1
|
Latif R, Morshed SA, McCann C, Davies TF. Thyroid Stem Cell Speciation-a Major Role for PKC. Endocrinology 2023; 164:bqad067. [PMID: 37120783 DOI: 10.1210/endocr/bqad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/01/2023]
Abstract
Instructive signals that delineate the formation of thyroid follicles by thyrotropin (TSH) in stem cells are complex. Here, we have examined the role of protein kinase C (PKC) by using a unique Gαq/11 biased small molecule (MSq1) to develop thyroid progenitor cells. Mouse embryonic stem cells (mESCs) were differentiated into anterior endoderm cells and treated with either TSH or MSq1 in the presence or absence of PKC inhibitors. The transcriptional and translational response of key thyroid markers-sodium iodide symporter (NIS), thyroglobulin (TG), and thyrotropin receptor (TSHR) as well as potential signaling molecules-were then analyzed. The data confirmed that MSq1 is a potent Gαq/11 activator with a major increase in Gαq/11 signaling when compared to TSH. MSq1 activation resulted in an increase in thyroid-specific genes, demonstrating that enhanced PKC signaling was able to induce their expression. The specificity of the PKC signals over the protein kinase A (PKA) pathway in regulating thyroid gene expression was shown by using a specific PKC enzyme inhibitor. The data revealed that TG and NIS expression were suppressed in the presence of the PKC inhibition but, in contrast, were not influenced by PKA inhibition. This indicated that PKC activation was the dominant pathway in the inductive process for thyroid hormone production. Furthermore, by examining PKC isoforms we found that PKCξ was the predominant form in the ES cells that mediated the effects. Since PKCξ can lead to activation of transforming growth factor-β-activated kinase (pTAK1), and its downstream effector nuclear factor κB (NFκB) complex, this demonstrated the involvement of the TAK1/NFκB pathway in thyroid speciation.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters VA Medical Center, New York, NY 10468, USA
| | - Syed A Morshed
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters VA Medical Center, New York, NY 10468, USA
| | - Colin McCann
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Terry F Davies
- Thyroid Research Unit, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- James J. Peters VA Medical Center, New York, NY 10468, USA
| |
Collapse
|
2
|
Núñez Miguel R, Sanders P, Allen L, Evans M, Holly M, Johnson W, Sullivan A, Sanders J, Furmaniak J, Rees Smith B. Structure of full-length TSH receptor in complex with antibody K1-70™. J Mol Endocrinol 2023; 70:e220120. [PMID: 36069797 PMCID: PMC9782461 DOI: 10.1530/jme-22-0120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023]
Abstract
Determination of the full-length thyroid-stimulating hormone receptor (TSHR) structure by cryo-electron microscopy (cryo-EM) is described. The TSHR complexed with human monoclonal TSHR autoantibody K1-70™ (a powerful inhibitor of TSH action) was detergent solubilised, purified to homogeneity and analysed by cryo-EM. The structure (global resolution 3.3 Å) is a monomer with all three domains visible: leucine-rich domain (LRD), hinge region (HR) and transmembrane domain (TMD). The TSHR extracellular domain (ECD, composed of the LRD and HR) is positioned on top of the TMD extracellular surface. Extensive interactions between the TMD and ECD are observed in the structure, and their analysis provides an explanation of the effects of various TSHR mutations on TSHR constitutive activity and on ligand-induced activation. K1-70™ is seen to be well clear of the lipid bilayer. However, superimposition of M22™ (a human monoclonal TSHR autoantibody which is a powerful stimulator of the TSHR) on the cryo-EM structure shows that it would clash with the bilayer unless the TSHR HR rotates upwards as part of the M22™ binding process. This rotation could have an important role in TSHR stimulation by M22™ and as such provides an explanation as to why K1-70™ blocks the binding of TSH and M22™ without activating the receptor itself.
