiple signaling pathways. We investigated IGF-I action in primary cultures of human preadipocytes isolated from sc and omental adipose tissue of obese subjects. IGF-I-stimulated DNA synthesis was significantly lower in omental compared with sc preadipocytes. IGF-I phosphorylation of the IGF-I receptor and the ERK pathway was comparable in sc and omental cells. However, omental preadipocytes had decreased insulin receptor substrate (IRS)-1 protein associated with increased IRS-1-serine(636/639) phosphorylation and degradation. IGF-I-stimulated phosphorylation of AKT on serine(473) but not threonine(308) was decreased in omental cells, and activation of downstream targets, including S6Kinase, glycogen synthase kinase-3, and Forkhead box O1 was also impaired. CyclinD1 abundance was decreased in omental cells due to increased degradation. Over-expression of IRS-1 by lentivirus in omental preadipocytes increased IGF-I-stimulated AKT-serine(473) phosphorylation. The mammalian target of rapamycin (mTOR)-Rictor complex regulates phosphorylation of AKT-serine(473) in 3T3-L1 adipocytes, but knockdown of Rictor by lentivirus-delivered short hairpin RNA in sc preadipocytes did not affect AKT-serine(473) phosphorylation by IGF-I. These data reveal an intrinsic defect in IGF-I activation of the AKT pathway in omental preadipocytes from obese subjects that involves IRS-1 but probably not mTOR-Rictor complex. We conclude that impaired cell cycle regulation by AKT contributes to the distinct growth phenotype of preadipocytes in visceral fat of obese subjects.
Collapse
Affiliation(s)
- Kelly Cleveland-Donovan
- Department of Pediatrics, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, Rhode Island 02903, USA
| | | | | | | | | | | |
Collapse
|
15
|
Lee J, Xu Y, Lu L, Bergman B, Leitner JW, Greyson C, Draznin B, Schwartz GG. Multiple abnormalities of myocardial insulin signaling in a porcine model of diet-induced obesity. Am J Physiol Heart Circ Physiol 2009; 298:H310-9. [PMID: 19897715 DOI: 10.1152/ajpheart.00359.2009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Heightened cardiovascular risk among patients with systemic insulin resistance is not fully explained by the extent of atherosclerosis. It is unknown whether myocardial insulin resistance accompanies systemic insulin resistance and contributes to increased cardiovascular risk. This study utilized a porcine model of diet-induced obesity to determine if myocardial insulin resistance develops in parallel with systemic insulin resistance and investigated potential mechanisms for such changes. Micropigs (n = 16) were assigned to control (low fat, no added sugars) or intervention (25% wt/wt coconut oil and 20% high-fructose corn syrup) diet for 7 mo. Intervention diet resulted in obesity, hypertension, and dyslipidemia. Systemic insulin resistance was manifest by elevated fasting glucose and insulin, abnormal response to intravenous glucose tolerance testing, and blunted skeletal muscle phosphatidylinositol-3-kinase (PI 3-kinase) activation and protein kinase B (Akt) phosphorylation in response to insulin. In myocardium, insulin-stimulated glucose uptake, PI 3-kinase activation, and Akt phosphorylation were also blunted in the intervention diet group. These findings were explained by increased myocardial content of p85alpha (regulatory subunit of PI 3-kinase), diminished association of PI 3-kinase with insulin receptor substrate (IRS)-1 in response to insulin, and increased serine-307 phosphorylation of IRS-1. Thus, in a porcine model of diet-induced obesity that recapitulates many characteristics of insulin-resistant patients, myocardial insulin resistance develops along with systemic insulin resistance and is associated with multiple abnormalities of insulin signaling.
