1
|
Raza A, Hoque A, Luwor R, Escalona RM, Kelly J, Sharma R, Charchar F, Chu S, Short MK, Jubinsky PT, Kannourakis G, Ahmed N. Enhanced Expression of Mitochondrial Magmas Protein in Ovarian Carcinomas: Magmas Inhibition Facilitates Antitumour Effects, Signifying a Novel Approach for Ovarian Cancer Treatment. Cells 2025; 14:655. [PMID: 40358179 PMCID: PMC12071367 DOI: 10.3390/cells14090655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/13/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial-associated granulocyte macrophage colony-stimulating factor (Magmas) is a unique protein located in the inner membrane of mitochondria, with an active role in scavenging reactive oxygen species (ROS) in cellular systems. Ovarian cancer (OC), one of the deadliest gynaecological cancers, is characterised by genomic instability, affected by ROS production in the tumour microenvironment. This manuscript discusses the role of Magmas and efficacy of its novel small molecule inhibitor BT#9 in OC progression, metastasis, and chemoresistance. Magmas expression levels were significantly elevated in high-grade human OC compared to benign tumours by immunohistochemistry. The inhibition of Magmas by BT#9 enhanced ROS production and reduced mitochondrial membrane permeability, basal respiration, mitochondrial ATP production, and cellular functions, such as the proliferation and migration of OC cell lines in vitro. Oral administration of BT#9 in vivo significantly reduced tumour growth and spread and enhanced the survival of mice without having any effect on the peritoneal organs. These data suggest that Magmas is functionally important for OC growth and spread by affecting ROS levels and that the inhibition of Magmas activity by BT#9 may provide novel clinical benefits for patients with this malignancy.
Collapse
Affiliation(s)
- Ali Raza
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia; (A.R.); (R.L.); (R.M.E.); (J.K.); (R.S.); (G.K.)
- Institute of Innovation, Science and Sustainability, Federation University Australia, Health Innovation and Transformation Center, Mount Helen Campus, Ballarat, VIC 3050, Australia;
| | - Ashfaqul Hoque
- St Vincent’s Institute of Medical Research, Fitzroy, VIC 3065, Australia;
| | - Rodney Luwor
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia; (A.R.); (R.L.); (R.M.E.); (J.K.); (R.S.); (G.K.)
- Institute of Innovation, Science and Sustainability, Federation University Australia, Health Innovation and Transformation Center, Mount Helen Campus, Ballarat, VIC 3050, Australia;
- Department of Surgery, Faculty of Medicine, Dentistry and Health Sciences, Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
| | - Ruth M. Escalona
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia; (A.R.); (R.L.); (R.M.E.); (J.K.); (R.S.); (G.K.)
- Centre for Endocrinology and Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular & Translational Science, Faculty of Medicine, Nursing and Health Sciences, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Jason Kelly
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia; (A.R.); (R.L.); (R.M.E.); (J.K.); (R.S.); (G.K.)
| | - Revati Sharma
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia; (A.R.); (R.L.); (R.M.E.); (J.K.); (R.S.); (G.K.)
| | - Fadi Charchar
- Institute of Innovation, Science and Sustainability, Federation University Australia, Health Innovation and Transformation Center, Mount Helen Campus, Ballarat, VIC 3050, Australia;
| | - Simon Chu
- Centre for Endocrinology and Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular & Translational Science, Faculty of Medicine, Nursing and Health Sciences, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
| | - Mary K. Short
- Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA; (M.K.S.); (P.T.J.)
| | - Paul T. Jubinsky
- Developmental and Molecular Biology, Albert Einstein College of Medicine, New York, NY 10461, USA; (M.K.S.); (P.T.J.)
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia; (A.R.); (R.L.); (R.M.E.); (J.K.); (R.S.); (G.K.)
- Institute of Innovation, Science and Sustainability, Federation University Australia, Health Innovation and Transformation Center, Mount Helen Campus, Ballarat, VIC 3050, Australia;
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat, VIC 3353, Australia; (A.R.); (R.L.); (R.M.E.); (J.K.); (R.S.); (G.K.)
- Institute of Innovation, Science and Sustainability, Federation University Australia, Health Innovation and Transformation Center, Mount Helen Campus, Ballarat, VIC 3050, Australia;
- Centre for Endocrinology and Reproductive Health, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia;
- Department of Molecular & Translational Science, Faculty of Medicine, Nursing and Health Sciences, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Dentistry and Health Sciences, Royal Women’s Hospital, University of Melbourne, Parkville, VIC 3050, Australia
- Department of Surgery, Faculty of Medicine, Dentistry and Health Sciences, St Vincent Hospital, University of Melbourne, Fitzroy, VIC 3065, Australia
| |
Collapse
|
2
|
Ivich A, Davidson NR, Grieshober L, Li W, Hicks SC, Doherty JA, Greene CS. Missing cell types in single-cell references impact deconvolution of bulk data but are detectable. Genome Biol 2025; 26:86. [PMID: 40197327 PMCID: PMC11974051 DOI: 10.1186/s13059-025-03506-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/12/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Advancements in RNA sequencing have expanded our ability to study gene expression profiles of biological samples in bulk tissue and single cells. Deconvolution of bulk data with single-cell references provides the ability to study relative cell-type proportions, but most methods assume a reference is present for every cell type in bulk data. This is not true in all circumstances-cell types can be missing in single-cell profiles for many reasons. In this study, we examine the impact of missing cell types on deconvolution methods. RESULTS Using paired single-cell and single-nucleus data, we simulate realistic scenarios where cell types are missing since single-nucleus RNA sequencing is able to capture cell types that would otherwise be missing in a single-cell counterpart. Single-nucleus sequencing captures cell types absent in single-cell counterparts, allowing us to study their effects on deconvolution. We evaluate three different methods and find that performance is influenced by both the number and similarity of missing cell types. Additionally, missing cell-type profiles can be recovered from residuals using a simple non-negative matrix factorization strategy. We also analyzed real bulk data of cancerous and non-cancerous samples. We observe results consistent with simulation, namely that expression patterns from cell types likely to be missing appear present in residuals. CONCLUSIONS We expect our results to provide a starting point for those developing new deconvolution methods and help improve their to better account for the presence of missing cell types. Our results suggest that deconvolution methods should consider the possibility of missing cell types.
Collapse
Affiliation(s)
- Adriana Ivich
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Natalie R Davidson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Laurie Grieshober
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA
| | - Weishan Li
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | | | - Casey S Greene
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Thibault B, Thole A, D'Angelo R, Basset C, Guillermet-Guibert J. PI3Kα-specific inhibitor BYL-719 synergizes with cisplatin in vitro in PIK3CA-mutated ovarian cancer cells. Sci Rep 2025; 15:6265. [PMID: 39979449 PMCID: PMC11842864 DOI: 10.1038/s41598-025-90714-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/14/2025] [Indexed: 02/22/2025] Open
Abstract
Peritoneal carcinomatosis in ovarian cancer is often associated with ascites where cancer cells grow as aggregates. Given the emerging evidence that multicellular growth enhances resistance to conventional therapies, and that patients frequently develop resistance to platinum salts, we investigated the efficiency of PI3K/Akt signalling pathway targeting in multicellular growth and its importance as a potential therapeutic target in cells resistant to platinum salts. Due to its importance in many cancers and to the frequent mutations of its encoding gene PIK3CA, we focused on targeting PI3Kα using BYL-719 (Alpelisib), an isoform-specific inhibitor already used in clinics. We used a panel of 3 ovarian cancer cell lines, SKOV-3, EFO-21 and OVCAR-3, which come from different histological origins and bear different mutations. PI3K targeting drugs inhibit the activity of the PI3K/Akt pathway in all tested ovarian cancer cell lines with a drastic reduction of the phosphorylation of Akt on the serine 473, regardless the histology or the mutational profile. We showed that when cultured in 3D aggregates, ovarian cancer cells are more resistant to the PI3Kα-specific inhibitor BYL-719 and cisplatin compared to 2D monolayers. BYL-719 synergizes with cisplatin in 3D cultures only in PIK3CA-mutated SKOV-3 cells. This drug combination leads to a major cytotoxicity in 3D aggregates of this cell line. Finally, BYL-719 in combination with cisplatin remains active in 3D aggregates of SKOV-3 cells co-cultured with mesenchymal stem cells. We have identified a signalling pathway of interest for the treatment of advanced ovarian cancer in vitro, which could limit the progression of this disease. These data pave the road to investigate whether PI3Kα-specific inhibitor BYL-719 should be proposed in combination with cisplatin, in priority in patients bearing a PIK3CA mutation.
Collapse
Affiliation(s)
- Benoît Thibault
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, Equipe SigDYN, 2 av Hubert Curien, Oncopole de Toulouse, Toulouse, France.
- Labex TOUCAN, ANR, Toulouse, France.
| | - Adrien Thole
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, Equipe SigDYN, 2 av Hubert Curien, Oncopole de Toulouse, Toulouse, France
- Labex TOUCAN, ANR, Toulouse, France
| | - Romina D'Angelo
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, Equipe SigDYN, 2 av Hubert Curien, Oncopole de Toulouse, Toulouse, France
- Labex TOUCAN, ANR, Toulouse, France
| | - Céline Basset
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, Equipe SigDYN, 2 av Hubert Curien, Oncopole de Toulouse, Toulouse, France
- Labex TOUCAN, ANR, Toulouse, France
- Service d'Anatomo-Pathologie, Institut Universitaire du Cancer de Toulouse-Oncopole (IUCT-O), avenue Irène Joliot-Curie, Toulouse, France
| | - Julie Guillermet-Guibert
- CRCT, Université de Toulouse, Inserm, CNRS, Centre de Recherches en Cancérologie de Toulouse, Equipe SigDYN, 2 av Hubert Curien, Oncopole de Toulouse, Toulouse, France.
- Labex TOUCAN, ANR, Toulouse, France.
| |
Collapse
|
4
|
Jordan E, Arriaga MA, Obregon H, Villalobos V, Duarte MA, Garcia K, Levy A, Chew SA. Dual delivery of metformin and Y15 from a PLGA scaffold for the treatment of platinum-resistant ovarian cancer. Future Med Chem 2025; 17:301-312. [PMID: 39887289 PMCID: PMC11792864 DOI: 10.1080/17568919.2025.2458457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/01/2025] Open
Abstract
AIMS Drug-loaded poly(lactic-co-glycolic acid) (PLGA) scaffolds were fabricated using a mold-less technique to investigate whether the combined delivery of both Y15 (FAK inhibitor) and metformin would result in enhanced effects on cell viability compared to the release of each drug alone for the treatment of platinum-resistant ovarian cancer (PROC). MATERIALS & METHODS Scaffolds were fabricated using an easy and economical mold-less technique that combined PLGA and the drugs (i.e. metformin and/or Y15) in tetraglycol and injected in PBS, to form a globular morphology. RESULTS The exposure of cells to metformin and Y15 resulted in a significantly enhanced cytotoxic efficacy compared to single-drug treatment with either metformin or Y15. When the drugs were delivered using the PLGA scaffolds, the combination of the two drugs was significantly more cytotoxic compared to scaffolds containing metformin only and Y15 only. CONCLUSIONS The combination of metformin and Y15 can result in an increase in antitumor activity in PROC cells through apoptosis. The delivery of both drugs from the PLGA biomaterial scaffold allowed for a more enhanced combinational effect compared to the utilization of free drugs (without a scaffold) and should be further explored as a promising treatment of PROC.
Collapse
Affiliation(s)
- Emily Jordan
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Marco A. Arriaga
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Hannah Obregon
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Viviana Villalobos
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Manuel A. Duarte
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Kristal Garcia
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Arkene Levy
- Dr Kiran C Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, TX, USA
| |
Collapse
|
5
|
Chang X, Tamauchi S, Nakagawa A, Xinyuan W, Yoshida K, Yokoi A, Yoshikawa N, Kajiyama H. Chemotherapeutic hormesis induced by the tumor microenvironment in refractory ovarian cancer. Sci Rep 2025; 15:596. [PMID: 39747971 PMCID: PMC11696277 DOI: 10.1038/s41598-024-84290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Advanced ovarian cancer often presents with multiple lesions exhibiting varying responses to chemotherapy, highlighting the critical influence of the tumor microenvironment (TME). This study investigates the phenomenon of chemotherapeutic hormesis, wherein low doses of chemotherapeutic agents, such as cisplatin (CDDP) and paclitaxel (PTX), paradoxically stimulate rather than inhibit cancer cell proliferation. Our findings indicate that NOS3 ovarian cancer cells, particularly drug-resistant variants, exhibit enhanced proliferation when exposed to low concentrations of these drugs. This effect is further amplified under hypoxic conditions, suggesting that the TME plays a pivotal role in modulating chemotherapeutic outcomes. Mechanistically, low-dose CDDP upregulates pathways involved in cell cycle progression, specifically the G2/M checkpoint and mitotic spindle formation, accelerating rather than arresting the cell cycle. Furthermore, the activation of the reactive oxygen species (ROS) pathway and increased glutathione levels indicate increased cellular response to oxidative stress, further contributing to cell survival and proliferation. These findings challenge traditional treatment strategies that prioritize the maximization of drug dosage, suggesting that a more nuanced approach considering the influence of the TME and the potential for hormesis could improve therapeutic outcomes. Understanding the mechanisms driving chemotherapeutic hormesis is essential for developing more effective treatments for refractory ovarian cancer. Future research should focus on mitigating the impact of hormesis to enhance the efficacy of chemotherapy in resistant cancer types.
