1
|
Ulloa-Aguirre A, Zariñán T, Dias JA, Kumar TR, Bousfield GR. Biased signaling by human follicle-stimulating hormone variants. Pharmacol Ther 2025; 268:108821. [PMID: 39961417 DOI: 10.1016/j.pharmthera.2025.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/30/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025]
Abstract
Follicle-stimulating hormone (FSH) or follitropin plays a fundamental role in several mammalian species, including humans. This gonadotropin is produced by the anterior pituitary gland and has as its main targets the granulosa cells of the ovary and the Sertoli cells of the testis. Structurally, FSH is composed of two non-convalently linked subunits, the α- and β-subunit, as well as highly heterogenous oligosaccharide structures, which play a key role in determining a number of physiological and biological features of the hormone. Glycosylation in FSH and the other members belonging to the glycoprotein hormone family, is essential for many functions of the gonadotropin, including subunit assembly and stability, secretion, circulatory half-life and biological activity. Carbohydrate heterogeneity in FSH comes in two forms, microheterogeneity, which results from variations in the carbohydrate structural complexity in those oligosaccharides attached to the α- or β-subunit of the hormone and macroheterogeneity, which results from the absence of carbohydrate chain at FSHβ Asn-glycosylation sites. A number of in vitro and in vivo studies have conclusively demonstrated differential, unique and even opposing effects provoked by variations in the carbohydrate structures of FSH, including circulatory survival, binding to and activation of its cognate receptor in the gonads, intracellular signaling, and activation/inhibition of a number of FSH-regulated genes essential for follicle development. Herein, we review the effects of the FSH oligosaccharides on several functions of FSH, and how variations in these structures have been shown to lead to functional selectivity of the hormone.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico..
| | - Teresa Zariñán
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - James A Dias
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS, USA
| |
Collapse
|
2
|
Shpakov AO. Hormonal and Allosteric Regulation of the Luteinizing Hormone/Chorionic Gonadotropin Receptor. FRONT BIOSCI-LANDMRK 2024; 29:313. [PMID: 39344322 DOI: 10.31083/j.fbl2909313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 10/01/2024]
Abstract
Luteinizing hormone (LH) and human chorionic gonadotropin (CG), like follicle-stimulating hormone, are the most important regulators of the reproductive system. They exert their effect on the cell through the LH/CG receptor (LHCGR), which belongs to the family of G protein-coupled receptors. Binding to gonadotropin induces the interaction of LHCGR with various types of heterotrimeric G proteins (Gs, Gq/11, Gi) and β-arrestins, which leads to stimulation (Gs) or inhibition (Gi) of cyclic adenosine monophosphate-dependent cascades, activation of the phospholipase pathway (Gq/11), and also to the formation of signalosomes that mediate the stimulation of mitogen-activated protein kinases (β-arrestins). The efficiency and selectivity of activation of intracellular cascades by different gonadotropins varies, which is due to differences in their interaction with the ligand-binding site of LHCGR. Gonadotropin signaling largely depends on the status of N- and O-glycosylation of LH and CG, on the formation of homo- and heterodimeric receptor complexes, on the cell-specific microenvironment of LHCGR and the presence of autoantibodies to it, and allosteric mechanisms are important in the implementation of these influences, which is due to the multiplicity of allosteric sites in different loci of the LHCGR. The development of low-molecular-weight allosteric regulators of LHCGR with different profiles of pharmacological activity, which can be used in medicine for the correction of reproductive disorders and in assisted reproductive technologies, is promising. These and other issues regarding the hormonal and allosteric regulation of LHCGR are summarized and discussed in this review.
Collapse
Affiliation(s)
- Alexander O Shpakov
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, 194223 St. Petersburg, Russia
| |
Collapse
|
3
|
G-protein Biased Signaling Agonists of Dopamine D3 Receptor Promote Distinct Activation Patterns of ERK1/2. Pharmacol Res 2022; 179:106223. [DOI: 10.1016/j.phrs.2022.106223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 01/11/2023]
|
4
|
Haldar S, Agrawal H, Saha S, Straughn AR, Roy P, Kakar SS. Overview of follicle stimulating hormone and its receptors in reproduction and in stem cells and cancer stem cells. Int J Biol Sci 2022; 18:675-692. [PMID: 35002517 PMCID: PMC8741861 DOI: 10.7150/ijbs.63721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/21/2021] [Indexed: 11/05/2022] Open
Abstract
Follicle stimulating hormone (FSH) and its receptor (FSHR) have been reported to be responsible for several physiological functions and cancers. The responsiveness of stem cells and cancer stem cells towards the FSH-FSHR system make the function of FSH and its receptors more interesting in the context of cancer biology. This review is comprised of comprehensive information on FSH-FSHR signaling in normal physiology, gonadal stem cells, cancer cells, and potential options of utilizing FSH-FSHR system as an anti-cancer therapeutic target.