Collapse
Affiliation(s)
| | - Paul Sanders
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - Lloyd Allen
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - Michele Evans
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - Matthew Holly
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - William Johnson
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - Andrew Sullivan
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - Jane Sanders
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | | | | |
Collapse
|
3
|
Nagayama Y, Nishihara E. Thyrotropin receptor antagonists and inverse agonists, and their potential application to thyroid diseases. Endocr J 2022; 69:1285-1293. [PMID: 36171093 DOI: 10.1507/endocrj.ej22-0391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The thyrotropin receptor (TSHR) plays critical roles in thyroid growth and function and in the pathogenesis of several thyroid diseases including Graves' hyperthyroidism and ophthalmopathy, non-autoimmune hyperthyroidism and thyroid cancer. Several low-molecular weight compounds (LMWCs) and anti-TSHR monoclonal antibodies (mAbs) with receptor antagonistic and inverse agonistic activities have been reported. The former binds to the pocket formed by the receptor transmembrane bundle, and the latter to the extracellular TSH binding site. Both are effective inhibitors of TSH/thyroid stimulating antibody-stimulated cAMP and/or hyaluronic acid production in TSHR-expressing cells. Anti-insulin-like growth factor 1 inhibitors are also found to inhibit TSHR signaling. Each agent has advantages and disadvantages; for example, mAbs have a higher affinity and longer half-life but are more costly than LMWCs. At present, mAbs appear most promising, yet the development of more efficacious LMWCs is desirable. These agents are anticipated to be efficacious not only for the above-mentioned diseases but also for resistance to thyroid hormone and have utility for thyroid cancer radionuclide scintigraphy/therapy as a new theranostic.
Collapse
Affiliation(s)
- Yuji Nagayama
- Department of Molecular Medicine, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Eijun Nishihara
- Center for Excellence in Thyroid Care, Kuma Hospital, Kobe 650-0011, Japan
| |
Collapse
|
4
|
Fokina EF, Shpakov AO. Thyroid-Stimulating Hormone Receptor: the Role in the Development of Thyroid Pathology and Its Correction. J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022050143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
One of the key elements responsible for the thyroid response
to thyroid-stimulating hormone (TSH) is the TSH receptor (TSHR),
which belongs to the G protein-coupled receptor superfamily. Binding
of TSH or stimulatory autoantibodies to the TSHR extracellular domain
triggers multiple signaling pathways in target cells that are mediated
through various types of G proteins and β-arrestins. Inhibitory
autoantibodies, in contrast, suppress TSHR activity, inducing hypothyroid states.
Activating mutations lead to constitutively active TSHR forms and
can trigger cancer. Therefore, the TSHR is one of the key targets
for the regulation of thyroid function and thyroid status, as well
as correction of diseases caused by changes in TSHR activity (autoimmune
hyper- and hypothyroidism, Graves’ ophthalmopathy, thyroid cancer).
TSH preparations are extremely rarely used in medicine due to their
immunogenicity and severe side effects. Most promising is the development
of low-molecular allosteric TSHR regulators with an activity of
full and inverse agonists and neutral antagonists, which are able
to penetrate into the allosteric site located in the TSHR transmembrane
domain and specifically bind to it, thus controlling the ability
of the receptor to interact with G proteins and β-arrestins. Allosteric
regulators do not affect the binding of TSH and autoantibodies to
the receptor, which enables mild and selective regulation of thyroid function,
while avoiding critical changes in TSH and thyroid hormone levels.
The present review addresses the current state of the problem of
regulating TSHR activity, including the possibility of using ligands
of its allosteric sites.
Collapse
|
5
|
Núñez Miguel R, Sanders J, Furmaniak J, Rees Smith B. Glycosylation pattern analysis of glycoprotein hormones and their receptors. J Mol Endocrinol 2017; 58:25-41. [PMID: 27875255 DOI: 10.1530/jme-16-0169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/13/2016] [Indexed: 11/08/2022]
Abstract
We have studied glycosylation patterns in glycoprotein hormones (GPHs) and glycoprotein hormone receptor (GPHR) extracellular domains (ECD) from different species to identify areas not glycosylated that could be involved in intermolecular or intramolecular interactions. Comparative models of the structure of the TSHR ECD in complex with TSH and in complex with TSHR autoantibodies (M22, stimulating and K1-70, blocking) were obtained based on the crystal structures of the FSH-FSHR ECD, M22-TSHR leucine-rich repeat domain (LRD) and K1-70-TSHR LRD complexes. The glycosylation sites of the GPHRs and GPHs from all species studied were mapped on the model of the human TSH TSHR ECD complex. The areas on the surfaces of GPHs that are known to interact with their receptors are not glycosylated and two areas free from glycosylation, not involved in currently known interactions, have been identified. The concave faces of GPHRs leucine-rich repeats 3-7 are free from glycosylation, consistent with known interactions with the hormones. In addition, four other non-glycosylated areas have been identified, two located on the receptors' convex surfaces, one in the long loop of the hinge regions and one at the C-terminus of the extracellular domains. Experimental evidence suggests that the non-glycosylated areas identified on the hormones and receptors are likely to be involved in forming intramolecular or intermolecular interactions.