Collapse
Affiliation(s)
- Xuboya Chang
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
- Department of Obstetrics and Gynecology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan.
| | - Atsushi Nakagawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Wang Xinyuan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya, 466-8550, Japan
| |
Collapse
|
6
|
Pan W, Jia Z, Zhao X, Chang K, Liu W, Tan W. Identification of immunogenic cell death gene-related subtypes and risk model predicts prognosis and response to immunotherapy in ovarian cancer. PeerJ 2024; 12:e18690. [PMID: 39686988 PMCID: PMC11648682 DOI: 10.7717/peerj.18690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background Immunogenic cell death (ICD) has been associated with enhanced anti-tumor immunotherapy by stimulating adaptive immune responses and remodeling the immune microenvironment in tumors. Nevertheless, the role of ICD-related genes in ovarian cancer (OC) and tumor microenvironment remains unexplored. Methods In this study, high-throughput transcriptomic data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases as training and validation sets separately were obtained and proceeded to explore ICD-related clusters, and an ICD-related risk signature was conducted based on the least absolute shrinkage and selection operator (LASSO) Cox regression model by iteration. Multiple tools including CIBERSORT, ESTIMATE, GSEA, TIDE, and immunohistochemistry were further applied to illustrate the biological roles of ICD-related genes as well as the prognostic capacity of ICD risk signature in OC. Results Two ICD-related subtypes were identified, with the ICD-high subtype showing more intense immune cell infiltration and higher activities of immune response signaling, along with a favorable prognosis. Additionally, four candidate ICD genes (IFNG, NLRP3, FOXP3, and IL1B) were determined to potentially impact OC prognosis, with an upregulated expression of NLRP3 in OC and metastatic omental tissues. A prognostic model based on these genes was established, which could predict overall survival (OS) and response to immunotherapy for OC patients, with lower-risk patients benefiting more from immunotherapy. Conclusion Our research conducted a prognostic and prediction of immunotherapy response model based on ICD genes, which could be instrumental in assessing prognosis and assigning immunotherapeutic strategies for OC patients. NLRP3 is a promising target for prognosis in OC.
Collapse
Affiliation(s)
- Wenjing Pan
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Zhaoyang Jia
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xibo Zhao
- Department of Gynecological Oncology, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Sun Yat-Sen University of Medical Sciences, Guangzhou, China
| | - Kexin Chang
- Department of Gynecology Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, China
| | - Wei Liu
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Wenhua Tan
- Department of Gynecology, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
7
|
Dinkins K, Barton W, Wheeler L, Smith HJ, Mythreye K, Arend RC. Targeted therapy in high grade serous ovarian Cancer: A literature review. Gynecol Oncol Rep 2024; 54:101450. [PMID: 39092168 PMCID: PMC11292514 DOI: 10.1016/j.gore.2024.101450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024] Open
Abstract
Ovarian cancer continues to have a high mortality rate despite therapeutic advances. Traditionally, treatment has focused on surgery followed by systemic platinum- based chemotherapy. Unfortunately, most patients develop resistance to platinum agents, highlighting the need for targeted therapies. PARP inhibitors and anti-angiogenic agents, such as bevacizumab, have more recently changed upfront therapy. Unfortunately, other targeted therapies including immunotherapy have not seen the same success. Emerging therapeutic targets and modalities such as small molecule tyrosine kinase inhibitors, lipid metabolism targeting agents, gene therapy, ribosome targeted drugs as well as several other therapeutic classes have been and are currently under investigation. In this review, we discuss targeted therapies in high grade serous ovarian cancer from preclinical studies to phase III clinical trials.
Collapse
Affiliation(s)
- Kaitlyn Dinkins
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Wade Barton
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Lauren Wheeler
- Lister Hill Library, University of Alabama at Birmingham, Birmingham, AL
| | - Haller J. Smith
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Karthikeyan Mythreye
- Department of Pathology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| | - Rebecca C. Arend
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
8
|
Kawahara N, Kobayashi H, Maehana T, Iwai K, Yamada Y, Kawaguchi R, Takahama J, Marugami N, Nishi H, Sakai Y, Takano H, Seki T, Yokosu K, Hirata Y, Yoshida K, Ujihira T, Kimura F. MR Relaxometry for Discriminating Malignant Ovarian Cystic Tumors: A Prospective Multicenter Cohort Study. Diagnostics (Basel) 2024; 14:1069. [PMID: 38893596 PMCID: PMC11172376 DOI: 10.3390/diagnostics14111069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/18/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Endometriosis-associated ovarian cancer (EAOC) is a well-known type of cancer that arises from ovarian endometrioma (OE). OE contains iron-rich fluid in its cysts due to repeated hemorrhages in the ovaries. However, distinguishing between benign and malignant tumors can be challenging. We conducted a retrospective study on magnetic resonance (MR) relaxometry of cyst fluid to distinguish EAOC from OE and reported that this method showed good accuracy. The purpose of this study is to evaluate the accuracy of a non-invasive method in re-evaluating pre-surgical diagnosis of malignancy by a prospective multicenter cohort study. METHODS After the standard diagnosis process, the R2 values were obtained using a 3T system. Data on the patients were then collected through the Case Report Form (CRF). Between December 2018 and March 2023, six hospitals enrolled 109 patients. Out of these, 81 patients met the criteria required for the study. RESULTS The R2 values calculated using MR relaxometry showed good discriminating ability with a cut-off of 15.74 (sensitivity 80.6%, specificity 75.0%, AUC = 0.750, p < 0.001) when considering atypical or borderline tumors as EAOC. When atypical and borderline cases were grouped as OE, EAOC could be distinguished with a cut-off of 16.87 (sensitivity 87.0%, specificity 61.1%). CONCLUSIONS MR relaxometry has proven to be an effective tool for discriminating EAOC from OE. Regular use of this method is expected to provide significant insights for clinical practice.
Collapse
Affiliation(s)
- Naoki Kawahara
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan; (H.K.); (T.M.); (K.I.); (Y.Y.); (R.K.); (F.K.)
| | - Hiroshi Kobayashi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan; (H.K.); (T.M.); (K.I.); (Y.Y.); (R.K.); (F.K.)
- Department of Gynecology and Reproductive Medicine, Ms. Clinic MayOne, 871-1 Shijo-Cho, Kashihara 634-0813, Japan
| | - Tomoka Maehana
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan; (H.K.); (T.M.); (K.I.); (Y.Y.); (R.K.); (F.K.)
| | - Kana Iwai
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan; (H.K.); (T.M.); (K.I.); (Y.Y.); (R.K.); (F.K.)
| | - Yuki Yamada
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan; (H.K.); (T.M.); (K.I.); (Y.Y.); (R.K.); (F.K.)
| | - Ryuji Kawaguchi
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan; (H.K.); (T.M.); (K.I.); (Y.Y.); (R.K.); (F.K.)
| | - Junko Takahama
- Department of Radiology, Higashiosaka City Medical Center, Higashiosaka 578-8588, Japan;
| | - Nagaaki Marugami
- Department of Radiology and Nuclear Medicine, Nara Medical University, Kashihara 634-8522, Japan;
| | - Hirotaka Nishi
- Department of Obstetrics and Gynecology, Tokyo Medical University, Shinjuku-Ku, Tokyo 160-0023, Japan; (H.N.); (Y.S.)
| | - Yosuke Sakai
- Department of Obstetrics and Gynecology, Tokyo Medical University, Shinjuku-Ku, Tokyo 160-0023, Japan; (H.N.); (Y.S.)
| | - Hirokuni Takano
- Department of Obstetrics and Gynecology, The Jikei University Kashiwa Hospital, Kashiwa 277-8567, Japan; (H.T.); (T.S.); (K.Y.)
| | - Toshiyuki Seki
- Department of Obstetrics and Gynecology, The Jikei University Kashiwa Hospital, Kashiwa 277-8567, Japan; (H.T.); (T.S.); (K.Y.)
| | - Kota Yokosu
- Department of Obstetrics and Gynecology, The Jikei University Kashiwa Hospital, Kashiwa 277-8567, Japan; (H.T.); (T.S.); (K.Y.)
| | - Yukihiro Hirata
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Minato-Ku, Tokyo 105-8461, Japan;
| | - Koyo Yoshida
- Department of Obstetrics and Gynecology, Juntendo University Urayasu Hospital, Urayasu 279-0021, Japan; (K.Y.); (T.U.)
| | - Takafumi Ujihira
- Department of Obstetrics and Gynecology, Juntendo University Urayasu Hospital, Urayasu 279-0021, Japan; (K.Y.); (T.U.)
| | - Fuminori Kimura
- Department of Obstetrics and Gynecology, Nara Medical University, Kashihara 634-8522, Japan; (H.K.); (T.M.); (K.I.); (Y.Y.); (R.K.); (F.K.)
| |
Collapse
|
9
|
Liu Z, Jing C, Hooblal YM, Yang H, Chen Z, Kong F. Construction and validation of log odds of positive lymph nodes (LODDS)-based nomograms for predicting overall survival and cancer-specific survival in ovarian clear cell carcinoma patients. Front Oncol 2024; 14:1370272. [PMID: 38577328 PMCID: PMC10991783 DOI: 10.3389/fonc.2024.1370272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Background Ovarian clear cell carcinoma (OCCC) is one of the special histologic subtypes of ovarian cancer. This study aimed to construct and validate log odds of positive lymph nodes (LODDS)-based nomograms for predicting the overall survival (OS) and cancer-specific survival (CSS) in patients with OCCC. Methods Patients who underwent surgical treatment between 2010 and 2016 were extracted from the Surveillance Epidemiology and End Results (SEER) database and the data of OCCC patients from the First Affiliated Hospital of Dalian Medical University were used as the external validation group to test the validity of the prognostic model. The best-fitting models were selected by stepwise Cox regression analysis. Survival probability was calculated by the Kaplan-Meier method, and the differences in survival time between subgroups were compared using the log-rank test. Each nomogram's performance was assessed by the calibration plots, decision curve analysis (DCA), and receiver operating characteristics (ROC) curves. Results T stage, distant metastasis, marital status, and LODDS were identified as significant risk factors for OS. A model with four risk factors (age, T stage, stage, and LODDS value) was obtained for CSS. Nomograms were constructed by incorporating the prognostic factors to predict 1-, 3- and 5-year OS and CSS for OCCC patients, respectively. The area under the curve (AUC) range of our nomogram model for OS and CSS prediction ranged from 0.738-0.771 and 0.769-0.794, respectively, in the training cohort. The performance of this model was verified in the internal and external validation cohorts. Calibration plots illustrated nomograms have good prognostic reliability. Conclusion Predictive nomograms were constructed and validated to evaluate the OS and CSS of OCCC patients. These nomograms may provide valuable prognostic information and guide postoperative personalized care in OCCC.
Collapse
Affiliation(s)
- Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Chunli Jing
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yashi Manisha Hooblal
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Hongxia Yang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ziyu Chen
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Fandou Kong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Liu Z, Jing C, Kong F. From clinical management to personalized medicine: novel therapeutic approaches for ovarian clear cell cancer. J Ovarian Res 2024; 17:39. [PMID: 38347608 PMCID: PMC10860311 DOI: 10.1186/s13048-024-01359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/26/2024] [Indexed: 02/15/2024] Open
Abstract
Ovarian clear-cell cancer is a rare subtype of epithelial ovarian cancer with unique clinical and biological features. Despite optimal cytoreductive surgery and platinum-based chemotherapy being the standard of care, most patients experience drug resistance and a poor prognosis. Therefore, novel therapeutic approaches have been developed, including immune checkpoint blockade, angiogenesis-targeted therapy, ARID1A synthetic lethal interactions, targeting hepatocyte nuclear factor 1β, and ferroptosis. Refining predictive biomarkers can lead to more personalized medicine, identifying patients who would benefit from chemotherapy, targeted therapy, or immunotherapy. Collaboration between academic research groups is crucial for developing prognostic outcomes and conducting clinical trials to advance treatment for ovarian clear-cell cancer. Immediate progress is essential, and research efforts should prioritize the development of more effective therapeutic strategies to benefit all patients.
