1
|
The Influence of Whey Protein Heating Parameters on Their Susceptibility to Digestive Enzymes and the Antidiabetic Activity of Hydrolysates. Foods 2022; 11:foods11060829. [PMID: 35327251 PMCID: PMC8949304 DOI: 10.3390/foods11060829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/01/2022] Open
Abstract
The inhibition of dipeptidyl peptidase-IV (DPP-IV) and the release of glucagon-like peptide-1 (GLP-1) could normalize blood glucose levels in diabetic patients. This study evaluated the susceptibility of whey proteins to enzyme hydrolysis and the antidiabetic properties of protein hydrolysates from β-lactoglobulin (β-LG) and α-lactalbumin (α-LA) solutions compared with whey protein isolate (WPI) solution treated at different heating temperatures (65, 75, and 85 °C). α-LA hydrolysate provided the lowest degree of hydrolysis (DH). Those heating temperatures did not significantly affect the DH of all protein hydrolysates. α-LA hydrolysate significantly increased GLP-1 levels and DPP-IV inhibitory activity more than β-LG hydrolysate. WPI hydrolysate inhibited DPP-IV activity less than an α-LA hydrolysate, but they were no significant differences for GLP-1 release activity. Heat treatment could affect the antidiabetic properties of all protein hydrolysates. Heating at 75 °C resulted in greater inhibition of the activity of DPP-IV than at 65 and 85 °C. The highest increase in GLP-1 release was also observed by heating at 75 °C. The recently obtained information is useful for the utilization of α-LA, heated at 75 °C for 30 min, in the preparation of antidiabetic food supplements.
Collapse
|
2
|
Baum BJ. Using salivary glands to treat serious systemic diseases—Examples of new roles for oral medicine in the healthcare team? Oral Dis 2019; 25:3-5. [DOI: 10.1111/odi.12848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 11/28/2022]
Affiliation(s)
- BJ Baum
- Oral Diseases Bethesda MD USA
| |
Collapse
|
3
|
Ono R, Watari I, Kubono-Mizumachi M, Ono T. GLP-1R expression in the major salivary glands of rats. J Oral Biosci 2015. [DOI: 10.1016/j.job.2015.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
4
|
Abstract
Glucagon-like peptide (GLP)-1 is an incretin hormone with several antidiabetic functions including stimulation of glucose-dependent insulin secretion, increase in insulin gene expression and beta-cell survival. Despite the initial technical difficulties and profound inefficiency of direct gene transfer into the pancreas that seriously restricted in vivo gene transfer experiments with GLP-1, recent exploitation of various routes of gene delivery and alternative means of gene transfer has permitted the detailed assessment of the therapeutic efficacy of GLP-1 in animal models of type 2 diabetes (T2DM). As a result, many clinical benefits of GLP-1 peptide/analogues observed in clinical trials involving induction of glucose tolerance, reduction of hyperglycaemia, suppression of appetite and food intake linked to weight loss have been replicated in animal models using gene therapy. Furthermore, GLP-1-centered gene therapy not only improved insulin sensitivity, but also reduced abdominal and/or hepatic fat associated with obesity-induced T2DM with drastic alterations in adipokine profiles in treated subjects. Thus, a comprehensive assessment of recent GLP-1-mediated gene therapy approaches with detailed analysis of current hurdles and resolutions, is discussed.
Collapse
|
5
|
Abstract
Applications of gene therapy have been evaluated in virtually every oral tissue, and many of these have proved successful at least in animal models. While gene therapy will not be used routinely in the next decade, practitioners of oral medicine should be aware of the potential of this novel type of treatment that doubtless will benefit many patients with oral diseases.