Collapse
Affiliation(s)
- Jenny Lee
- Veterans Affairs Medical Center, University of Colorado, Denver, Colorado, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nanodiamond-insulin complexes as pH-dependent protein delivery vehicles. Biomaterials 2009; 30:5720-8. [PMID: 19635632 DOI: 10.1016/j.biomaterials.2009.07.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 07/06/2009] [Indexed: 01/04/2023]
Abstract
Enhanced specificity in drug delivery aims to improve upon systemic elution methods by locally concentrating therapeutic agents and reducing negative side effects. Due to their robust physical properties, biocompatibility and drug loading capabilities, nanodiamonds serve as drug delivery platforms that can be applied towards the elution of a broad range of therapeutically-active compounds. In this work, bovine insulin was non-covalently bound to detonated nanodiamonds via physical adsorption in an aqueous solution and demonstrated pH-dependent desorption in alkaline environments of sodium hydroxide. Insulin adsorption to NDs was confirmed by FT-IR spectroscopy and zeta potential measurements, while both adsorption and desorption were visualized with TEM imaging, quantified using protein detection assays and protein function demonstrated by MTT and RT-PCR. NDs combined with insulin at a 4:1 ratio showed 79.8+/-4.3% adsorption and 31.3+/-1.6% desorption in pH-neutral and alkaline solutions, respectively. Additionally, a 5-day desorption assay in NaOH (pH 10.5) and neutral solution resulted in 45.8+/-3.8% and 2.2+/-1.2% desorption, respectively. MTT viability assays and quantitative RT-PCR (expression of Ins1 and Csf3/G-csf genes) reveal bound insulin remains inactive until alkaline-mediated desorption. For applications in sustained drug delivery and therapy we have developed a therapeutic protein-ND complex with demonstrated tunable release and preserved activity.
Collapse
|
17
|
Bonkowski MS, Dominici FP, Arum O, Rocha JS, Al Regaiey KA, Westbrook R, Spong A, Panici J, Masternak MM, Kopchick JJ, Bartke A. Disruption of growth hormone receptor prevents calorie restriction from improving insulin action and longevity. PLoS One 2009; 4:e4567. [PMID: 19234595 PMCID: PMC2639640 DOI: 10.1371/journal.pone.0004567] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 12/09/2008] [Indexed: 01/23/2023] Open
Abstract
Most mutations that delay aging and prolong lifespan in the mouse are related to somatotropic and/or insulin signaling. Calorie restriction (CR) is the only intervention that reliably increases mouse longevity. There is considerable phenotypic overlap between long-lived mutant mice and normal mice on chronic CR. Therefore, we investigated the interactive effects of CR and targeted disruption or knock out of the growth hormone receptor (GHRKO) in mice on longevity and the insulin signaling cascade. Every other day feeding corresponds to a mild (i.e. 15%) CR which increased median lifespan in normal mice but not in GHRKO mice corroborating our previous findings on the effects of moderate (30%) CR on the longevity of these animals. To determine why insulin sensitivity improves in normal but not GHRKO mice in response to 30% CR, we conducted insulin stimulation experiments after one year of CR. In normal mice, CR increased the insulin stimulated activation of the insulin signaling cascade (IR/IRS/PI3K/AKT) in liver and muscle. Livers of GHRKO mice responded to insulin by increased activation of the early steps of insulin signaling, which was dissipated by altered PI3K subunit abundance which putatively inhibited AKT activation. In the muscle of GHRKO mice, there was elevated downstream activation of the insulin signaling cascade (IRS/PI3K/AKT) in the absence of elevated IR activation. Further, we found a major reduction of inhibitory Ser phosphorylation of IRS-1 seen exclusively in GHRKO muscle which may underpin their elevated insulin sensitivity. Chronic CR failed to further modify the alterations in insulin signaling in GHRKO mice as compared to normal mice, likely explaining or contributing to the absence of CR effects on insulin sensitivity and longevity in these long-lived mice.
Collapse
Affiliation(s)
- Michael S. Bonkowski
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- Department of Pharmacology, and Physiology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Fernando P. Dominici
- Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Oge Arum
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Juliana S. Rocha
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- Department of Morphology, Laboratory of Cellular Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Khalid A. Al Regaiey
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Reyhan Westbrook
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Adam Spong
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Jacob Panici
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - Michal M. Masternak
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| | - John J. Kopchick
- Department of Biomedical Sciences, Edison Biotechnology Institute, Ohio University, Athens, Ohio, United States of America
| | - Andrzej Bartke
- Department of Internal Medicine – Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
- Department of Pharmacology, and Physiology, Southern Illinois University School of Medicine, Springfield, Illinois, United States of America
| |
Collapse
|