Collapse
Affiliation(s)
- Zesi Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Chunli Jing
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China
| | - Fandou Kong
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Dalian Medical University, Dalian, 116000, Liaoning Province, China.
| |
Collapse
|
11
|
Raab M, Kostova I, Peña‐Llopis S, Fietz D, Kressin M, Aberoumandi SM, Ullrich E, Becker S, Sanhaji M, Strebhardt K. Rescue of p53 functions by in vitro-transcribed mRNA impedes the growth of high-grade serous ovarian cancer. Cancer Commun (Lond) 2024; 44:101-126. [PMID: 38140698 PMCID: PMC10794014 DOI: 10.1002/cac2.12511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND The cellular tumor protein p53 (TP53) is a tumor suppressor gene that is frequently mutated in human cancers. Among various cancer types, the very aggressive high-grade serous ovarian carcinoma (HGSOC) exhibits the highest prevalence of TP53 mutations, present in >96% of cases. Despite intensive efforts to reactivate p53, no clinical drug has been approved to rescue p53 function. In this study, our primary objective was to administer in vitro-transcribed (IVT) wild-type (WT) p53-mRNA to HGSOC cell lines, primary cells, and orthotopic mouse models, with the aim of exploring its impact on inhibiting tumor growth and dissemination, both in vitro and in vivo. METHODS To restore the activity of p53, WT p53 was exogenously expressed in HGSOC cell lines using a mammalian vector system. Moreover, IVT WT p53 mRNA was delivered into different HGSOC model systems (primary cells and patient-derived organoids) using liposomes and studied for proliferation, cell cycle progression, apoptosis, colony formation, and chromosomal instability. Transcriptomic alterations induced by p53 mRNA were analyzed using RNA sequencing in OVCAR-8 and primary HGSOC cells, followed by ingenuity pathway analysis. In vivo effects on tumor growth and metastasis were studied using orthotopic xenografts and metastatic intraperitoneal mouse models. RESULTS Reactivation of the TP53 tumor suppressor gene was explored in different HGSOC model systems using newly designed IVT mRNA-based methods. The introduction of WT p53 mRNA triggered dose-dependent apoptosis, cell cycle arrest, and potent long-lasting inhibition of HGSOC cell proliferation. Transcriptome analysis of OVCAR-8 cells upon mRNA-based p53 reactivation revealed significant alterations in gene expression related to p53 signaling, such as apoptosis, cell cycle regulation, and DNA damage. Restoring p53 function concurrently reduces chromosomal instability within the HGSOC cells, underscoring its crucial contribution in safeguarding genomic integrity by moderating the baseline occurrence of double-strand breaks arising from replication stress. Furthermore, in various mouse models, treatment with p53 mRNA reduced tumor growth and inhibited tumor cell dissemination in the peritoneal cavity in a dose-dependent manner. CONCLUSIONS The IVT mRNA-based reactivation of p53 holds promise as a potential therapeutic strategy for HGSOC, providing valuable insights into the molecular mechanisms underlying p53 function and its relevance in ovarian cancer treatment.
Collapse
Affiliation(s)
- Monika Raab
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Izabela Kostova
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Samuel Peña‐Llopis
- Translational Genomics in Solid TumorsWest German Cancer CenterUniversity HospitalEssenGermany
- German Cancer Consortium (DKTK)EssenGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Daniela Fietz
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
| | - Monika Kressin
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
| | - Seyed Mohsen Aberoumandi
- Histology and EmbryologyInstitute for Veterinary AnatomyGiessenGermany
- Franfurt Cancer Institute (FCI)Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital FrankfurtFrankfurt am MainGermany
| | - Evelyn Ullrich
- Franfurt Cancer Institute (FCI)Goethe UniversityFrankfurt am MainGermany
- German Cancer Consortium (DKTK), Partner site Frankfurt/Mainz, a partnership between DKFZ and University Hospital FrankfurtFrankfurt am MainGermany
- Experimental ImmunologyDepartment for Children and Adolescents MedicineUniversity Hospital FrankfurtGoethe UniversityFrankfurt am MainGermany
| | - Sven Becker
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Mourad Sanhaji
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
| | - Klaus Strebhardt
- Department of GynecologyMedical SchoolGoethe‐UniversityFrankfurt am MainGermany
- German Cancer Research Center (DKFZ)HeidelbergGermany
| |
Collapse
|
12
|
Yang Z, Zhou D, Huang J. Identifying Explainable Machine Learning Models and a Novel SFRP2 + Fibroblast Signature as Predictors for Precision Medicine in Ovarian Cancer. Int J Mol Sci 2023; 24:16942. [PMID: 38069266 PMCID: PMC10706905 DOI: 10.3390/ijms242316942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Ovarian cancer (OC) is a type of malignant tumor with a consistently high mortality rate. The diagnosis of early-stage OC and identification of functional subsets in the tumor microenvironment are essential to the development of patient management strategies. However, the development of robust models remains unsatisfactory. We aimed to utilize artificial intelligence and single-cell analysis to address this issue. Two independent datasets were screened from the Gene Expression Omnibus (GEO) database and processed to obtain overlapping differentially expressed genes (DEGs) in stage II-IV vs. stage I diseases. Three explainable machine learning algorithms were integrated to construct models that could determine the tumor stage and extract important characteristic genes as diagnostic biomarkers. Correlations between cancer-associated fibroblast (CAF) infiltration and characteristic gene expression were analyzed using TIMER2.0 and their relationship with survival rates was comprehensively explored via the Kaplan-Meier plotter (KM-plotter) online database. The specific expression of characteristic genes in fibroblast subsets was investigated through single-cell analysis. A novel fibroblast subset signature was explored to predict immune checkpoint inhibitor (ICI) response and oncogene mutation through Tumor Immune Dysfunction and Exclusion (TIDE) and artificial neural network algorithms, respectively. We found that Support Vector Machine-Shapley Additive Explanations (SVM-SHAP), Extreme Gradient Boosting (XGBoost), and Random Forest (RF) successfully diagnosed early-stage OC (stage I). The area under the receiver operating characteristic curves (AUCs) of these models exceeded 0.990. Their overlapping characteristic gene, secreted frizzled-related protein 2 (SFRP2), was a risk factor that affected the overall survival of OC patients with stage II-IV disease (log-rank test: p < 0.01) and was specifically expressed in a fibroblast subset. Finally, the SFRP2+ fibroblast signature served as a novel predictor in evaluating ICI response and exploring pan-cancer tumor protein P53 (TP53) mutation (AUC = 0.853, 95% confidence interval [CI]: 0.829-0.877). In conclusion, the models based on SVM-SHAP, XGBoost, and RF enabled the early detection of OC for clinical decision making, and SFRP2+ fibroblast signature used in diagnostic models can inform OC treatment selection and offer pan-cancer TP53 mutation detection.
Collapse
Affiliation(s)
| | | | - Jun Huang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
13
|
Yunianto I, Currie M, Chitcholtan K, Sykes P. Potential drug repurposing of ruxolitinib to inhibit the JAK/STAT pathway for the treatment of patients with epithelial ovarian cancer. J Obstet Gynaecol Res 2023; 49:2563-2574. [PMID: 37565583 DOI: 10.1111/jog.15761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
AIM This review aimed to describe the potential for therapeutic targeting of the JAK/STAT signaling pathway by repurposing the clinically-approved JAK inhibitor ruxolitinib in the patients with epithelial ovarian cancer (OC) setting. METHODS We reviewed publications that focus on the inhibition of the JAK/STAT pathway in hematological and solid malignancies including OC. RESULTS Preclinical studies showed that ruxolitinib effectively reduces OC cell viability and metastasis and enhances the anti-tumor activity of chemotherapy drugs. There are a number of recent clinical trials exploring the role of JAK/STAT inhibition in solid cancers including OC. Early results have not adequately supported efficacy in solid tumors. However, there are preclinical data and clinical studies supporting the use of ruxolitinib in combination with both chemotherapy and other targeted drugs in OC setting. CONCLUSION Inflammatory conditions and persistent activation of the JAK/STAT pathway are associated with tumourigenesis and chemoresistance, and therapeutic blockade of this pathway shows promising results. For women with OC, clinical investigation exploring the role of ruxolitinib in combination with chemotherapy agents or other targeted therapeutics is warranted.
Collapse
Affiliation(s)
- Irfan Yunianto
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
- Department of Biology Education, Universitas Ahmad Dahlan, Indonesia
| | - Margaret Currie
- Department of Pathology and Biomedical Sciences, University of Otago, Christchurch, New Zealand
| | - Kenny Chitcholtan
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| | - Peter Sykes
- Department of Obstetrics and Gynaecology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
14
|
Ogundipe OD, Olajubutu O, Adesina SK. Targeted drug conjugate systems for ovarian cancer chemotherapy. Biomed Pharmacother 2023; 165:115151. [PMID: 37473683 DOI: 10.1016/j.biopha.2023.115151] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
Ovarian cancer is a highly lethal disease that affects women. Early diagnosis and treatment of women with early-stage disease improve the probability of survival. Unfortunately, the majority of women with ovarian cancer are diagnosed at advanced stages 3 and 4 which makes treatment challenging. While the majority of the patients respond to first-line treatment, i.e. cytoreductive surgery integrated with platinum-based chemotherapy, the rate of disease recurrence is very high and the available treatment options for recurrent disease are not curative. Thus, there is a need for more effective treatment options for ovarian cancer. Targeted drug conjugate systems have emerged as a promising therapeutic strategy for the treatment of ovarian cancer. These systems provide the opportunity to selectively deliver highly potent chemotherapeutic drugs to ovarian cancer, sparing healthy normal cells. Thus, the effectiveness of the drugs is improved and systemic toxicity is greatly reduced. In this review, different targeted drug conjugate systems that have been or are being developed for the treatment of ovarian cancer will be discussed.
Collapse
Affiliation(s)
- Omotola D Ogundipe
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA
| | | | - Simeon K Adesina
- Department of Pharmaceutical Sciences, Howard University, Washington, DC, USA.
| |
Collapse
|
15
|
Chang X, Tamauchi S, Yoshida K, Yoshihara M, Yokoi A, Shimizu Y, Ikeda Y, Yoshikawa N, Kiyono T, Yamamoto Y, Kajiyama H. Downregulating vaccinia-related kinase 1 by luteolin suppresses ovarian cancer cell proliferation by activating the p53 signaling pathway. Gynecol Oncol 2023; 173:31-40. [PMID: 37075494 DOI: 10.1016/j.ygyno.2023.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/10/2023] [Accepted: 04/03/2023] [Indexed: 04/21/2023]
Abstract
OBJECTIVES Ovarian cancer constitutes one of the most common causes of cancer-related deaths, and preventing chemotherapy resistance and recurrence in patients with ovarian cancer remains a challenge. Herein, we aimed to identify the effect of luteolin, a novel therapeutic agent targeting vaccinia-related kinase 1 (VRK1), on high-grade serous ovarian cancer (HGSOC). METHODS Phosphokinase array, RNA sequencing, and cell cycle and apoptosis assays were conducted to determine the underlying mechanism of the effect of luteolin on HGSOC cells. The anticancer effects of oral and intraperitoneal luteolin administration were assessed in patient-derived xenograft models via several methods, including the assessment of tumor size and immunohistochemistry of phospho-p53, phosphor-HistoneH3 and cleaved caspase 3. RESULTS Luteolin reduced HGSOC cell proliferation and increased apoptosis and cell cycle arrest at G2/M. Compared with controls, several genes were dysregulated in luteolin-treated cells, and luteolin activated the p53 signaling pathway. The human phosphokinase array revealed distinct p53 upregulation in luteolin-treated cells, as confirmed by p53 phosphorylation at ser15 and ser46 using western blot analysis. In patient-derived xenograft models, oral or intraperitoneal luteolin administration substantially suppressed tumor growth. Moreover, combination treatment involving luteolin and cisplatin inhibited tumor cell proliferation, especially in cisplatin-resistant HGSOC cell lines. CONCLUSIONS Luteolin demonstrated considerable anticancer effect on HGSOC cells, reduced VRK1 expression, and activated the p53 signaling pathway, thereby inducing apoptosis and cell cycle arrest in G2/M and inhibiting cell proliferation. Furthermore, luteolin exhibited a synergistic effect with cisplatin both in vivo and in vitro. Thus, luteolin can be considered a promising cotreatment option for HGSOC.