Collapse
Affiliation(s)
- B J Baum
- Gene Transfer Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, USA
| |
Collapse
|
6
|
Kim PH, Lee M, Nam K, Kim SW. Enhanced Incretin Effects of Exendin-4 Expressing Chimeric Plasmid Based On Two-Step Transcription Amplification System with Dendritic Bioreducible Polymer for the Treatment of Type 2 Diabetes. JOURNAL OF GENE THERAPY 2013; 1:7-15. [PMID: 24839613 PMCID: PMC4020291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Glucagon-like peptide 1 (GLP-1) agonist, exenxdin-4, is currently being advanced as a promising diabetes remedy via a variety of incretin actions similar with GLP-1. In this study, we investigated an effective anti-diabetic therapy via exendin-4 expressing chimeric plasmid based on two-step transcription amplification (TSTA) system with dendrimer-type bioreducible polymer for more improved incretin-based gene therapy. Arginine-grafted poly (cystaminebisacrylamide-diaminohexane) (ABP)-conjugated poly (amido amine) (PAMAM) dendrimer (PAM-ABP) was used as gene carrier. PAM-ABP/chimeric DNA polyplex was markedly elevated exendin-4 expression in ectopic cells as well as increased insulin production through an enhanced activation of protein kinase K (PKA) induced by up-regulation of exendin-4-stimulated cyclic adenosine monophosphate (cAMP) in pancreatic β-cell. Consistent with these results, intravenous administration of PAM-ABP/chimeric DNA polyplex improved glucoregulotory effects, as well as increased insulin secretion by high expression of exendin-4 in blood in type 2 diabetic mice with no any toxicity. Our exendin-4 system can be attributed to provide a potential diabetes therapeutic agent for improved incretin gene therapy.
Collapse
Affiliation(s)
- Pyung-Hwan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| | - Kihoon Nam
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul, South Korea
| |
Collapse
|
7
|
Zolotukhin S. Metabolic hormones in saliva: origins and functions. Oral Dis 2013; 19:219-29. [PMID: 22994880 PMCID: PMC3530011 DOI: 10.1111/odi.12015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 08/26/2012] [Accepted: 08/27/2012] [Indexed: 12/13/2022]
Abstract
The salivary proteome consists of thousands of proteins, which include, among others, hormonal modulators of energy intake and output. Although the functions of this prominent category of hormones in whole body energy metabolism are well characterized, their functions in the oral cavity, whether as a salivary component, or when expressed in taste cells, are less studied and poorly understood. The respective receptors for the majority of salivary metabolic hormones have been also shown to be expressed in salivary glands (SGs), taste cells, or other cells in the oral mucosa. This review provides a comprehensive account of the gastrointestinal hormones, adipokines, and neuropeptides identified in saliva, SGs, or lingual epithelium, as well as their respective cognate receptors expressed in the oral cavity. Surprisingly, few functions are assigned to salivary metabolic hormones, and these functions are mostly associated with the modulation of taste perception. Because of the well-characterized correlation between impaired oral nutrient sensing and increased energy intake and body mass index, a conceptually provocative point of view is introduced, whereupon it is argued that targeted changes in the composition of saliva could affect whole body metabolism in response to the activation of cognate receptors expressed locally in the oral mucosa.
Collapse
Affiliation(s)
- S Zolotukhin
- Division of Cellular and Molecular Therapy, Department of Pediatrics, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Rowzee AM, Perez-Riveros PJ, Zheng C, Krygowski S, Baum BJ, Cawley NX. Expression and secretion of human proinsulin-B10 from mouse salivary glands: implications for the treatment of type I diabetes mellitus. PLoS One 2013; 8:e59222. [PMID: 23554999 PMCID: PMC3598661 DOI: 10.1371/journal.pone.0059222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/12/2013] [Indexed: 12/29/2022] Open
Abstract
Adenovirus (Ad) mediated expression of therapeutic proteins from salivary glands can result in the delivery of biologically active proteins into the circulation where they impart their physiological function. In recent years, Ad vector delivery to salivary glands (SGs) has emerged as a viable option for gene therapy. Here, we engineered a variant of human proinsulin (hProinsulin-B10) into an Ad vector and demonstrated its ability to transduce cell lines, and express a bioactive protein that induces the phosphorylation of AKT, a key insulin signaling molecule. We also examined its expression in mice following delivery of the vector to the parotid gland (PTG), the submandibular gland (SMG) or to the liver via the tail vein and assessed transgenic protein expression and vector containment for each delivery method. In all cases, hProinsulin-B10 was expressed and secreted into the circulation. Lower levels of circulating hProinsulin-B10 were obtained from the PTG while higher levels were obtained from the tail vein and the SMG; however, vector particle containment was best when delivered to the SMG. Expression of hProinsulin-B10 in the SMG of chemically induced diabetic mice prevented excessive hyperglycemia observed in untreated mice. These results demonstrate that hProinsulin-B10 can be expressed and secreted into the circulation from SGs and can function physiologically in vivo. The ability to remediate a diabetic phenotype in a model of type 1 diabetes mellitus is the first step in an effort that may lead to a possible therapy for diabetes.