Collapse
Affiliation(s)
- Swati Haldar
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India.,Current address: Drug Discovery and Development Division, Patanjali Research Institute, Haridwar, Uttarakhand 249405
| | - Himanshu Agrawal
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sarama Saha
- Department of Biochemistry, All India Institute of Medical Sciences Rishikesh, Uttarakhand 249203, India
| | - Alex R Straughn
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Partha Roy
- Molecular Endocrinology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
| | - Sham S Kakar
- Department of Physiology, James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Abstract
Gonadotropins are glycoprotein sex hormones regulating development and reproduction and bind to specific G protein–coupled receptors expressed in the gonads. Their effects on multiple signaling cascades and intracellular events have recently been characterized using novel technological and scientific tools. The impact of allosteric modulators on gonadotropin signaling, the role of sugars linked to the hormone backbone, the detection of endosomal compartments supporting signaling modules, and the dissection of different effects mediated by these molecules are areas that have advanced significantly in the last decade. The classic view providing the exclusive activation of the cAMP/protein kinase A (PKA) and the steroidogenic pathway by these hormones has been expanded with the addition of novel signaling cascades as determined by high-resolution imaging techniques. These new findings provided new potential therapeutic applications. Despite these improvements, unanswered issues of gonadotropin physiology, such as the intrinsic pro-apoptotic potential to these hormones, the existence of receptors assembled as heteromers, and their expression in extragonadal tissues, remain to be studied. Elucidating these issues is a challenge for future research.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria di Modena, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
6
|
Zariñán T, Butnev VY, Gutiérrez-Sagal R, Maravillas-Montero JL, Martínez-Luis I, Mejía-Domínguez NR, Juárez-Vega G, Bousfield GR, Ulloa-Aguirre A. In Vitro Impact of FSH Glycosylation Variants on FSH Receptor-stimulated Signal Transduction and Functional Selectivity. J Endocr Soc 2020; 4:bvaa019. [PMID: 32342021 PMCID: PMC7175721 DOI: 10.1210/jendso/bvaa019] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
FSH exists as different glycoforms that differ in glycosylation of the hormone-specific β-subunit. Tetra-glycosylated FSH (FSH24) and hypo-glycosylated FSH (FSH18/21) are the most abundant glycoforms found in humans. Employing distinct readouts in HEK293 cells expressing the FSH receptor, we compared signaling triggered by human pituitary FSH preparations (FSH18/21 and FSH24) as well as by equine FSH (eFSH), and human recombinant FSH (recFSH), each exhibiting distinct glycosylation patterns. The potency in eliciting cAMP production was greater for eFSH than for FSH18/21, FSH24, and recFSH, whereas in the ERK1/2 activation readout, potency was highest for FSH18/21 followed by eFSH, recFSH, and FSH24. In β-arrestin1/2 CRISPR/Cas9 HEK293-KO cells, FSH18/21 exhibited a preference toward β-arrestin-mediated ERK1/2 activation as revealed by a drastic decrease in pERK during the first 15-minute exposure to this glycoform. Exposure of β-arrestin1/2 KO cells to H89 additionally decreased pERK1/2, albeit to a significantly lower extent in response to FSH18/21. Concurrent silencing of β-arrestin and PKA signaling, incompletely suppressed pERK response to FSH glycoforms, suggesting that pathways other than those dependent on Gs-protein and β-arrestins also contribute to FSH-stimulated pERK1/2. All FSH glycoforms stimulated intracellular Ca2+ (iCa2+) accumulation through both influx from Ca2+ channels and release from intracellular stores; however, iCa2+ in response to FSH18/21 depended more on the latter, suggesting differences in mechanisms through which glycoforms promote iCa2+ accumulation. These data indicate that FSH glycosylation plays an important role in defining not only the intensity but also the functional selectivity for the mechanisms leading to activation of distinct signaling cascades.
Collapse
Affiliation(s)
- Teresa Zariñán
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Viktor Y Butnev
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Rubén Gutiérrez-Sagal
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - José Luis Maravillas-Montero
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Iván Martínez-Luis
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Nancy R Mejía-Domínguez
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Guillermo Juárez-Vega
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - George R Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación (RAI), Universidad Nacional Autónoma de México (UNAM)-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
7
|
Casarini L, Crépieux P, Reiter E, Lazzaretti C, Paradiso E, Rochira V, Brigante G, Santi D, Simoni M. FSH for the Treatment of Male Infertility. Int J Mol Sci 2020; 21:ijms21072270. [PMID: 32218314 PMCID: PMC7177393 DOI: 10.3390/ijms21072270] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/22/2020] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Follicle-stimulating hormone (FSH) supports spermatogenesis acting via its receptor (FSHR), which activates trophic effects in gonadal Sertoli cells. These pathways are targeted by hormonal drugs used for clinical treatment of infertile men, mainly belonging to sub-groups defined as hypogonadotropic hypogonadism or idiopathic infertility. While, in the first case, fertility may be efficiently restored by specific treatments, such as pulsatile gonadotropin releasing hormone (GnRH) or choriogonadotropin (hCG) alone or in combination with FSH, less is known about the efficacy of FSH in supporting the treatment of male idiopathic infertility. This review focuses on the role of FSH in the clinical approach to male reproduction, addressing the state-of-the-art from the little data available and discussing the pharmacological evidence. New compounds, such as allosteric ligands, dually active, chimeric gonadotropins and immunoglobulins, may represent interesting avenues for future personalized, pharmacological approaches to male infertility.
Collapse
Affiliation(s)
- Livio Casarini
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Correspondence: ; Tel.: +39-0593961705; Fax: +39-0593962018
| | - Pascale Crépieux
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
| | - Clara Lazzaretti
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Elia Paradiso
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- International PhD School in Clinical and Experimental Medicine (CEM), University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Vincenzo Rochira
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Giulia Brigante
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Daniele Santi
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| | - Manuela Simoni
- Unit of Endocrinology, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via P. Giardini 1355, 41126 Modena, Italy; (C.L.); (E.P.); (V.R.); (G.B.); (D.S.); (M.S.)
- Center for Genomic Research, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
- Physiologie de la Reproduction et des Comportements (PRC), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l’Equitation (IFCE), Université de Tours, 37380 Nouzilly, France; (P.C.); (E.R.)