Collapse
Affiliation(s)
- Xuboya Chang
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Satoshi Tamauchi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| | - Kosuke Yoshida
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Akira Yokoi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan; Institute for Advanced Research, Nagoya University, Nagoya 464-8601, Japan
| | - Yusuke Shimizu
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Yoshiki Ikeda
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Nobuhisa Yoshikawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Tohru Kiyono
- Project for Prevention of HPV-related Cancer, Exploratory Oncology Research and Clinical Trial Center, Chiba 277-8577, Japan
| | - Yusuke Yamamoto
- Laboratory of Integrative Oncology, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| |
Collapse
|
16
|
Fang L, Sun YP, Cheng JC. The role of amphiregulin in ovarian function and disease. Cell Mol Life Sci 2023; 80:60. [PMID: 36749397 PMCID: PMC11071807 DOI: 10.1007/s00018-023-04709-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/17/2023] [Accepted: 01/24/2023] [Indexed: 02/08/2023]
Abstract
Amphiregulin (AREG) is an epidermal growth factor (EGF)-like growth factor that binds exclusively to the EGF receptor (EGFR). Treatment with luteinizing hormone (LH) and/or human chorionic gonadotropin dramatically induces the expression of AREG in the granulosa cells of the preovulatory follicle. In addition, AREG is the most abundant EGFR ligand in human follicular fluid. Therefore, AREG is considered a predominant propagator that mediates LH surge-regulated ovarian functions in an autocrine and/or paracrine manner. In addition to the well-characterized stimulatory effect of LH on AREG expression, recent studies discovered that several local factors and epigenetic modifications participate in the regulation of ovarian AREG expression. Moreover, aberrant expression of AREG has recently been reported to contribute to the pathogenesis of several ovarian diseases, such as ovarian hyperstimulation syndrome, polycystic ovary syndrome, and epithelial ovarian cancer. Furthermore, increasing evidence has elucidated new applications of AREG in assisted reproductive technology. Collectively, these studies highlight the importance of AREG in female reproductive health and disease. Understanding the normal and pathological roles of AREG and elucidating the molecular and cellular mechanisms of AREG regulation of ovarian functions will inform innovative approaches for fertility regulation and the prevention and treatment of ovarian diseases. Therefore, this review summarizes the functional roles of AREG in ovarian function and disease.
Collapse
Affiliation(s)
- Lanlan Fang
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Ying-Pu Sun
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China
| | - Jung-Chien Cheng
- Center for Reproductive Medicine, Henan Key Laboratory of Reproduction and Genetics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 40, Daxue Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
17
|
Design, synthesis and anti-ovarian cancer activities of thieno[2,3-d]pyrimidine based chimeric BRD4 inhibitor/nitric oxide-donator. Eur J Med Chem 2023; 246:114970. [PMID: 36470106 DOI: 10.1016/j.ejmech.2022.114970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Bromodomain protein 4 (BRD4) is an attractive epigenetic target that regulating diverse cellular processes, and the discovery of dual-target inhibitors including BRD4 is an effective approach in cancer treatment to increase potency and reduce drug resistance. Based on the multifunctional drug development strategy, a series of new derivatives of nitrooxy (ONO2) or furoxan (1,2,5-oxadiazole 2-oxide) with BRD4 inhibitor capable of inhibiting BRD4 and simultaneously releasing NO were designed and synthesized. When NO concentrations were measured with Griess reagent under physiological conditions, all compounds released NO at micromolar levels, reaching effective antitumor concentrations. Biological studies showed that the most potent BRD4/NO hybrid 11a exhibited good BRD4 inhibitory activity and selectivity. Further mechanistic studies revealed that 11a significantly decreased the expression of BRD4 and c-Myc, as well as induced cellular apoptosis and autophagic cell death both in vitro and in vivo. In summary, we optimized the chimeric BRD4-inhibitor/NO-donor based on our previous studies, and it should be a lead compound for targeted therapy of OC (ovarian cancer) in the future. This interesting strategy could expand the usage of BRDi in human malignancies and endogenous gastro-transmitters.
Collapse
|
18
|
Wallis B, Bowman KR, Lu P, Lim CS. The Challenges and Prospects of p53-Based Therapies in Ovarian Cancer. Biomolecules 2023; 13:159. [PMID: 36671544 PMCID: PMC9855757 DOI: 10.3390/biom13010159] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
It has been well established that mutations in the tumor suppressor gene, p53, occur readily in a vast majority of cancer tumors, including ovarian cancer. Typically diagnosed in stages three or four, ovarian cancer is the fifth leading cause of death in women, despite accounting for only 2.5% of all female malignancies. The overall 5-year survival rate for ovarian cancer is around 47%; however, this drops to an abysmal 29% for the most common type of ovarian cancer, high-grade serous ovarian carcinoma (HGSOC). HGSOC has upwards of 96% of cases expressing mutations in p53. Therefore, wild-type (WT) p53 and p53-based therapies have been explored as treatment options via a plethora of drug delivery vehicles including nanoparticles, viruses, polymers, and liposomes. However, previous p53 therapeutics have faced many challenges, which have resulted in their limited translational success to date. This review highlights a selection of these historical p53-targeted therapeutics for ovarian cancer, why they failed, and what the future could hold for a new generation of this class of therapies.
Collapse
Affiliation(s)
| | | | | | - Carol S. Lim
- Department of Molecular Pharmaceutics, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
19
|
Applications of mass spectroscopy in understanding cancer proteomics. Proteomics 2023. [DOI: 10.1016/b978-0-323-95072-5.00007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
20
|
Qazi S, Khanna K, Raza K. Dihydroquercetin (DHQ) has the potential to promote apoptosis in ovarian cancer cells: An in silico and in vitro study. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Dincer F, Atmaca H, Akman L, Oktay LM, Karaca B, Terek MC. Effects of leptin on the viability of human ovarian cancer cells and changes in cytokine expression levels. PeerJ 2023; 11:e15246. [PMID: 37155466 PMCID: PMC10122840 DOI: 10.7717/peerj.15246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/28/2023] [Indexed: 05/10/2023] Open
Abstract
Background Obesity is associated with increased mortality among ovarian cancer and is a poor prognostic factor. There are significant links between the leptin hormone, a product of the obesity gene, and the development of ovarian cancer. Leptin is a vital hormone-like cytokine secreted from adipose tissue and is mainly involved in the maintenance of energy homeostasis. It regulates several intracellular signaling pathways and also interacts with various hormones and energy regulators. It acts as a growth factor by stimulating cell proliferation and differentiation and in this way contributes to cancer cell development. The aim of the study was to investigate the effects of leptin on human ovarian cancer cells. Methods In this study, the effects of increasing the concentration of leptin were investigated on the cell viability of OVCAR-3 and MDAH-2774 ovarian cancer lines by MTT assay. Moreover, to elucidate the molecular mechanisms of leptin in ovarian cancer cells, changes in the expression levels of 80 cytokines were evaluated after leptin treatment via a human cytokine antibody array. Results Leptin increases the proliferation of both ovarian cancer cell lines. IL-1 level was increased in OVCAR-3 cells and TGF-β level was increased in MDAH-2774 cells after leptin treatment. A decrease in IL-2, MCP-2/CCL8 and MCP-3/CCL7 levels was detected in both ovarian cancer cell lines with leptin administration. An increase in IL-3 and IL-10 expressions, insulin-like growth factor binding proteins (IGFBP) IGFBP-1, IGFBP-2 and IGFBP-3 levels were detected in both ovarian cancer cell lines with leptin administration. In conclusion; leptin has a proliferative effect on human ovarian cancer cell lines and affects different cytokines in different types of ovarian cancer cells.
Collapse
Affiliation(s)
- Fatih Dincer
- Divison of Gynecologic Oncology, Health Sciences University İzmir Tepecik Education and Research Hospital, Health Sciences University, Izmir, Turkey
| | - Harika Atmaca
- Department of Biology, Faculty of Science and Letters, Manisa Celal Bayar University, Manisa, Turkey
| | - Levent Akman
- Department of Obstetrics and Gynecology, Divison of Gynecologic Oncology, Ege University, Bayraklı, İzmir, Turkey
| | - Latife Merve Oktay
- Department of Medical Biology, Medicine Faculty, Ege University, Bayraklı, İzmir, Turkey
| | - Burcak Karaca
- Department of Medical Oncology, Tulay Aktas Oncology Hospital, Ege University, Bayraklı, İzmir, Turkey
| | - Mustafa Cosan Terek
- Department of Obstetrics and Gynecology, Divison of Gynecologic Oncology, Ege University, Bayraklı, İzmir, Turkey
| |
Collapse
|
22
|
Corno C, D’Arcy P, Bagnoli M, Paolini B, Costantino M, Carenini N, Corna E, Alberti P, Mezzanzanica D, Colombo D, Linder S, Arrighetti N, Perego P. The deubiquitinase USP8 regulates ovarian cancer cell response to cisplatin by suppressing apoptosis. Front Cell Dev Biol 2022; 10:1055067. [PMID: 36578788 PMCID: PMC9791127 DOI: 10.3389/fcell.2022.1055067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/24/2022] [Indexed: 12/14/2022] Open
Abstract
The identification of therapeutic approaches to improve response to platinum-based therapies is an urgent need for ovarian carcinoma. Deubiquitinases are a large family of ubiquitin proteases implicated in a variety of cellular functions and may contribute to tumor aggressive features through regulation of processes such as proliferation and cell death. Among the subfamily of ubiquitin-specific peptidases, USP8 appears to be involved in modulation of cancer cell survival by still poorly understood mechanisms. Thus, we used ovarian carcinoma cells of different histotypes, including cisplatin-resistant variants with increased survival features to evaluate the efficacy of molecular targeting of USP8 as a strategy to overcome drug resistance/modulate cisplatin response. We performed biochemical analysis of USP8 activity in pairs of cisplatin-sensitive and -resistant cells and found increased USP8 activity in resistant cells. Silencing of USP8 resulted in decreased activation of receptor tyrosine kinases and increased sensitivity to cisplatin in IGROV-1/Pt1 resistant cells as shown by colony forming assay. Increased cisplatin sensitivity was associated with enhanced cisplatin-induced caspase 3/7 activation and apoptosis, a phenotype also observed in cisplatin sensitive cells. Increased apoptosis was linked to FLIPL decrease and cisplatin induction of caspase 3 in IGROV-1/Pt1 cells, cisplatin-induced claspin and survivin down-regulation in IGROV-1 cells, thereby showing a decrease of anti-apoptotic proteins. Immunohistochemical staining on 65 clinical specimens from advanced stage ovarian carcinoma indicated that 40% of tumors were USP8 positive suggesting that USP8 is an independent prognostic factor for adverse outcome when considering progression free survival as a clinical end-point. Taken together, our results support that USP8 may be of diagnostic value and may provide a therapeutic target to improve the efficacy of platinum-based therapy in ovarian carcinoma.
Collapse
Affiliation(s)
- Cristina Corno
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Padraig D’Arcy
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marina Bagnoli
- Department of Experimental Oncology, Unit of Molecular Therapies, Milan, Italy
| | - Biagio Paolini
- Pathology Unit 1, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
| | - Matteo Costantino
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Nives Carenini
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Elisabetta Corna
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Paola Alberti
- Department of Experimental Oncology, Unit of Molecular Therapies, Milan, Italy
| | - Delia Mezzanzanica
- Department of Experimental Oncology, Unit of Molecular Therapies, Milan, Italy
| | - Diego Colombo
- Department of Medical Biotechnology and Translational Medicine, University of Milano, Milan, Italy
| | - Stig Linder
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Noemi Arrighetti
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| | - Paola Perego
- Department of Experimental Oncology, Unit of Molecular Pharmacology, Milan, Italy
| |
Collapse
|
23
|
An assessment of mismatch repair deficiency in ovarian tumours at a public hospital in Johannesburg, South Africa. SOUTH AFRICAN JOURNAL OF OBSTETRICS AND GYNAECOLOGY 2022. [DOI: 10.7196/sajog.2022.v28i2.2075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background. Epithelial ovarian carcinomas (EOCs) are lethal female genital tract malignancies with high-grade serous, low-grade serous, endometrioid, clear cell, mucinous and malignant Brenner subtypes. The lifetime risk for developing ovarian carcinoma (OC) is 15% in females who have mismatch repair deficiency (MMR-d). MMR-d is associated with Lynch syndrome, a cancer predisposition condition. Patients who have MMR-d may benefit from immunotherapy. To the best of the authors’ knowledge, MMR-d testing of OCs in South Africa (SA) has not been undertaken to date.
Objectives. To assess the clinicopathological characteristics and mismatch repair (MMR) status of non-serous EOCs at a single institution in SA.Methods. Following ethical clearance and application of exclusion criteria, 19 cases of non-serous EOC from the Department of Anatomical Pathology at Charlotte Maxeke Johannesburg Academic Hospital were retrieved and assessed. Four immunohistochemical markers (MLH1, MSH2, MSH6 and PMS2) were used to evaluate MMR status.