Collapse
Affiliation(s)
- Anne M. Rowzee
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Paola J. Perez-Riveros
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah Krygowski
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Bruce J. Baum
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Niamh X. Cawley
- Section on Cellular Neurobiology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
9
|
Di Pasquale G, Dicembrini I, Raimondi L, Pagano C, Egan JM, Cozzi A, Cinci L, Loreto A, Manni ME, Berretti S, Morelli A, Zheng C, Michael DG, Maggi M, Vettor R, Chiorini JA, Mannucci E, Rotella CM. Sustained exendin-4 secretion through gene therapy targeting salivary glands in two different rodent models of obesity/type 2 diabetes. PLoS One 2012; 7:e40074. [PMID: 22808093 PMCID: PMC3396615 DOI: 10.1371/journal.pone.0040074] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 06/05/2012] [Indexed: 11/19/2022] Open
Abstract
Exendin-4 (Ex-4) is a Glucagon-like peptide 1 (GLP-1) receptor agonist approved for the treatment of Type 2 Diabetes (T2DM), which requires daily subcutaneous administration. In T2DM patients, GLP-1 administration is reported to reduce glycaemia and HbA1c in association with a modest, but significant weight loss. The aim of present study was to characterize the site-specific profile and metabolic effects of Ex-4 levels expressed from salivary glands (SG) in vivo, following adeno-associated virus-mediated (AAV) gene therapy in two different animal models of obesity prone to impaired glucose tolerance and T2DM, specifically, Zucker fa/fa rats and high fed diet (HFD) mice. Following percutaneous injection of AAV5 into the salivary glands, biologically active Ex-4 was detected in the blood of both animal models and expression persisted in salivary gland ductal cell until the end of the study. In treated mice, Ex-4 levels averaged 138.9±42.3 pmol/L on week 6 and in treated rats, mean circulating Ex-4 levels were 238.2±72 pmol/L on week 4 and continued to increase through week 8. Expression of Ex-4 resulted in a significant decreased weight gain in both mice and rats, significant improvement in glycemic control and/or insulin sensitivity as well as visceral adipose tissue adipokine profile. In conclusion, these results suggest that sustained site-specific expression of Ex-4 following AAV5-mediated gene therapy is feasible and may be useful in the treatment of obesity as well as trigger improved metabolic profile.
Collapse
Affiliation(s)
- Giovanni Di Pasquale
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ilaria Dicembrini
- Section of Endocrinology, Department of Clinical Pathophysiology, University of Florence, Florence, Italy
| | - Laura Raimondi
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Claudio Pagano
- Endocrine-metabolic Laboratory, Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - Josephine M. Egan
- Diabetes Section, National Institute on Aging and Health, Baltimore, Maryland, United States of America
| | - Andrea Cozzi
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Lorenzo Cinci
- Section of Histology, Department of Anatomy, University of Florence, Florence, Italy
| | - Andrea Loreto
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Maria E. Manni
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Silvia Berretti
- Department of Pharmacology, University of Florence, Florence, Italy
| | - Annamaria Morelli
- Sexual Medicine and Andrology Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Changyu Zheng
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Drew G. Michael
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mario Maggi
- Sexual Medicine and Andrology Unit, Department of Clinical Physiopathology, University of Florence, Florence, Italy
| | - Roberto Vettor
- Endocrine-metabolic Laboratory, Department of Medical and Surgical Sciences, University of Padua, Padua, Italy
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (JAC); (CMR)
| | | | - Carlo M. Rotella
- Section of Endocrinology, Department of Clinical Pathophysiology, University of Florence, Florence, Italy
- * E-mail: (JAC); (CMR)
| |
Collapse
|
10
|
Won YW, Lee M, Kim HA, Bull DA, Kim SW. Post-translational regulated and hypoxia-responsible VEGF plasmid for efficient secretion. J Control Release 2012; 160:525-31. [PMID: 22450332 DOI: 10.1016/j.jconrel.2012.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/08/2012] [Accepted: 03/11/2012] [Indexed: 01/18/2023]
Abstract