- Unit of Endocrinology, Department of Medical Specialties, Azienda Ospedaliero-Universitaria, Via P. Giardini 1355, 41126 Modena, Italy
| |
Collapse
|
8
|
Landomiel F, De Pascali F, Raynaud P, Jean-Alphonse F, Yvinec R, Pellissier LP, Bozon V, Bruneau G, Crépieux P, Poupon A, Reiter E. Biased Signaling and Allosteric Modulation at the FSHR. Front Endocrinol (Lausanne) 2019; 10:148. [PMID: 30930853 PMCID: PMC6425863 DOI: 10.3389/fendo.2019.00148] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/19/2019] [Indexed: 12/12/2022] Open
Abstract
Knowledge on G protein-coupled receptor (GPCRs) structure and mechanism of activation has profoundly evolved over the past years. The way drugs targeting this family of receptors are discovered and used has also changed. Ligands appear to bind a growing number of GPCRs in a competitive or allosteric manner to elicit balanced signaling or biased signaling (i.e., differential efficacy in activating or inhibiting selective signaling pathway(s) compared to the reference ligand). These novel concepts and developments transform our understanding of the follicle-stimulating hormone (FSH) receptor (FSHR) biology and the way it could be pharmacologically modulated in the future. The FSHR is expressed in somatic cells of the gonads and plays a major role in reproduction. When compared to classical GPCRs, the FSHR exhibits intrinsic peculiarities, such as a very large NH2-terminal extracellular domain that binds a naturally heterogeneous, large heterodimeric glycoprotein, namely FSH. Once activated, the FSHR couples to Gαs and, in some instances, to other Gα subunits. G protein-coupled receptor kinases and β-arrestins are also recruited to this receptor and account for its desensitization, trafficking, and intracellular signaling. Different classes of pharmacological tools capable of biasing FSHR signaling have been reported and open promising prospects both in basic research and for therapeutic applications. Here we provide an updated review of the most salient peculiarities of FSHR signaling and its selective modulation.
Collapse
|
9
|
Kara E, Dupuy L, Bouillon C, Casteret S, Maurel MC. Modulation of Gonadotropins Activity by Antibodies. Front Endocrinol (Lausanne) 2019; 10:15. [PMID: 30833928 PMCID: PMC6387920 DOI: 10.3389/fendo.2019.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/10/2019] [Indexed: 12/19/2022] Open
Abstract
Gonadotropins are essential for reproduction control in humans as well as in animals. They are widely used all over the world for ovarian stimulation in women, spermatogenesis stimulation in men, and ovulation induction and superovulation in animals. Despite the availability of many different preparations, all are made of the native hormones. Having different ligands with a wide activity range for a given receptor helps better understand its molecular and cellular signaling mechanisms as well as its physiological functions, and thus helps the development of more specific and adapted medicines. One way to control the gonadotropins' activity could be the use of modulating antibodies. Antibodies are powerful tools that were largely used to decipher gonadotropins' actions and they have shown their utility as therapeutics in several other indications such as cancer. In this review, we summarize the inhibitory and potentiating antibodies to gonadotropins, and their potential therapeutic applications.
Collapse
Affiliation(s)
| | | | - Céline Bouillon
- Igyxos SA, Nouzilly, France
- Service de Médecine et Biologie de la Reproduction, CHRU de Tours, Tours, France
- Biologie Intégrative de l'Ovaire, INRA, UMR85, Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, UMR7247, Nouzilly, France
- Université François Rabelais, Tours, France
- IFCE, Nouzilly, France
| | | | | |
Collapse
|
10
|
Luttrell LM, Wang J, Plouffe B, Smith JS, Yamani L, Kaur S, Jean-Charles PY, Gauthier C, Lee MH, Pani B, Kim J, Ahn S, Rajagopal S, Reiter E, Bouvier M, Shenoy SK, Laporte SA, Rockman HA, Lefkowitz RJ. Manifold roles of β-arrestins in GPCR signaling elucidated with siRNA and CRISPR/Cas9. Sci Signal 2018; 11:11/549/eaat7650. [PMID: 30254056 DOI: 10.1126/scisignal.aat7650] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
G protein-coupled receptors (GPCRs) use diverse mechanisms to regulate the mitogen-activated protein kinases ERK1/2. β-Arrestins (βArr1/2) are ubiquitous inhibitors of G protein signaling, promoting GPCR desensitization and internalization and serving as scaffolds for ERK1/2 activation. Studies using CRISPR/Cas9 to delete βArr1/2 and G proteins have cast doubt on the role of β-arrestins in activating specific pools of ERK1/2. We compared the effects of siRNA-mediated knockdown of βArr1/2 and reconstitution with βArr1/2 in three different parental and CRISPR-derived βArr1/2 knockout HEK293 cell pairs to assess the effect of βArr1/2 deletion on ERK1/2 activation by four Gs-coupled GPCRs. In all parental lines with all receptors, ERK1/2 stimulation was reduced by siRNAs specific for βArr2 or βArr1/2. In contrast, variable effects were observed with CRISPR-derived cell lines both between different lines and with activation of different receptors. For β2 adrenergic receptors (β2ARs) and β1ARs, βArr1/2 deletion increased, decreased, or had no effect on isoproterenol-stimulated ERK1/2 activation in different CRISPR clones. ERK1/2 activation by the vasopressin V2 and follicle-stimulating hormone receptors was reduced in these cells but was enhanced by reconstitution with βArr1/2. Loss of desensitization and receptor internalization in CRISPR βArr1/2 knockout cells caused β2AR-mediated stimulation of ERK1/2 to become more dependent on G proteins, which was reversed by reintroducing βArr1/2. These data suggest that βArr1/2 function as a regulatory hub, determining the balance between mechanistically different pathways that result in activation of ERK1/2, and caution against extrapolating results obtained from βArr1/2- or G protein-deleted cells to GPCR behavior in native systems.