Results. Most tumours were early-stage, unilateral, mucinous EOCs, without capsular breach or lymphovascular invasion (LVI). A single case of grade 1, stage I, unilateral, endometrioid EOC showed MMR-d for MLH1 and PMS2 MMR proteins. This patient had been diagnosed with endometrioid endometrial carcinoma 2 years prior to the diagnosis of OC.Conclusion. Our study documented a lower proportion of MMR-d OCs compared with international studies. However, our results are concordant with global studies regarding tumour subtype, laterality, grade, stage, LVI and capsular breach. Larger studies are required to estimate the true incidence of MMR-d OCs in SA and to direct effective treatment options globally.
Collapse
|
24
|
Bridges K, Yao HHC, Nicol B. Loss of Runx1 Induces Granulosa Cell Defects and Development of Ovarian Tumors in the Mouse. Int J Mol Sci 2022; 23:ijms232214442. [PMID: 36430923 PMCID: PMC9697285 DOI: 10.3390/ijms232214442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 11/22/2022] Open
Abstract
Genetic alterations of the RUNX1 gene are associated with a variety of malignancies, including female-related cancers. The role of RUNX1 as either a tumor suppressor gene or an oncogene is tissue-dependent and varies based on the cancer type. Both the amplification and deletion of the RUNX1 gene have been associated with ovarian cancer in humans. In this study, we investigated the effects of Runx1 loss on ovarian pathogenesis in mice. A conditional loss of Runx1 in the somatic cells of the ovary led to an increased prevalence of ovarian tumors in aged mice. By the age of 15 months, 27% of Runx1 knockout (KO) females developed ovarian tumors that presented characteristics of granulosa cell tumors. While ovaries from young adult mice did not display tumors, they all contained abnormal follicle-like lesions. The granulosa cells composing these follicle-like lesions were quiescent, displayed defects in differentiation and were organized in a rosette-like pattern. The RNA-sequencing analysis further revealed differentially expressed genes in Runx1 KO ovaries, including genes involved in metaplasia, ovarian cancer, epithelial cell development, tight junctions, cell-cell adhesion, and the Wnt/beta-catenin pathway. Together, this study showed that Runx1 is required for normal granulosa cell differentiation and prevention of ovarian tumor development in mice.
Collapse
|
25
|
Colic E, Patel PU, Kent OA. Aberrant MAPK Signaling Offers Therapeutic Potential for Treatment of Ovarian Carcinoma. Onco Targets Ther 2022; 15:1331-1346. [PMID: 36388156 PMCID: PMC9645123 DOI: 10.2147/ott.s361512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 11/01/2022] [Indexed: 08/22/2023] Open
Abstract
Ovarian cancer remains the most lethal gynecological malignancy worldwide due to lack of effective screening, vague early symptoms, poor description of biomarkers, and absence of effective treatment regimes. Epithelial ovarian carcinoma (EOC) is categorized into five distinct disease subtypes which collectively account for ~90% of ovarian carcinomas. Most women present at advanced stages contributing to a poor overall 5-year survival rate. Standard treatment for EOC is cytoreductive surgery and platinum-based chemotherapy; however, most patients suffer from recurrence and platinum-resistant disease, which highlights an urgent need for targeted therapy. The high frequency of molecular alterations affecting gain-of-function signaling through the RAS mitogen-activated protein kinase (MAPK) pathway in EOC has prompted pre-clinical and clinical efforts toward research into the effectiveness of MAPK pathway inhibition as a second-line treatment. The RAS/MAPK pathway is a highly conserved signal transduction cascade, often disrupted in cancer, that regulates tumorigenic phenotypes including cellular proliferation, survival, migration, apoptosis, and differentiation. Herein, the role of the MAPK pathway in EOC with emphasis on targetability of the pathway is described. Pre-clinical and clinical efforts to target MAPK signaling in EOC have identified several MAPK pathway inhibitors that offer efficacious potential for monotherapy and in combination with other compounds. Thus, inhibition of the RAS/MAPK pathway is emerging as a tractable strategy for treatment of ovarian cancer that may permit development of personalized therapy and improved prognosis for women challenged by this disease.
Collapse
Affiliation(s)
- Eva Colic
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| | - Preya U Patel
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| | - Oliver A Kent
- Department of Pharmacology, adMare BioInnovations, Montreal, Quebec, Canada
| |
Collapse
|
26
|
Ismail A, Abulsoud AI, Fathi D, Elshafei A, El-Mahdy HA, Elsakka EG, Aglan A, Elkhawaga SY, Doghish AS. The role of miRNAs in Ovarian Cancer Pathogenesis and Therapeutic Resistance - A Focus on Signaling Pathways Interplay. Pathol Res Pract 2022; 240:154222. [DOI: 10.1016/j.prp.2022.154222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/09/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
|
27
|
Chang CYY, Chiang AJ, Yan MJ, Lai MT, Su YY, Huang HY, Chang CY, Li YH, Li PF, Chen CM, Hwang T, Hogg C, Greaves E, Sheu JJC. Ribosome Biogenesis Serves as a Therapeutic Target for Treating Endometriosis and the Associated Complications. Biomedicines 2022; 10:biomedicines10010185. [PMID: 35052864 PMCID: PMC8774031 DOI: 10.3390/biomedicines10010185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/01/2022] [Accepted: 01/13/2022] [Indexed: 12/10/2022] Open
Abstract
Ribosome biogenesis is a cellular process critical for protein homeostasis during cell growth and multiplication. Our previous study confirmed up-regulation of ribosome biogenesis during endometriosis progression and malignant transition, thus anti-ribosome biogenesis may be effective for treating endometriosis and the associated complications. A mouse model with human endometriosis features was established and treated with three different drugs that can block ribosome biogenesis, including inhibitors against mTOR/PI3K (GSK2126458) and RNA polymerase I (CX5461 and BMH21). The average lesion numbers and disease frequencies were significantly reduced in treated mice as compared to controls treated with vehicle. Flow cytometry analyses confirmed the reduction of small peritoneal macrophage and neutrophil populations with increased large versus small macrophage ratios, suggesting inflammation suppression by drug treatments. Lesions in treated mice also showed lower nerve fiber density which can support the finding of pain-relief by behavioral studies. Our study therefore suggested ribosome biogenesis as a potential therapeutic target for treating endometriosis.
Collapse
Affiliation(s)
- Cherry Yin-Yi Chang
- Department of Obstetrics and Gynecology, China Medical University Hospital, Taichung 404332, Taiwan;
- Department of Medicine, School of Medicine, China Medical University, Taichung 404333, Taiwan
| | - An-Jen Chiang
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan;
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (M.-J.Y.); (Y.-Y.S.); (H.-Y.H.); (C.-Y.C.); (Y.-H.L.); (P.-F.L.); (T.H.)
| | - Man-Ju Yan
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (M.-J.Y.); (Y.-Y.S.); (H.-Y.H.); (C.-Y.C.); (Y.-H.L.); (P.-F.L.); (T.H.)
| | - Ming-Tsung Lai
- Department of Pathology, Taichung Hospital, Ministry of Health and Welfare, Taichung 403301, Taiwan;
| | - Yun-Yi Su
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (M.-J.Y.); (Y.-Y.S.); (H.-Y.H.); (C.-Y.C.); (Y.-H.L.); (P.-F.L.); (T.H.)
| | - Hsin-Yi Huang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (M.-J.Y.); (Y.-Y.S.); (H.-Y.H.); (C.-Y.C.); (Y.-H.L.); (P.-F.L.); (T.H.)
| | - Chan-Yu Chang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (M.-J.Y.); (Y.-Y.S.); (H.-Y.H.); (C.-Y.C.); (Y.-H.L.); (P.-F.L.); (T.H.)
| | - Ya-Hui Li
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (M.-J.Y.); (Y.-Y.S.); (H.-Y.H.); (C.-Y.C.); (Y.-H.L.); (P.-F.L.); (T.H.)
| | - Pei-Fen Li
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (M.-J.Y.); (Y.-Y.S.); (H.-Y.H.); (C.-Y.C.); (Y.-H.L.); (P.-F.L.); (T.H.)
| | - Chih-Mei Chen
- Human Genetic Center, China Medical University Hospital, Taichung 404332, Taiwan;
| | - Tritium Hwang
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (M.-J.Y.); (Y.-Y.S.); (H.-Y.H.); (C.-Y.C.); (Y.-H.L.); (P.-F.L.); (T.H.)
| | - Chloe Hogg
- Medical Research Council Centre for Reproductive Health, The University of Edinburgh, Edinburgh EH16 4TJ, UK;
| | - Erin Greaves
- Centre for Early Life, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Correspondence: (E.G.); (J.J.-C.S.)
| | - Jim Jinn-Chyuan Sheu
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan; (M.-J.Y.); (Y.-Y.S.); (H.-Y.H.); (C.-Y.C.); (Y.-H.L.); (P.-F.L.); (T.H.)
- Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Institute of Biopharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
- Correspondence: (E.G.); (J.J.-C.S.)
| |
Collapse
|
28
|
Lee EJ, Park SJ, Lee C, Yim GW, Kim JW, Kim HS. Hypoxia-induced Maspin Expression Affects the Prognosis of Ovarian Clear Cell Carcinoma. In Vivo 2022; 36:212-220. [PMID: 34972717 DOI: 10.21873/invivo.12693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND/AIM To investigate the role of the expression of hypoxia-related genes on the prognosis of ovarian clear cell carcinoma (OCCC). MATERIALS AND METHODS Basal mRNA levels of eight hypoxia-related genes were compared. Cell viability was assayed after treating ES-2 cells under hypoxic conditions. The mRNA and protein levels were evaluated after the induction of hypoxia and administration of increased doses of N-acetylcysteine (NAC). Finally, the prognostic role of their expression levels was evaluated in 61 patients with OCCC. RESULTS The mRNA and protein levels of maspin increased gradually with the induction of hypoxia. Maspin protein expression decreased after treatment with paclitaxel and NAC. High expression of maspin was related to poor progression-free and overall survival in patients with OCCC (adjusted hazard ratios, 3.97 and 7.47; 95% confidence intervals=1.34-11.81, and 1.98-28.13). CONCLUSION High expression of maspin induced by hypoxia might be associated with poor prognosis of OCCC.
Collapse
Affiliation(s)
- Eun Ji Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Soo Jin Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ga Won Yim
- Department of Obstetrics and Gynecology, Dongguk University College of Medicine, Goyang, Republic of Korea
| | - Jae Weon Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hee Seung Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea;
| |
Collapse
|
29
|
Gao L, Ouyang Y, Li R, Zhang X, Gao X, Lin S, Wang X. Icaritin Inhibits Migration and Invasion of Human Ovarian Cancer Cells via the Akt/mTOR Signaling Pathway. Front Oncol 2022; 12:843489. [PMID: 35433438 PMCID: PMC9010825 DOI: 10.3389/fonc.2022.843489] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/07/2022] [Indexed: 12/26/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal of all gynecologic malignancies with poor survival rates. Although surgical treatment and chemotherapy had advanced to improve survival, platinum-based chemoresistance remains a major hurdle in the clinical treatment of OC. The search for novel active ingredients for the treatment of drug-resistant OC is urgently needed. Here, we demonstrated that icaritin, the main active ingredient derived from the traditional Chinese herb Epimedium genus, significantly suppressed the proliferation, migration, and invasion of both drug-susceptible and cisplatin-resistant OC cells in vitro. Mechanistically, icaritin at 20 μM significantly inhibited the phosphorylation of Akt and mTOR, as well as decreased the expression of vimentin and increased the expression of E-cadherin. Our data indicate that icaritin, a prenylated flavonoid natural product, could serve as a potential inhibitor of cisplatin-resistant OC by inhibiting the Akt/mTOR signaling pathway.
Collapse
Affiliation(s)
- Lvfen Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yuan Ouyang
- Department of Obstetrics and Gynecology, Guangzhou Panyu Central Hospital, Guangzhou, China
| | - Ruobin Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xian Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Xuesong Gao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Shaoqiang Lin
- Integrated Traditional and Western Medicine Research Center, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Shaoqiang Lin, ; Xiaoyu Wang,
| | - Xiaoyu Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- *Correspondence: Shaoqiang Lin, ; Xiaoyu Wang,
| |
Collapse
|
30
|
Sassu CM, Palaia I, Boccia SM, Caruso G, Perniola G, Tomao F, Di Donato V, Musella A, Muzii L. Role of Circulating Biomarkers in Platinum-Resistant Ovarian Cancer. Int J Mol Sci 2021; 22:ijms222413650. [PMID: 34948446 PMCID: PMC8707281 DOI: 10.3390/ijms222413650] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 02/07/2023] Open
Abstract
Ovarian cancer (OC) is the second most common cause of death in women with gynecological cancer. Considering the poor prognosis, particularly in the case of platinum-resistant (PtR) disease, a huge effort was made to define new biomarkers able to help physicians in approaching and treating these challenging patients. Currently, most data can be obtained from tumor biopsy samples, but this is not always available and implies a surgical procedure. On the other hand, circulating biomarkers are detected with non-invasive methods, although this might require expensive techniques. Given the fervent hope in their value, here we focused on the most studied circulating biomarkers that could play a role in PtR OC.