Gene therapy using angiogenic genes has emerged as a potentially viable alternative treatment strategy for myocardial ischemia. Non-specific expression of angiogenic genes, however, may result in side effects, including the growth of occult tumors. Regulation of gene expression may help to avoid the occurrence of these side effects. In this study, a plasmid expressing vascular endothelial growth factor (VEGF) was constructed with an oxygen dependent degradation (ODD) domain and a secretion signal peptide (SP) in order to stabilize the VEGF protein and facilitate the secretion of VEGF protein, specifically under hypoxic conditions. We found that this plasmid, pβ-SP-ODD-VEGF, expresses the SP-ODD-VEGF protein at increased levels under hypoxic conditions compared to normoxic conditions. Since the size of the ODD domain is almost the same as that of VEGF, the ODD-VEGF fusion protein may have lower secretion efficiency. To address this issue, a furin recognition site was located between the ODD domain and the VEGF site to facilitate elimination of the SP-ODD domain from the fusion protein before its secretion. This optimizes the likelihood that the VEGF secreted from the target cells will be wild-type VEGF. Treatment with a furin inhibitor reduced the secretion efficiency of the VEGF, indicating that furin digestion increases the secretion of VEGF. The secreted wild-type VEGF facilitated the growth of endothelial cells more efficiently under hypoxic conditions than normoxic conditions. These results suggest that this plasmid, pβ-SP-ODD-VEGF, warrants further study as a more efficient form of hypoxia-inducible gene therapy for the treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Young-Wook Won
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | | | |
Collapse
|
11
|
Rowzee AM, Cawley NX, Chiorini JA, Di Pasquale G. Glucagon-like peptide-1 gene therapy. EXPERIMENTAL DIABETES RESEARCH 2011; 2011:601047. [PMID: 21747830 PMCID: PMC3124282 DOI: 10.1155/2011/601047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/25/2011] [Accepted: 04/07/2011] [Indexed: 12/16/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) is a small peptide component of the prohormone, proglucagon, that is produced in the gut. Exendin-4, a GLP-1 receptor agonist originally isolated from the saliva of H. suspectum or Gila monster, is a peptide that shares sequence and functional homology with GLP-1. Both peptides have been demonstrated to stimulate insulin secretion, inhibit glucagon secretion, promote satiety and slow gastric emptying. As such, GLP-1 and Exendin-4 have become attractive pharmaceutical targets as an adjunctive therapy for individuals with type II diabetes mellitus, with several products currently available clinically. Herein we summarize the cell biology leading to GLP-1 production and secretion from intestinal L-cells and the endocrine functions of this peptide and Exendin-4 in humans. Additionally, gene therapeutic applications of GLP-1 and Exendin-4 are discussed with a focus on recent work using the salivary gland as a gene therapy target organ for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Anne M. Rowzee
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892-2190, USA
| | - Niamh X. Cawley
- Section on Cellular Neurobiology, Department of Health and Human Services, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Chiorini
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892-2190, USA
| | - Giovanni Di Pasquale
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, Bethesda, MD 20892-2190, USA
| |
Collapse
|
12
|
Perez P, Adriaansen J, Goldsmith CM, Zheng C, Baum BJ. Transgenic α-1-antitrypsin secreted into the bloodstream from salivary glands is biologically active. Oral Dis 2010; 17:476-83. [PMID: 21122036 DOI: 10.1111/j.1601-0825.2010.01775.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVES Salivary glands are potentially a valuable target for gene therapeutics. Herein, we examined the expression and biochemical activity of human alpha-1-antitrypsin (hA1AT) produced in rodent submandibular glands after gene transfer. METHODS A serotype 5 adenoviral vector (Ad.hA1AT) was constructed and first characterized by dose response and time course studies using SMIE cells in vitro. hA1AT expression was analysed by ELISA and the biologic activity determined by the inhibition of human neutrophil elastase (hNE) and formation of hA1AT-hNE complexes. Ad.hA1AT was administered to submandibular glands of rats and mice. The levels and activity of hA1AT were analysed in saliva, serum and gland extracts. Treatment with endoglycosidase H and Peptide N-Glycosidase F was used to assess N-linked glycosylation. RESULTS Transgenic hA1AT, expressed in submandibular glands following Ad.hA1AT administration, was secreted into the bloodstream, N-glycosylated and biochemically active. CONCLUSION After in vivo gene transfer, rodent salivary glands can produce a non-hormonal, transgenic, secretory glycoprotein exhibiting complex and conformation-dependent biologic activity.
Collapse
Affiliation(s)
- P Perez
- Molecular Physiology and Therapeutics Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-1190, USA.
| | | | | | | | | |
Collapse
|