Collapse
Affiliation(s)
- Louis M Luttrell
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.,Research Service of the Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA
| | - Jialu Wang
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Bianca Plouffe
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Jeffrey S Smith
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Lama Yamani
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Suneet Kaur
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | - Christophe Gauthier
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Mi-Hye Lee
- Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Biswaranjan Pani
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Jihee Kim
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Seungkirl Ahn
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | - Sudarshan Rajagopal
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | - Eric Reiter
- Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, CNRS, Université de Tours, 37380 Nouzilly, France
| | - Michel Bouvier
- Department of Biochemistry and Molecular Medicine, Institute for Research in Immunology and Cancer, University of Montreal, Montreal, Quebec H3C IJ4, Canada
| | - Sudha K Shenoy
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stéphane A Laporte
- Department of Medicine, Research Institute of the McGill University Health Center, McGill University, Montreal, Quebec H4A 3J1, Canada
| | - Howard A Rockman
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.,Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.,Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Robert J Lefkowitz
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA. .,Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.,Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
11
|
Ulloa-Aguirre A, Reiter E, Crépieux P. FSH Receptor Signaling: Complexity of Interactions and Signal Diversity. Endocrinology 2018; 159:3020-3035. [PMID: 29982321 DOI: 10.1210/en.2018-00452] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022]
Abstract
FSH is synthesized in the pituitary by gonadotrope cells. By binding to and interacting with its cognate receptor [FSH receptor (FSHR)] in the gonads, this gonadotropin plays a key role in the control of gonadal function and reproduction. Upon activation, the FSHR undergoes conformational changes leading to transduction of intracellular signals, including dissociation of G protein complexes into components and activation of several associated interacting partners, which concertedly regulate downstream effectors. The canonical Gs/cAMP/protein kinase A pathway, considered for a long time as the sole effector of FSHR-mediated signaling, is now viewed as one of several mechanisms employed by this receptor to transduce intracellular signals in response to the FSH stimulus. This complex network of signaling pathways allows for a fine-tuning regulation of the gonadotropic stimulus, where activation/inhibition of its multiple components vary depending on the cell context, cell developmental stage, and concentration of associated receptors and corresponding ligands. Activation of these multiple signaling modules eventually converge to the hormone-integrated biological response, including survival, proliferation and differentiation of target cells, synthesis and secretion of paracrine/autocrine regulators, and, at the molecular level, functional selectivity and differential gene expression. In this mini-review, we discuss the complexity of FSHR-mediated intracellular signals activated in response to ligand stimulation. A better understanding of the signaling pathways involved in FSH action might potentially influence the development of new therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Red de Apoyo a la Investigación, Universidad Nacional Autónoma de México-Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Eric Reiter
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| | - Pascale Crépieux
- Biology and Bioinformatics of Signaling Systems Group, Unité Mixtes de Recherche 85, Unité Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, Nouzilly, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7247, Nouzilly, France
- Université François Rabelais, Nouzilly, France
| |
Collapse
|
12
|
Abstract
Gonadotropin receptors include the follicle stimulating hormone receptor (FSHR) and the luteinizing hormone/choriogonadotropin receptor (LHCGR), both belong to the G protein-coupled receptor (GPCR) superfamily and are essential to reproduction. FSHR is activated by follicle stimulating hormone (FSH) while LHCGR is activated by either luteinizing hormone (LH) or choriogonadotropin (CG). Upon ligand binding, gonadotropin receptors undergo conformational changes that lead to the activation of the heterotrimeric G protein, resulting in the production of different second messengers. Gonadotropin receptors can also recruit and bind β-arrestins. This particular class of scaffold proteins were initially identified to mediate GPCRs desensitization and recycling, but it is now well established that β-arrestins can also initiate Gs-independent signaling by assembling signaling modules. Furthermore, new advances in structural biology and biophysical techniques have revealed novel activation mechanisms allowing β-arrestins and G proteins to control signaling in time and space. The ability of different ligands to preferentially elicit G- or β-arrestin-mediated signaling is known as functional selectivity or biased signaling. This new concept has switched the view of pharmacology efficacy from monodimensional to multidimensional. Biased signaling offers the possibility to separate therapeutic benefits of a drug from its adverse effects. The proof of concept that gonadotropin receptors can be subjected to biased signaling is now established. The challenge will now be the design of molecules that can specifically activate beneficial signaling pathway at gonadotropin receptors while reducing or abolishing those leading to side effects. Such strategy could for instance lead to improved treatments for infertility.
Collapse
Affiliation(s)
| | - Eric Reiter
- PCR, INRA, CNRS, IFCE, Université de Tours, Nouzilly, France -
| |
Collapse
|
13
|
Follicle-Stimulating Hormone Receptor: Advances and Remaining Challenges. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 338:1-58. [DOI: 10.1016/bs.ircmb.2018.02.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
14
|
Reiter E, Ayoub MA, Pellissier LP, Landomiel F, Musnier A, Tréfier A, Gandia J, De Pascali F, Tahir S, Yvinec R, Bruneau G, Poupon A, Crépieux P. β-arrestin signalling and bias in hormone-responsive GPCRs. Mol Cell Endocrinol 2017; 449:28-41. [PMID: 28174117 DOI: 10.1016/j.mce.2017.01.052] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 01/31/2017] [Accepted: 01/31/2017] [Indexed: 12/14/2022]
Abstract
G protein-coupled receptors (GPCRs) play crucial roles in the ability of target organs to respond to hormonal cues. GPCRs' activation mechanisms have long been considered as a two-state process connecting the agonist-bound receptor to heterotrimeric G proteins. This view is now challenged as mounting evidence point to GPCRs being connected to large arrays of transduction mechanisms involving heterotrimeric G proteins as well as other players. Amongst the G protein-independent transduction mechanisms, those elicited by β-arrestins upon their recruitment to the active receptors are by far the best characterized and apply to most GPCRs. These concepts, in conjunction with remarkable advances made in the field of GPCR structural biology and biophysics, have supported the notion of ligand-selective signalling also known as pharmacological bias. Interestingly, recent reports have opened intriguing prospects to the way β-arrestins control GPCR-mediated signalling in space and time within the cells. In the present paper, we review the existing evidence linking endocrine-related GPCRs to β-arrestin recruitement, signalling, pathophysiological implications and selective activation by biased ligands and/or receptor modifications. Emerging concepts surrounding β-arrestin-mediated transduction are discussed in the light of the peculiarities of endocrine systems.