Collapse
|
31
|
Olaparib as first line in BRCA-mutated advanced ovarian carcinoma: Is it cost-effective in Spain? Gynecol Oncol 2021; 164:406-414. [PMID: 34844775 DOI: 10.1016/j.ygyno.2021.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/03/2021] [Accepted: 11/13/2021] [Indexed: 11/21/2022]
Abstract
OBJECTIVE To estimate the cost-effectiveness of olaparib after being funded by the Spanish National Health Service (SNHS) as first-line monotherapy maintenance treatment in patients with advanced high-grade serous ovarian carcinoma (HGSOC) and BRCA mutations in Spain. METHODS A semi-Markov model with one-month cycles was adapted to the Spanish healthcare setting, using the perspective of the SNHS, and a time horizon of 50 years. Two scenarios were compared: receiving olaparib vs. no maintenance treatment. The model comprised four health states and included the clinical results of the SOLO1 study, along with the direct healthcare costs associated with the use of first-line and subsequent treatment resources (2020 €). A discount rate of 3% was applied for future cost and quality-of-life outcomes. A probabilistic sensitivity analysis (PSA) was also carried out and a cost-effectiveness threshold of €25,000 per quality adjusted life year (QALY) was considered. RESULTS The introduction of olaparib as a first-line maintenance treatment for advanced HGSOC patients with BRCA mutations implied a cost of €131,614.98 compared to €102,369.54 without olaparib (difference: €29,245.44), with an improvement of 2.00 QALYs (5.56 and 3.57, respectively). Therefore, olaparib is cost-effective for advanced HGSOC patients with BRCA mutations, with an incremental cost-effectiveness ratio of €14,653.2/QALY. The results from the PSA showed that 92.1% of the simulations fell below the €25,000/QALY threshold. The model showed that olaparib could improve the overall survival by 2 years, vs. no maintenance treatment. CONCLUSIONS Olaparib as first-line maintenance treatment is cost-effective in advanced HGSOC patients with BRCA mutations in Spain.
Collapse
|
32
|
Qazi S, Raza K. In silico approach to understand epigenetics of POTEE in ovarian cancer. J Integr Bioinform 2021; 18:jib-2021-0028. [PMID: 34788504 PMCID: PMC8709732 DOI: 10.1515/jib-2021-0028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/04/2021] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the third leading cause of cancer-related deaths in India. Epigenetics mechanisms seemingly plays an important role in ovarian cancer. This paper highlights the crucial epigenetic changes that occur in POTEE that get hypomethylated in ovarian cancer. We utilized the POTEE paralog mRNA sequence to identify major motifs and also performed its enrichment analysis. We identified 6 motifs of varying lengths, out of which only three motifs, including CTTCCAGCAGATGTGGATCA, GGAACTGCC, and CGCCACATGCAGGC were most likely to be present in the nucleotide sequence of POTEE. By enrichment and occurrences identification analyses, we rectified the best match motif as CTTCCAGCAGATGT. Since there is no experimentally verified structure of POTEE paralog, thus, we predicted the POTEE structure using an automated workflow for template-based modeling using the power of a deep neural network. Additionally, to validate our predicted model we used AlphaFold predicted POTEE structure and observed that the residual stretch starting from 237-958 had a very high confidence per residue. Furthermore, POTEE predicted model stability was evaluated using replica exchange molecular dynamic simulation for 50 ns. Our network-based epigenetic analysis discerns only 10 highly significant, direct, and physical associators of POTEE. Our finding aims to provide new insights about the POTEE paralog.
Collapse
Affiliation(s)
- Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
33
|
Mirahmadi Y, Nabavi R, Taheri F, Samadian MM, Ghale-Noie ZN, Farjami M, Samadi-khouzani A, Yousefi M, Azhdari S, Salmaninejad A, Sahebkar A. MicroRNAs as Biomarkers for Early Diagnosis, Prognosis, and Therapeutic Targeting of Ovarian Cancer. JOURNAL OF ONCOLOGY 2021; 2021:3408937. [PMID: 34721577 PMCID: PMC8553480 DOI: 10.1155/2021/3408937] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is the major cause of gynecologic cancer-related mortality. Regardless of outstanding advances, which have been made for improving the prognosis, diagnosis, and treatment of ovarian cancer, the majority of the patients will die of the disease. Late-stage diagnosis and the occurrence of recurrent cancer after treatment are the most important causes of the high mortality rate observed in ovarian cancer patients. Unraveling the molecular mechanisms involved in the pathogenesis of ovarian cancer may help find new biomarkers and therapeutic targets for ovarian cancer. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression, mostly at the posttranscriptional stage, through binding to mRNA targets and inducing translational repression or degradation of target via the RNA-induced silencing complex. Over the last two decades, the role of miRNAs in the pathogenesis of various human cancers, including ovarian cancer, has been documented in multiple studies. Consequently, these small RNAs could be considered as reliable markers for prognosis and early diagnosis. Furthermore, given the function of miRNAs in various cellular pathways, including cell survival and differentiation, targeting miRNAs could be an interesting approach for the treatment of human cancers. Here, we review our current understanding of the most updated role of the important dysregulation of miRNAs and their roles in the progression and metastasis of ovarian cancer. Furthermore, we meticulously discuss the significance of miRNAs as prognostic and diagnostic markers. Lastly, we mention the opportunities and the efforts made for targeting ovarian cancer through inhibition and/or stimulation of the miRNAs.
Collapse
Affiliation(s)
- Yegane Mirahmadi
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fourough Taheri
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Mahdi Samadian
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zari Naderi Ghale-Noie
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Farjami
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Samadi-khouzani
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Meysam Yousefi
- Department of Medical Genetics, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Arash Salmaninejad
- Department of Medical Genetics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Genetics, Faculty of Medicine, Guilan University of Medical Sciences, Guilan, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
34
|
Zhang J, Xie S, Zhou L, Tang X, Guan X, Deng M, Zheng H, Wang Y, Lu R, Guo L. Up-regulation of GSTT1 in serous ovarian cancer associated with resistance to TAXOL / carboplatin. J Ovarian Res 2021; 14:122. [PMID: 34535163 PMCID: PMC8447655 DOI: 10.1186/s13048-021-00873-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/31/2021] [Indexed: 11/10/2022] Open
Abstract
Serous ovarian cancer (SOC) is the most common women cancer and the leading cause of cancer-related mortality among the gynaecological malignancies. Although effective chemotherapeutics combined with surgery are developed for the treatment, the five-year survival rate is unsatisfactory due to chemoresistance. To overcome this shortcoming of chemotherapy, we established taxol and carboplatin resistant SOC cell lines for the understandings of the molecular and cellular mechanisms of chemoresistance. Here, we found that these chemoresistant cell lines showed less viability and proliferation, due to more cells arrested at G0/G1 phase. Glutathione-S-transferases-theta1 (GSTT1) was significantly upregulated in these chemoresistant cells, along with other chemoresistant genes. Meanwhile, GSTT1 expression was also significantly upregulated in the SOC patient tissues after taxol treatment, indicating this upregulation was physiologically relevant to chemotherapy. Further, suppression of GSTT1 expression by shRNA in SOC cell lines led to more sensitivity to drug treatment, through increasing divided cells and promoting cell death. Moreover, the expression of DNA topoisomerase 1 (Topo I) was in synergy with that of GSTT1 in the chemoresistant cells, and GSTT1 can bind to Topo I in vitro, which suggested GSTT1 could function through DNA repair mechanism during chemoresistance. In summary, our data imply that GSTT1 may be a potential biomarker or indicator of drug resistance in serous ovarian cancer.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Suhong Xie
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Lei Zhou
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Xiaoyu Tang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Xiaolin Guan
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Minjie Deng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Hui Zheng
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Yanchun Wang
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China
| | - Renquan Lu
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Lin Guo
- Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, No.270, Dong'An Road, Xuhui District, Shanghai, 200032, China. .,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
A Novel Monoclonal Antibody Targeting Cancer-Specific Plectin Has Potent Antitumor Activity in Ovarian Cancer. Cells 2021; 10:cells10092218. [PMID: 34571866 PMCID: PMC8466582 DOI: 10.3390/cells10092218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 01/25/2023] Open
Abstract
Cancer-specific plectin (CSP) is a pro-tumorigenic protein selectively expressed on the cell surface of major cancers, including ovarian cancer (OC). Despite its assessable localization, abundance, and functional significance, the therapeutic efficacy of targeting CSP remains unexplored. Here, we generated and investigated the anticancer effects of a novel CSP-targeting monoclonal antibody, 1H11, in OC models. Its therapeutic efficacy as a monotherapy and in combination with chemotherapy was evaluated in vitro using two OC cell lines and in vivo by a subcutaneous ovarian cancer model. 1H11 demonstrated rapid internalization and high affinity and specificity for both human and murine CSP. Moreover, 1H11 induced significant and selective cytotoxicity (EC50 = 260 nM), G0/G1 arrest, and decreased OC cell migration. Mechanistically, these results are associated with increased ROS levels and reduced activation of the JAK2-STAT3 pathway. In vivo, 1H11 decreased Ki67 expression, induced 65% tumor growth inhibition, and resulted in 30% tumor necrosis. Moreover, 1H11 increased chemosensitivity to cisplatin resulting in 60% greater tumor growth inhibition compared to cisplatin alone. Taken together, CSP-targeting with 1H11 exhibits potent anticancer activity against ovarian cancer and is deserving of future clinical development.
Collapse
|
36
|
Bindhya S, Sidhanth C, Krishnapriya S, Garg M, Ganesan TS. Development and in vitro characterisation of an induced pluripotent stem cell model of ovarian cancer. Int J Biochem Cell Biol 2021; 138:106051. [PMID: 34343671 DOI: 10.1016/j.biocel.2021.106051] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/06/2021] [Accepted: 07/29/2021] [Indexed: 12/27/2022]
Abstract
Ovarian cancer recurs despite advances in treatment and is due to drug resistance. The persistence of cancer stem cells (CSCs) is one of the causes. It has been challenging to maintain CSCs long term in culture from primary malignant cells. Reprogramming cancer cells into induced pluripotent stem cells (iPSCs) could be an approach to achieve this. An ovarian cancer cell line, PEO4, was initially reprogrammed into iPSCs using the classical four factors OCT4, SOX2, KLF4 and MYC (OSKM) using lentivirus transduction. The PEO4-OSKM-cells had all the hallmarks of iPSCs. As MYC is oncogenic, we have replaced it with GLIS1 and show that PEO4 cells could be transformed into iPSCs. The transfection efficiency was two-fold better with OCT4-SOX2-KLF4-GLIS1 (OSKG) with larger colonies. Further, normal fallopian tube epithelial cells were also transformed using OSKG into iPSCs. iPSCs expressed CSCs markers such as CD133, EPHA1, ALDH1A1 and LGR5 prominently and were more resistant to cisplatin and taxol as compared to parental PEO4 cells. PEO4-OSKM-iPSCs cells formed more colonies in a clonogenic assay as compared to PEO4-OSKG-iPSCs and parental cells. These results provide a first insight that both an ovarian cancer cell line and fallopian tube epithelial cells can be reprogrammed and GLIS1 can successfully replace MYC as a transcription factor. This in vitro model is useful for future experiments to understand the characteristics of CSCs in the pathogenesis of ovarian cancer.
Collapse
Affiliation(s)
- S Bindhya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - C Sidhanth
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - S Krishnapriya
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Uttar Pradesh, India
| | - T S Ganesan
- Laboratory for Cancer Biology, Department of Medical Oncology and Clinical Research, Cancer Institute (WIA), Chennai, India.
| |
Collapse
|
37
|
Zhang Y, Qazi S, Raza K. Differential expression analysis in ovarian cancer: A functional genomics and systems biology approach. Saudi J Biol Sci 2021; 28:4069-4081. [PMID: 34220265 PMCID: PMC8241591 DOI: 10.1016/j.sjbs.2021.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Ovarian cancer is one of the rarest lethal oncologic diseases that have hardly any specific biomarkers. The availability of high-throughput genomic data and advancement in bioinformatics tools allow us to predict gene biomarkers and apply systems biology approaches to get better diagnosis, and prognosis of the disease with a tentative drug that may be repurposed. OBJECTIVE To perform genome-wide association studies using microarray gene expression of ovarian cancer and identify gene biomarkers, construction and analyze networks, perform survival analysis, and drug interaction studies for better diagnosis, prognosis, and treatment of ovarian cancer. METHOD The gene expression profiles of both healthy and serous ovarian cancer epithelial samples were considered. We applied a series of bioinformatics methods and tools, including fold-change statistics for differential expression analysis, DisGeNET and NCBI-Gene databases for gene-disease association mapping, DAVID 6.8 for GO enrichment analysis, GeneMANIA for network construction, Cytoscape 3.8 with its plugins for network visualization, analysis, and module detection, the UALCAN for patient survival analysis, and PubChem, DrugBank and DGIdb for gene-drug interaction. RESULTS We identified 8 seed genes that were subjected for drug-gene interaction studies. Because of over-expression in all the four stages of ovarian cancer, we discern that genes HMGA1 and PSAT1 are potential therapeutic biomarkers for its diagnosis at an early stage (stage I). Our analysis suggests that there are 11 drugs common in the seed genes. However, hypermethylated seed genes HMGA1 and PSAT1 showcased a good interaction affinity with drugs cisplatin, cyclosporin, bisphenol A, progesterone, and sunitinib, and are crucial in the proliferation of ovarian cancer. CONCLUSION Our study reveals that HMGA1 and PSAT1 can be deployed for initial screening of ovarian cancer and drugs cisplatin, bisphenol A, cyclosporin, progesterone, and sunitinib are effective in curbing the epigenetic alteration.