Collapse
Affiliation(s)
- Eric Reiter
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France.
| | - Mohammed Akli Ayoub
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France; LE STUDIUM(®) Loire Valley Institute for Advanced Studies, 45000, Orléans, France; Biology Department, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Flavie Landomiel
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Astrid Musnier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Aurélie Tréfier
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Jorge Gandia
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | | | - Shifa Tahir
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Romain Yvinec
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Gilles Bruneau
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Anne Poupon
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| | - Pascale Crépieux
- PRC, INRA, CNRS, IFCE, Université de Tours, 37380, Nouzilly, France
| |
Collapse
|
15
|
Ulloa-Aguirre A, Lira-Albarrán S. Clinical Applications of Gonadotropins in the Male. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2016; 143:121-174. [PMID: 27697201 DOI: 10.1016/bs.pmbts.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The pituitary gonadotropins, luteinizing hormone (LH), and follicle-stimulating hormone (FSH) play a pivotal role in reproduction. The synthesis and secretion of gonadotropins are regulated by complex interactions among several endocrine, paracrine, and autocrine factors of diverse chemical structure. In men, LH regulates the synthesis of androgens by the Leydig cells, whereas FSH promotes Sertoli cell function and thereby influences spermatogenesis. Gonadotropins are complex molecules composed of two subunits, the α- and β-subunit, that are noncovalently associated. Gonadotropins are decorated with glycans that regulate several functions of the protein including folding, heterodimerization, stability, transport, conformational maturation, efficiency of heterodimer secretion, metabolic fate, interaction with their cognate receptor, and selective activation of signaling pathways. A number of congenital and acquired abnormalities lead to gonadotropin deficiency and hypogonadotropic hypogonadism, a condition amenable to treatment with exogenous gonadotropins. Several natural and recombinant preparations of gonadotropins are currently available for therapeutic purposes. The difference between natural and the currently available recombinant preparations (which are massively produced in Chinese hamster ovary cells for commercial purposes) mainly lies in the abundance of some of the carbohydrates that conform the complex glycans attached to the protein core. Whereas administration of exogenous gonadotropins in patients with isolated congenital hypogonadotropic hypogonadism is a well recognized therapeutic approach, their role in treating men with normogonadotropic idiopathic infertility is still controversial. This chapter concentrates on the main structural and functional features of the gonadotropin hormones and how basic concepts have been translated into the clinical arena to guide therapy for gonadotropin deficit in males.
Collapse
Affiliation(s)
- A Ulloa-Aguirre
- Research Support Network, Universidad Nacional Autónoma de México (UNAM)-National Institutes of Health, Mexico City, Mexico.
| | - S Lira-Albarrán
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
16
|
Landomiel F, Gallay N, Jégot G, Tranchant T, Durand G, Bourquard T, Crépieux P, Poupon A, Reiter E. Biased signalling in follicle stimulating hormone action. Mol Cell Endocrinol 2014; 382:452-459. [PMID: 24121199 DOI: 10.1016/j.mce.2013.09.035] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 09/26/2013] [Accepted: 09/26/2013] [Indexed: 12/22/2022]
Abstract
Follicle-stimulating hormone (FSH) plays a crucial role in the control of reproduction by specifically binding to and activating a membrane receptor (FSHR) that belongs to the G protein-coupled receptor (GPCR) family. Similar to all GPCRs, FSHR activation mechanisms have generally been viewed as a two-state process connecting a unique FSH-bound active receptor to the Gs/cAMP pathway. Over the last decade, paralleling the breakthroughs that were made in the GPCR field, our understanding of FSH actions at the molecular level has dramatically changed. There are numerous facts indicating that the active FSHR is connected to a complex signalling network rather than the sole Gs/cAMP pathway. Consistently, the FSHR probably exists in equilibrium between multiple conformers, a subset of them being stabilized upon ligand binding. Importantly, the nature of the stabilized conformers of the receptor directly depends on the chemical structure of the ligand bound. This implies that it is possible to selectively control the intracellular signalling pathways activated by using biased ligands. Such biased ligands can be of different nature: small chemical molecules, glycosylation variants of the hormone or antibody/hormone complexes. Likewise, mutations or polymorphisms affecting the FSHR can also lead to stabilization of preferential conformers, hence to selective modulation of signalling pathways. These emerging notions offer a new conceptual framework that could potentially lead to the development of more specific drugs while also improving the way FSHR mutants/variants are functionally characterized.
Collapse
Affiliation(s)
- Flavie Landomiel
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Nathalie Gallay
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Gwenhael Jégot
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Thibaud Tranchant
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Guillaume Durand
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Thomas Bourquard
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Pascale Crépieux
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Anne Poupon
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France
| | - Eric Reiter
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, F-37380 Nouzilly, France; CNRS, UMR7247, F-37380 Nouzilly, France; Université François Rabelais, F-37041 Tours, France.
| |
Collapse
|
17
|
Ulloa-Aguirre A, Reiter E, Bousfield G, Dias JA, Huhtaniemi I. Constitutive activity in gonadotropin receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 70:37-80. [PMID: 24931192 DOI: 10.1016/b978-0-12-417197-8.00002-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Constitutively active mutants (CAMs) of gonadotropin receptors are, in general, rare conditions. Luteinizing hormone-choriogonadotropin receptor (LHCGR) CAMs provoke the dramatic phenotype of familial gonadotropin-independent isosexual male-limited precocious puberty, whereas in females, there is not yet any identified phenotype. Only one isolated follicle-stimulating hormone receptor (FSHR) CAM (Asp567Gly) has so far been detected in a single male patient, besides other FSHR weak CAMs linked to pregnancy-associated ovarian hyperstimulation syndrome or to impaired desensitization and internalization. Several animal models have been developed for studying enhanced gonadotropin action; in addition to unraveling valuable new information about the possible phenotypes of isolated FSHR and LHCGR CAMs in women, the information obtained from these mouse models has served multiple translational goals, including the development of new diagnostic and therapeutic targets as well as the prediction of phenotypes for mutations not yet identified in humans. Mutagenesis and computational studies have shed important information on the physiopathogenic mechanisms leading to constitutive activity of gonadotropin receptors; a common feature in these receptor CAMs is the release of stabilizing interhelical interactions between transmembrane domains (TMDs) 3 and 6 leading to an increase, with respect to the wild-type receptor, in the solvent accessibility at the cytosolic extension of TMDs 3, 5, and 6, which involves the highly conserved Glu/Asp-Arg-Tyr/Trp sequence. In this chapter, we summarize the structural features, functional consequences, and mechanisms that lead to constitutive activation of gonadotropin receptor CAMs and provide information on pharmacological approaches that might potentially modulate gonadotropin receptor CAM function.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Research Support Network, Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán" and Universidad Nacional Autónoma de México, México D.F., Mexico.
| | - Eric Reiter
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais, Tours, France
| | - George Bousfield
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - James A Dias
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, New York, USA
| | - Ilpo Huhtaniemi
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France; Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
León K, Gallay N, Poupon A, Reiter E, Dalbies-Tran R, Crepieux P. Integrating microRNAs into the complexity of gonadotropin signaling networks. Front Cell Dev Biol 2013; 1:3. [PMID: 25364708 PMCID: PMC4206998 DOI: 10.3389/fcell.2013.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 12/12/2013] [Indexed: 12/13/2022] Open
Abstract
Follicle-stimulating hormone (FSH) is a master endocrine regulator of mammalian reproductive functions. Hence, it is used to stimulate folliculogenesis in assisted reproductive technologies (ART), both in women and in breeding animals. However, the side effects that hormone administration induces in some instances jeopardize the success of ART. Similarly, the luteinizing hormone (LH) is also of paramount importance in the reproductive function because it regulates steroidogenesis and the LH surge is a pre-requisite to ovulation. Gaining knowledge as extensive as possible on gonadotropin-induced biological responses could certainly lead to precise selection of their effects in vivo by the use of selective agonists at the hormone receptors. Hence, over the years, numerous groups have contributed to decipher the cellular events induced by FSH and LH in their gonadal target cells. Although little is known on the effect of gonadotropins on microRNA expression so far, recent data have highlighted that a microRNA regulatory network is likely to superimpose on the signaling protein network. No doubt that this will dramatically alter our current understanding of the gonadotropin-induced signaling networks. This is the topic of this review to present this additional level of complexity within the gonadotropin signaling network, in the context of recent findings on the microRNA machinery in the gonad.
Collapse
Affiliation(s)
- Kelly León
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Nathalie Gallay
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Anne Poupon
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Eric Reiter
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Rozenn Dalbies-Tran
- BINGO Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| | - Pascale Crepieux
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France; CNRS, UMR7247, Nouzilly, France; Université François Rabelais Tours, France
| |
Collapse
|
19
|
Abstract
The follitropin or follicle-stimulating hormone receptor (FSHR) belongs to a highly conserved subfamily of the G protein-coupled receptor (GPCR) superfamily and is mainly expressed in specific cells in the gonads. As any other GPCR, the newly synthesized FSHR has to be correctly folded and processed in order to traffic to the cell surface plasma membrane and interact with its cognate ligand. In this chapter, we describe in detail the conditions and procedures used to study outward trafficking of the FSHR from the endoplasmic reticulum to the plasma membrane. We also describe some methods to analyze phosphorylation, β-arrestin recruitment, internalization, and recycling of this particular receptor, which have proved useful in our hands for dissecting its downward trafficking and fate following agonist stimulation.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- Division of Reproductive Health, Research Center in Population Health, National Institute of Public Health, México D.F., Mexico
| | - James A. Dias
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- New York State Department of Health and Department of Biomedical Sciences, Wadsworth Center, School of Public Health, University at Albany, Albany, USA