Collapse
Affiliation(s)
- Yinbing Zhang
- College of Chemistry & Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
38
|
Wesley T, Berzins S, Kannourakis G, Ahmed N. The attributes of plakins in cancer and disease: perspectives on ovarian cancer progression, chemoresistance and recurrence. Cell Commun Signal 2021; 19:55. [PMID: 34001250 PMCID: PMC8127266 DOI: 10.1186/s12964-021-00726-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/20/2021] [Indexed: 02/06/2023] Open
Abstract
The plakin family of cytoskeletal proteins play an important role in cancer progression yet are under-studied in cancer, especially ovarian cancer. These large cytoskeletal proteins have primary roles in the maintenance of cytoskeletal integrity but are also associated with scaffolds of intermediate filaments and hemidesmosomal adhesion complexes mediating signalling pathways that regulate cellular growth, migration, invasion and differentiation as well as stress response. Abnormalities of plakins, and the closely related spectraplakins, result in diseases of the skin, striated muscle and nervous tissue. Their prevalence in epithelial cells suggests that plakins may play a role in epithelial ovarian cancer progression and recurrence. In this review article, we explore the roles of plakins, particularly plectin, periplakin and envoplakin in disease-states and cancers with emphasis on ovarian cancer. We discuss the potential role the plakin family of proteins play in regulating cancer cell growth, survival, migration, invasion and drug resistance. We highlight potential relationships between plakins, epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) and discuss how interaction of these processes may affect ovarian cancer progression, chemoresistance and ultimately recurrence. We propose that molecular changes in the expression of plakins leads to the transition of benign ovarian tumours to carcinomas, as well as floating cellular aggregates (commonly known as spheroids) in the ascites microenvironment, which may contribute to the sustenance and progression of the disease. In this review, attempts have been made to understand the crucial changes in plakin expression in relation to progression and recurrence of ovarian cancer. Video Abstract
Collapse
Affiliation(s)
- Tamsin Wesley
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - Stuart Berzins
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - George Kannourakis
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia.,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia
| | - Nuzhat Ahmed
- Fiona Elsey Cancer Research Institute, Ballarat Technology Central Park, Suites 23-26, 106-110 Lydiard Street South, Ballarat, VIC, 3353, Australia. .,School of Science, Psychology and Sport, Federation University Australia, Ballarat, VIC, 3010, Australia. .,Department of Obstetrics and Gynaecology, University of Melbourne, Melbourne, VIC, 3052, Australia. .,Centre for Reproductive Health, The Hudson Institute of Medical Research and Department of Translational Medicine, Monash University, Melbourne, VIC, 3168, Australia.
| |
Collapse
|
39
|
Ryu J, Thomas SN. Quantitative Mass Spectrometry-Based Proteomics for Biomarker Development in Ovarian Cancer. Molecules 2021; 26:molecules26092674. [PMID: 34063568 PMCID: PMC8125593 DOI: 10.3390/molecules26092674] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/01/2021] [Indexed: 12/11/2022] Open
Abstract
Ovarian cancer is the most lethal gynecologic malignancy among women. Approximately 70–80% of patients with advanced ovarian cancer experience relapse within five years and develop platinum-resistance. The short life expectancy of patients with platinum-resistant or platinum-refractory disease underscores the need to develop new and more effective treatment strategies. Early detection is a critical step in mitigating the risk of disease progression from early to an advanced stage disease, and protein biomarkers have an integral role in this process. The best biological diagnostic tool for ovarian cancer will likely be a combination of biomarkers. Targeted proteomics methods, including mass spectrometry-based approaches, have emerged as robust methods that can address the chasm between initial biomarker discovery and the successful verification and validation of these biomarkers enabling their clinical translation due to the robust sensitivity, specificity, and reproducibility of these versatile methods. In this review, we provide background information on the fundamental principles of biomarkers and the need for improved treatment strategies in ovarian cancer. We also provide insight into the ways in which mass spectrometry-based targeted proteomics approaches can provide greatly needed solutions to many of the challenges related to ovarian cancer biomarker development.
Collapse
|
40
|
Phytochemicals from Ayurvedic plants as potential medicaments for ovarian cancer: an in silico analysis. J Mol Model 2021; 27:114. [PMID: 33765217 DOI: 10.1007/s00894-021-04736-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Ovarian cancer is one of the highly prominent gynecological malignancies after breast cancer. Although myriad literature is available, there is no specific biomarker available for the personalized treatment strategy. The unavailability of effective drug therapy for ovarian cancer calls for an urgent push in its development from the multidisciplinary scientific community. Indian Ayurvedic medicine pharmacology is widely appreciated and accepted for its immense healthcare benefits. Bioinformatics and cheminformatics approaches can be effectively used to screen phytochemicals present in the Indian Ayurvedic plants against ovarian cancer target receptors. Recent studies discern that POTE, a cancer-testis antigen (CTA) family, plays a crucial role in the proliferation and progression of cancers including ovarian cancer. Specifically, POTEE paralog has been observed to be hypermethylated in ovarian cancer. This study undertakes an in silico analysis of Indian Ayurvedic plants for their anticancer efficacy against ovarian cancer proliferation target receptor POTEE. Structures of 100 phytochemicals from 11 Ayurvedic plants were screened with ADME criteria, and qualified phytochemicals were subjected to molecular docking and interaction analysis. Only 6 phytochemicals having a high affinity to the target receptor (POTEE) were then subjected to an all-atom replica exchange molecular dynamics simulation for 50 ns. Binding affinities of 6 phytochemicals cedeodarin, deodarin, hematoxylin, matairesinol, quercetin, and taxifolin with POTEE were -8.1, -7.7, -7.7, -7.9, -8.0, and - 7.7 kcal/mol, respectively, and their RMSD were recorded as zero. This study concludes that phytochemicals present in Indian Ayurvedic plants namely Cedrus deodara and Asparagus racemosus possess inhibitory effects against ovarian cancer proliferation receptor POTEE.
Collapse
|
41
|
|
42
|
Serum Levels of S100A11 and MMP-9 in Patients with Epithelial Ovarian Cancer and Their Clinical Significance. BIOMED RESEARCH INTERNATIONAL 2021; 2021:7341247. [PMID: 33763485 PMCID: PMC7952149 DOI: 10.1155/2021/7341247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 12/29/2020] [Accepted: 01/07/2021] [Indexed: 11/17/2022]
Abstract
Objective To investigate the serum levels of calgizzarin (S100A11) and matrix metalloproteinase-9 (MMP9) in patients with epithelial ovarian cancer (EOC) and determine their clinical significance. Methods Serum levels of S100A11 and MMP9 were detected in patients with EOC, patients with benign ovarian tumor, and healthy women. The correlation between the two markers and clinicopathological characteristics of ovarian cancer was analysed. Results The serum levels of S100A11 and MMP-9 in patients with EOC were higher than those in patients with benign ovarian tumor and in healthy women, and the expression levels of S100A11 and MMP-9 were positively correlated. S100A11 and MMP-9 were correlated with tumor staging, postoperative residual foci, ascites volume, serum CA125 level, chemotherapy response, and lymph node metastasis, while S100A11 and MMP-9 were not associated with the bilevel classification, histological type, age, and degree of differentiation. Conclusion S100A11 and MMP-9 were both highly expressed in the serum of patients with EOC and were associated with cancer development, invasion, and metastasis. Therefore, they can be used as an important reference maker in the diagnosis and treatment of ovarian cancer.
Collapse
|
43
|
The mechanism of anticancer activity of the new synthesized compound - 6,7-Methylenedioxy-4-(2,4-dimethoxyphenyl)quinolin -2(1H)-one(12e) in human ovarian cancer cell lines. Taiwan J Obstet Gynecol 2021; 60:266-272. [PMID: 33678326 DOI: 10.1016/j.tjog.2021.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Ovarian cancer is the most lethal of the gynecologic malignancies. Most women have advanced disease at diagnosis and require extensive debulking surgery and aggressive chemotherapy. Induction of apoptosis in cancer cells has been used as an important approach for cancer therapy. We examined the anticancer effect of 6,7-methylenedioxy-4-(2,4-dimethoxyphenyl)quinolin-2(1H)-one (12e) in human ovarian cancer cell line. MATERIALS AND METHODS The 6,7-methylenedioxy-4- (2,4-dimethoxyphenyl) quinolin-2 (1H) -one (12e) was synthesized and provided by Dr. Li-Jiau Huang of China Medical University. Cell viability analysis showed that 12e inhibited cell growth and induced cell death in time- and dose-dependent manners. In order to study the underlying cell death mechanism, 2774 and SKOV3 cells treated with 12e were studied by morphology, DAPI/TUNEL double staining, DNA gel electrophoresis. To search the mechanisms of anti-proliferative effect of 12e, cell cycle analysis was performed. Changes in proteins related to cell death were analyzed by Western blot. RESULTS 12e significantly induced apoptosis evidenced by morphological changes, TUNEL-DAPI double-staining and DNA fragmentation. Western blot analysis demonstrated that the protein level of Bcl-2 was decreased after treatment with 12e, while the level of p53 and Bax was increased. 12e treatment resulted in G2/M arrest through down modulation of cyclin B1 and cdk1. CONCLUSION These results suggested that 12e -induced growth inhibition was associated with cell cycle arrest and apoptosis.
Collapse
|
44
|
BECN1 and BRCA1 Deficiency Sensitizes Ovarian Cancer to Platinum Therapy and Confers Better Prognosis. Biomedicines 2021; 9:biomedicines9020207. [PMID: 33670664 PMCID: PMC7922320 DOI: 10.3390/biomedicines9020207] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/21/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Background: BRCA1, BECN1 and TP53 are three tumor suppressor genes located on chromosome 17 and frequently found deleted, silenced, or mutated in many cancers. These genes are involved in autophagy, apoptosis, and drug resistance in ovarian cancer. Haploinsufficiency or loss-of-function of either TP53, BRCA1 or BECN1 correlates with enhanced predisposition to cancer development and progression, and chemoresistance. Expectedly, the combined altered expression of these three tumor suppressor genes worsens the prognosis of ovarian cancer patients. However, whether such a genotypic pattern indeed affects the chemo-responsiveness to standard chemotherapy thus worsening patients’ survival has not been validated in a large cohort of ovarian cancer patients. Aim: We interrogated datasets from the TCGA database to analyze how the expression of these three tumor suppressor genes impacts on the clinical response to platinum-based chemotherapy thus affecting the survival of ovarian cancer patients. Results and conclusion: Compared to EOC with homozygous expression of BECN1 and BRCA1, tumors expressing low mRNA expression of these two tumor suppressor genes (either because of shallow (monoallelic) co-deletion or of promoter hypermethylation), showed higher sensitivity to platinum-based therapies and were associated with a better prognosis of ovarian cancer-bearing patients. This outcome was independent of TP53 status, though it was statistically more significant in the cohort of patients with mutated TP53. Thus, sensitivity to platinum therapy (and probably to other chemotherapeutics) correlates with low expression of a combination of critical tumor suppressor genes. Our study highlights the importance of thoroughly assessing the genetic lesions of the most frequently mutated genes to stratify the patients in view of a personalized therapy. More importantly, the present findings suggest that targeting the function of both BECN1 and BRCA1 could be a strategy to restore chemosensitivity in refractory tumors.