| | - George Bousfield
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- Department of Biological Sciences, Wichita State University, Wichita, Kansas, USA
| | - Ilpo Huhtaniemi
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - Eric Reiter
- Studium Consortium for Research and Training in Reproductive Sciences (sCORTS), Tours, France
- BIOS Group, INRA, Unité Physiologie de la Reproduction et des Comportements, Nouzilly, France
- CNRS, Nouzilly, France
- Université François Rabelais, Tours, France
| |
Collapse
|
20
|
Gigoux V, Fourmy D. Acting on Hormone Receptors with Minimal Side Effect on Cell Proliferation: A Timely Challenge Illustrated with GLP-1R and GPER. Front Endocrinol (Lausanne) 2013; 4:50. [PMID: 23641235 PMCID: PMC3638125 DOI: 10.3389/fendo.2013.00050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 04/10/2013] [Indexed: 12/18/2022] Open
Abstract
G protein-coupled receptors (GPCRs) constitute a large family of receptors that sense molecules outside the cell and activate inside signal transduction pathways and cellular responses. GPCR are involved in a wide variety of physiological processes, including in the neuroendocrine system. GPCR are also involved in many diseases and are the target of 30% of marketed medicinal drugs. Whereas the majority of the GPCR-targeting drugs have proved their therapeutic benefit, some of them were associated with undesired effects. We develop two examples of used drugs whose therapeutic benefits are tarnished by carcinogenesis risks. The chronic administration of glucagon-like peptide-1 (GLP-1) analogs widely used to treat type-2 diabetes was associated with an increased risk of pancreatic or thyroid cancers. The long-term treatment with the estrogen antagonist tamoxifen, developed to target breast cancer overexpressing estrogen receptors ER, presents agonist activity on the G protein-coupled estrogen receptor which is associated with an increased incidence of endometrial cancer and breast cancer resistance to hormonotherapy. We point out and discuss the need of pharmacological studies to understand and overcome the undesired effects associated with the chronic administration of GPCR ligands. In fact, biological effects triggered by GPCR often result from the activation of multiple intracellular signaling pathways. Deciphering which signaling networks are engaged following GPCR activation appears to be primordial to unveil their contribution in the physiological and physiopathological processes. The development of biased agonists to elucidate the role of the different signaling mechanisms mediated by GPCR activation will allow the generation of new therapeutic agents with improved efficacy and reduced side effects. In this regard, the identification of GLP-1R biased ligands promoting insulin secretion without inducing pro-tumoral effects would offer therapeutic benefit.
Collapse
Affiliation(s)
- Véronique Gigoux
- Université de Toulouse, Université Paul SabatierToulouse, France
- *Correspondence: Véronique Gigoux, CHU Rangueil – INSERM, Université de Toulouse, Université Paul Sabatier, EA4552, 1 Avenue Jean Poulhès, BP 84225, 31432 Toulouse Cedex 4, France. e-mail:
| | - Daniel Fourmy
- Université de Toulouse, Université Paul SabatierToulouse, France
| |
Collapse
|
21
|
Denis C, Saulière A, Galandrin S, Sénard JM, Galés C. Probing heterotrimeric G protein activation: applications to biased ligands. Curr Pharm Des 2012; 18:128-44. [PMID: 22229559 DOI: 10.2174/138161212799040466] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2011] [Accepted: 11/09/2011] [Indexed: 12/17/2022]
Abstract
Cell surface G protein-coupled receptors (GPCRs) drive numerous signaling pathways involved in the regulation of a broad range of physiologic processes. Today, they represent the largest target for modern drugs development with potential application in all clinical fields. Recently, the concept of "ligand-directed trafficking" has led to a conceptual revolution in pharmacological theory, thus opening new avenues for drug discovery. Accordingly, GPCRs do not function as simple on-off switch but rather as filters capable of selecting the activation of specific signals and thus generating texture responses to ligands, a phenomenon often referred to as ligand-biased signaling. Also, one challenging task today remains optimization of pharmacological assays with increased sensitivity so to better appreciate the inherent texture of ligands. However, considering that a single receptor has pleiotropic signaling properties and that each signal can crosstalk at different levels, biased activity remains thus difficult to evaluate. One strategy to overcome these limitations would be examining the initial steps following receptor activation. Even, if some G protein independent functions have been recently described, heterotrimeric G protein activation remains a general hallmark for all GPCRs families and the first cellular event subsequent to agonist binding to the receptor. Herein, we review the different methodologies classically used or recently developed to monitor G protein activation and discussed them in the context of G protein biased-ligands.
Collapse
Affiliation(s)
- Colette Denis
- Institut des Maladies Métaboliques et Cardiovasculaires, Université Toulouse III Paul Sabatier, Centre Hospitalier Universitaire de Toulouse, France.
| | | | | | | | | |
Collapse
|
22
|
Ulloa-Aguirre A, Crépieux P, Poupon A, Maurel MC, Reiter E. Novel pathways in gonadotropin receptor signaling and biased agonism. Rev Endocr Metab Disord 2011; 12:259-74. [PMID: 21526415 DOI: 10.1007/s11154-011-9176-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gonadotropins play a central role in the control of male and female reproduction. Selective agonists and antagonists of gonadotropin receptors would be of great interest for the treatment of infertility or as non steroidal contraceptive. However, to date, only native hormones are being used in assisted reproduction technologies as there is no pharmacological agent available to manipulate gonadotropin receptors. Over the last decade, there has been a growing perception of the complexity associated with gonadotropin receptors' cellular signaling. It is now clear that the Gs/cAMP/PKA pathway is not the sole mechanism that must be taken into account in order to understand these hormones' biological actions. In parallel, consistent with the emerging paradigm of biased agonism, several examples of ligand-mediated selective signaling pathway activation by gonadotropin receptors have been reported. Small molecule ligands, modulating antibodies interacting with the hormones and glycosylation variants of the native glycoproteins have all demonstrated their potential to trigger such selective signaling. Altogether, the available data and emerging concepts give rise to intriguing opportunities towards a more efficient control of reproductive function and associated disorders.