Collapse
|
45
|
DOCK4 Is a Platinum-Chemosensitive and Prognostic-Related Biomarker in Ovarian Cancer. PPAR Res 2021; 2021:6629842. [PMID: 33613670 PMCID: PMC7878079 DOI: 10.1155/2021/6629842] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/21/2021] [Indexed: 12/18/2022] Open
Abstract
Ovarian carcinoma (OV) is a lethal gynecological malignancy. Most OV patients develop resistance to platinum-based chemotherapy and recurrence. Peroxisome proliferator-activated receptors (PPARs) are the ligand activating transcription factor of the nuclear receptor superfamily. PPARs as important transcriptional regulators regulate important physiological processes such as lipid metabolism, inflammation, and wound healing. Several reports point out that PPARs can also have an effect on the sensitivity of tumor cells to platinum-based chemotherapy drugs. However, the role of PPAR-target related genes (PPAR-TRGs) in chemotherapeutic resistance of OV remains unclear. The present study is aimed at optimizing candidate genes by integrating platinum-chemotherapy expression data and PPAR family genes with their targets. The gene expression profiles were obtained from Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) database. A total of 4 genes (AP2A2, DOCK4, HSDL2, and PDK4) were the candidate differentially expressed genes (DEGs) of PPAR-TRGs with platinum chemosensitivity. After conducting numerous survival analyses using different cohorts, we found that only the upexpression of DOCK4 has important significance with the poor prognosis of OV patients. Meanwhile, DOCK4 is detected in plasma and enriched in neutrophil and monocyte cells of the blood. We further found that there were significant correlations between DOCK4 expression and the levels of CD4+ T cell infiltration, dendritic cell infiltration, and neutrophil infiltration in OV. In addition, we verified the expression level of DOCK4 in OV cell lines treated with platinum drugs and found that DOCK4 is potentially responsive to platinum drugs. In conclusion, DOCK4 is potentially associated with immune cell infiltration and represents a valuable prognostic biomarker in ovarian cancer patients.
Collapse
|
46
|
Knapp P, Bodnar L, Błachnio-Zabielska A, Reszeć J, Świderska M, Chabowski A. Blood bioactive sphingolipids in patients with advanced serous epithelial ovarian cancer - mass spectrometry analysis. Arch Med Sci 2021; 17:53-61. [PMID: 33488856 PMCID: PMC7811313 DOI: 10.5114/aoms.2018.76996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 11/12/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Due to the lack of highly specific and sensitive methods for diagnosing ovarian cancer at advanced stages (according to the International Federation of Gynecology and Obstetrics (FIGO) classification stage III-IV), new noninvasive biomarkers are urgently needed. This study aims to investigate how the levels of plasma bioactive sphingolipids (ceramides, sphingosine-1-phosphate, sphingosine and sphinganine) are altered in serum, erythrocytes and platelets of patients with advanced serous ovarian cancer. MATERIAL AND METHODS A total of 135 patients with advanced serous ovarian cancer and 159 women with normal ovarian morphology were enrolled. Plasma levels of sphingosine, sphingosine-1-phosphate, sphinganine, ceramide C14:0-Cer, C16:0-Cer, C18:1-Cer, C18:0-Cer, C20:0-Cer, C22:0-Cer, C24:1-Cer and C24:0-Cer were assessed by LC/MS/MS. RESULTS Plasma concentrations of C16-Cer, C18:1-Cer and C18-Cer were significantly higher in the advanced ovarian cancer group than in the control group (1.5-fold, p = 0.021; 1.8-fold, p = 0.036 and 1.5-fold, p = 0.031, respectively). Plasma concentration of C18:1-Cer was significantly higher in erythrocytes of women with advanced serous cancer compared to the control group (p = 0.027). Plasma C16-Cer and C18:1-Cer levels and erythrocyte C18:1-Cer levels were able to distinguish patients with moderate/severe serous ovarian cancer from patients with mild ovarian cancer (AUC: 0.86, 0.898, 0.795, respectively). Plasma concentrations of C16, C18.1 and C18 significantly correlated with FIGO staging (p = 0.001, p = 0.024 and p = 0.005), and grading (p = 0.021, p = 0.021 and p = 0.033). CONCLUSIONS Plasma concentrations of C16, C18.1 and C18 correlated with the progression of ovarian cancer (FIGO staging and grading). Plasma levels of C16-Cer and C18:1-Cer and erythrocyte C18:1-Cer levels could be used to distinguish patients with advanced serous ovarian cancer.
Collapse
Affiliation(s)
- Paweł Knapp
- Department of Gynecology and Gynecologic Oncology, Medical University of Bialystok, Bialystok, Poland
| | - Lubomir Bodnar
- Department of Clinical Oncology, Military Institute of Medicine in Warsaw, Warsaw, Poland
| | | | - Joanna Reszeć
- Department of Clinical Pathomorphology, Medical University of Bialystok, Białystok, Poland
| | - Magdalena Świderska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
47
|
Hou W, Zhang Y. Circ_0025033 promotes the progression of ovarian cancer by activating the expression of LSM4 via targeting miR-184. Pathol Res Pract 2021; 217:153275. [PMID: 33285422 DOI: 10.1016/j.prp.2020.153275] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Ovarian cancer (OC) is the leading disorder to threaten women's lives. Numerous circular RNAs (circRNAs) were identified in cancers with dysregulation and involved in the pathogenesis of cancer. This study investigated the function and regulatory mechanism of circ_0025033 in OC development, aiming to provide a potential strategy for OC treatment. METHODS For expression analysis, the expression levels of circ_0025033, LSM4 mRNA and miR-184 were detected by quantitative real-time polymerase chain reaction (qRT-PCR), and the protein level of LSM4 expression was detected by western blot. For functional analysis, the capacities of colony formation, migration/invasion and glycolysis metabolism were assessed by colony formation assay, transwell assay and the levels of glucose consumption and lactate production. The interaction between miR-184 and circ_0025033 or LSM4 was predicted by the bioinformatics tool and validated by dual-luciferase reporter assay. Xenograft models were established to determine the role of circ_0025033 in vivo. RESULTS The expression of circ_0025033 and LSM4 was promoted in OC tissues and cells. Circ_0025033 knockdown or LSM4 knockdown blocked the ability of colony formation, migration/invasion and glycolysis metabolism in OC cells. In mechanism, circ_0025033 functioned as a "competing endogenous RNA (ceRNA)" to modulate LSM4 expression by targeting miR-184. LSM4 overexpression recovered the inhibitory effects on colony formation, migration/invasion and glycolysis metabolism caused by circ_0025033 knockdown. Moreover, circ_0025033 knockdown also inhibited tumor growth in vivo by regulating LSM4 and targeting miR-184. CONCLUSION Circ_0025033 promotes the progression of OC by regulating LSM4 expression via targeting miR-184, which provided a new strategy to treat OC.
Collapse
Affiliation(s)
- Wenjie Hou
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Yueming Zhang
- Department of Gynecology and Obstetrics, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215000, China.
| |
Collapse
|
48
|
Wang Y, Chiou YS, Chong QY, Zhang M, Rangappa KS, Ma L, Zhu T, Kumar AP, Huang RYJ, Pandey V, Basappa, Lobie PE. Pharmacological Inhibition of BAD Ser99 Phosphorylation Enhances the Efficacy of Cisplatin in Ovarian Cancer by Inhibition of Cancer Stem Cell-like Behavior. ACS Pharmacol Transl Sci 2020; 3:1083-1099. [PMID: 33344891 DOI: 10.1021/acsptsci.0c00064] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Indexed: 02/06/2023]
Abstract
Platinum-based chemotherapy has been the standard treatment for ovarian cancer patients for approximately four decades. However, the prognosis of patients with advanced ovarian carcinoma remains dismal, mainly attributed to both dose-limiting toxicities of cisplatin and the high rate of chemo-resistant disease recurrence. Herein, both patient-derived and experimentally generated cisplatin-sensitive and -resistant ovarian cancer cell line models were used to delineate BADSer99 phosphorylation as an actionable target in ovarian cancer. BADSer99 phosphorylation was negatively associated with cisplatin sensitivity in ovarian cancer, and the inhibition of BADSer99 phosphorylation by point mutation induced apoptosis and reduced cisplatin IC50. In addition, BAD phosphorylation was also shown to be associated with cancer stem cell-like properties. Henceforth, a novel small molecule which inhibits BAD phosphorylation specifically at Ser99 (NPB) was utilized. NPB promoted apoptosis and reduced 3D growth of bulk cancer cells and inhibited cancer stem cell-like properties in both cisplatin-sensitive and -resistant ovarian cancer cells. The combination of cisplatin with NPB exhibited synergistic effects in vitro. NPB in combination with cisplatin also achieved an improved outcome compared to either monotreatment in vivo, including suppression of the cancer stem cell population, an effect not observed with cisplatin treatment. Furthermore, NPB exhibited strong synergistic effects with the AKT inhibitor AZD5363, and significantly reduced its IC50 in cells resistant to cisplatin treatment. These findings identify BADSer99 phosphorylation as an actionable and pharmacologically relevant target to improve outcomes of cisplatin treated ovarian cancer.
Collapse
Affiliation(s)
- Yanxin Wang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119260, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Yi-Shiou Chiou
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, 518000, China
| | - Qing-Yun Chong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119260, Singapore
| | - Mengyi Zhang
- College of Pharmacy, Nankai University, Tianjin, 300071, China
| | | | - Lan Ma
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, 518000, China.,Shenzhen Bay Laboratory, Shenzhen, 518000, China
| | - Tao Zhu
- Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Alan Prem Kumar
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119260, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119260, Singapore
| | - Ruby Yun-Ju Huang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, 119260, Singapore.,Department of Obstetrics and Gynaecology, National University Hospital of Singapore, Singapore, 119074, Singapore.,School of Medicine, College of Medicine, National Taiwan University, Taipei, 10617, Taiwan
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, 518000, China
| | - Basappa
- Department of Studies in Organic Chemistry, University of Mysore, Mysore, 570006, India
| | - Peter E Lobie
- Tsinghua Berkeley Shenzhen Institute (TBSI), Shenzhen, 518000, China.,Shenzhen Bay Laboratory, Shenzhen, 518000, China
| |
Collapse
|
49
|
Guo C, Song C, Zhang J, Gao Y, Qi Y, Zhao Z, Yuan C. Revisiting chemoresistance in ovarian cancer: Mechanism, biomarkers, and precision medicine. Genes Dis 2020; 9:668-681. [PMID: 35782973 PMCID: PMC9243319 DOI: 10.1016/j.gendis.2020.11.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/29/2020] [Accepted: 11/24/2020] [Indexed: 12/27/2022] Open
Abstract
Among the gynecological cancers, ovarian cancer is the most lethal. Its therapeutic options include a combination of chemotherapy with platinum-based compounds and cytoreductive surgery. Most ovarian cancer patients exhibit an initial response to platinum-based therapy, however, platinum resistance has led to up to 80% of this responsive cohort becoming refractory. Ovarian cancer recurrence and drug resistance to current chemotherapeutic options is a global challenge. Chemo-resistance is a complex phenomenon that involves multiple genes and signal transduction pathways. Therefore, it is important to elucidate on the underlying molecular mechanisms involved in chemo-resistance. This inform decisions regarding therapeutic management and help in the identification of novel and effective drug targets. Studies have documented the individual biomarkers of platinum-resistance in ovarian cancer that are potential therapeutic targets. This review summarizes the molecular mechanisms of platinum resistance in ovarian cancer, novel drug targets, and clinical outcomes.
Collapse
Affiliation(s)
- Chong Guo
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chaoying Song
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Jiali Zhang
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yisong Gao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Yuying Qi
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Zongyao Zhao
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
| | - Chengfu Yuan
- College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei 443002, PR China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei 443002, PR China
- Corresponding author. College of Medical Science, China Three Gorges University, Yichang, Hubei 443002, PR China.
| |
Collapse
|
50
|
Arumugam M, Sonkusare S, Goripalli S, Shivappa P, Shetty P, Kumari N S. Vitamin D receptor Fok1 polymorphism and invasive ovarian carcinoma risk - A case-control study. Gene 2020; 768:145291. [PMID: 33157205 DOI: 10.1016/j.gene.2020.145291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/28/2020] [Accepted: 10/29/2020] [Indexed: 11/19/2022]
Affiliation(s)
- Meenakshi Arumugam
- KSHEMA Centre for Genetic Services, K. S. Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, India
| | - Shipra Sonkusare
- Department of Obstetrics and Gynaecology, K.S. Hegde Charitable Hospital, Deralakatte, Mangalore, Karnataka, India.
| | - Shreeja Goripalli
- Department of Obstetrics and Gynaecology, K.S. Hegde Charitable Hospital, Deralakatte, Mangalore, Karnataka, India
| | - Pooja Shivappa
- KSHEMA Centre for Genetic Services, K. S. Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, India
| | - Prashanth Shetty
- KSHEMA Centre for Genetic Services, K. S. Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, India
| | - Suchetha Kumari N
- KSHEMA Centre for Genetic Services, K. S. Hegde Medical Academy, Deralakatte, Mangalore, Karnataka, India
| |
Collapse
|