Collapse
Affiliation(s)
- Alfredo Ulloa-Aguirre
- BIOS group, INRA, UMR85, Unité Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | | | | | | | | |
Collapse
|
23
|
Arey BJ, López FJ. Are circulating gonadotropin isoforms naturally occurring biased agonists? Basic and therapeutic implications. Rev Endocr Metab Disord 2011; 12:275-88. [PMID: 21706143 DOI: 10.1007/s11154-011-9188-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The gonadotropins, luteinizing hormone, human chorionic gonadotropin and follicle-stimulating hormone, are key regulators of reproduction. As a result of this function, they have been the focus of research for many years. Isolated or recombinant proteins have been successfully used therapeutically for the treatment of infertility; and, in the case of compounds that block gonadotropin activity, for their potential utility in contraception. Until recently, selective small molecules modulating gonadotropin receptor activity have proven difficult to identify. The gonadotropins are glycoproteins that are released into the plasma as differently glycosylated isoforms and bind to specific G protein-coupled receptors. The degree of glycosylation on the gonadotropins has been shown to be important for the biological activities of these hormones and is differentially regulated depending on the steroidal status. Recent data from the study of glycosylated variants of LH, hCG and FSH have revealed that these isoforms have distinct signaling properties that allow for gonadotropin pleiotropic signals to be transduced effectively at the level of the receptor. Thus, glycosylated variants of the gonadotropins behave as biased agonists. Recently, newly developed, small molecule, synthetic allosteric compounds have been identified that are capable of mimicking this biased signaling. This opens the door to development of orally available, drug-like therapies for reproductive disorders that offer similar pleiotropic richness as that offered by the complex, endogenous hormones.
Collapse
Affiliation(s)
- Brian J Arey
- Metabolic and Cardiovascular Drug Discovery, Research and Development, Bristol-Myers Squibb Co., 311 Pennington-Rocky Hill Rd., Mail Stop- 21-1.08, Hopewell, NJ 08543, USA.
| | | |
Collapse
|
24
|
Whalen EJ, Rajagopal S, Lefkowitz RJ. Therapeutic potential of β-arrestin- and G protein-biased agonists. Trends Mol Med 2011; 17:126-39. [PMID: 21183406 PMCID: PMC3628754 DOI: 10.1016/j.molmed.2010.11.004] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 11/13/2010] [Accepted: 11/17/2010] [Indexed: 12/21/2022]
Abstract
Members of the seven-transmembrane receptor (7TMR), or G protein-coupled receptor (GPCR), superfamily represent some of the most successful targets of modern drug therapy, with proven efficacy in the treatment of a broad range of human conditions and disease processes. It is now appreciated that β-arrestins, once viewed simply as negative regulators of traditional 7TMR-stimulated G protein signaling, act as multifunctional adapter proteins that regulate 7TMR desensitization and trafficking and promote distinct intracellular signals in their own right. Moreover, several 7TMR biased agonists, which selectively activate these divergent signaling pathways, have been identified. Here we highlight the diversity of G protein- and β-arrestin-mediated functions and the therapeutic potential of selective targeting of these in disease states.
Collapse
Affiliation(s)
- Erin J Whalen
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA
| | | | | |
Collapse
|
25
|
Gloaguen P, Crépieux P, Heitzler D, Poupon A, Reiter E. Mapping the follicle-stimulating hormone-induced signaling networks. Front Endocrinol (Lausanne) 2011; 2:45. [PMID: 22666216 PMCID: PMC3364461 DOI: 10.3389/fendo.2011.00045] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 09/14/2011] [Indexed: 01/14/2023] Open
Abstract
Follicle-stimulating hormone (FSH) is a central regulator of male and female reproductive function. Over the last decade, there has been a growing perception of the complexity associated with FSH-induced cellular signaling. It is now clear that the canonical Gs/cAMP/PKA pathway is not the sole mechanism that must be considered in FSH biological actions. In parallel, consistent with the emerging concept of biased agonism, several examples of ligand-mediated selective signaling pathway activation by gonadotropin receptors have been reported. In this context, it is important to gain an integrative view of the signaling pathways induced by FSH and how they interconnect to form a network. In this review, we propose a first attempt at building topological maps of various pathways known to be involved in the FSH-induced signaling network. We discuss the multiple facets of FSH-induced signaling and how they converge to the hormone integrated biological response. Despite of their incompleteness, these maps of the FSH-induced signaling network represent a first step toward gaining a system-level comprehension of this hormone's actions, which may ultimately facilitate the discovery of novel regulatory processes and therapeutic strategies for infertility and non-steroidal contraception.
Collapse
Affiliation(s)
- Pauline Gloaguen
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des ComportementsNouzilly, France
- UMR6175, CNRSNouzilly, France
- Université François RabelaisTours, France
- L’Institut Français du Cheval et de l’ÉquitationNouzilly, France
| | - Pascale Crépieux
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des ComportementsNouzilly, France
- UMR6175, CNRSNouzilly, France
- Université François RabelaisTours, France
- L’Institut Français du Cheval et de l’ÉquitationNouzilly, France
| | - Domitille Heitzler
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des ComportementsNouzilly, France
- UMR6175, CNRSNouzilly, France
- Université François RabelaisTours, France
- L’Institut Français du Cheval et de l’ÉquitationNouzilly, France
| | - Anne Poupon
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des ComportementsNouzilly, France
- UMR6175, CNRSNouzilly, France
- Université François RabelaisTours, France
- L’Institut Français du Cheval et de l’ÉquitationNouzilly, France
| | - Eric Reiter
- BIOS Group, INRA, UMR85, Unité Physiologie de la Reproduction et des ComportementsNouzilly, France
- UMR6175, CNRSNouzilly, France
- Université François RabelaisTours, France
- L’Institut Français du Cheval et de l’ÉquitationNouzilly, France
- *Correspondence: Eric Reiter, INRA UMR85, CNRS-Université François Rabelais UMR6175, 37380, Nouzilly, France. e-mail:
| |
Collapse
|