Collapse
|
6
|
Latif R, Lau Z, Cheung P, Felsenfeld DP, Davies TF. The "TSH Receptor Glo Assay" - A High-Throughput Detection System for Thyroid Stimulation. Front Endocrinol (Lausanne) 2016; 7:3. [PMID: 26858688 PMCID: PMC4729884 DOI: 10.3389/fendo.2016.00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 01/12/2016] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND To identify novel small molecules against the TSH receptor, we developed a sensitive transcription-based luciferase high-throughput screening (HTS) system named the TSHR-Glo Assay (TSHR-Glo). METHODS This assay uses double-transfected Chinese hamster ovary cells stably expressing the human TSHR and a cAMP-response element (CRE) construct fused to an improved luciferase reporter gene. RESULTS The assay was highly responsive toward TSH in a dose-dependent manner with a TSH sensitivity of 10(-10)M (10 ± 1.12 μU/ml) and thyroid-stimulating antibodies, a hallmark of Graves' disease, could also be detected. The assay was validated against the standard indicator of HTS performance - the Z-factor (Z') - producing a score of 0.895. Using the TSHR-Glo assay, we screened 48,224 compounds from a diverse chemical library in duplicate plates at a fixed dose of 17 μM. Twenty molecules with the greatest activity out of 62 molecules that were identified by this technique were subsequently screened against the parent luciferase stable cell line in order to eliminate false positive stimulators. CONCLUSION Using this approach, we were able to identify specific agonists against the TSH receptor leading to the characterization of several TSH agonist molecules. Hence, the TSHR-Glo assay was a one-step cell-based HTS assay, which was successful in the discovery of novel small molecular agonists and for the detection of stimulating antibodies to the TSH receptor.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, USA
- *Correspondence: Rauf Latif,
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pamela Cheung
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan P. Felsenfeld
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Terry F. Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, NY, USA
| |
Collapse
|
7
|
Chantreau V, Taddese B, Munier M, Gourdin L, Henrion D, Rodien P, Chabbert M. Molecular Insights into the Transmembrane Domain of the Thyrotropin Receptor. PLoS One 2015; 10:e0142250. [PMID: 26545118 PMCID: PMC4636318 DOI: 10.1371/journal.pone.0142250] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/20/2015] [Indexed: 12/12/2022] Open
Abstract
The thyrotropin receptor (TSHR) is a G protein-coupled receptor (GPCR) that is member of the leucine-rich repeat subfamily (LGR). In the absence of crystal structure, the success of rational design of ligands targeting the receptor internal cavity depends on the quality of the TSHR models built. In this subfamily, transmembrane helices (TM) 2 and 5 are characterized by the absence of proline compared to most receptors, raising the question of the structural conformation of these helices. To gain insight into the structural properties of these helices, we carried out bioinformatics and experimental studies. Evolutionary analysis of the LGR family revealed a deletion in TM5 but provided no information on TM2. Wild type residues at positions 2.58, 2.59 or 2.60 in TM2 and/or at position 5.50 in TM5 were substituted to proline. Depending on the position of the proline substitution, different effects were observed on membrane expression, glycosylation, constitutive cAMP activity and responses to thyrotropin. Only proline substitution at position 2.59 maintained complex glycosylation and high membrane expression, supporting occurrence of a bulged TM2. The TSHR transmembrane domain was modeled by homology with the orexin 2 receptor, using a protocol that forced the deletion of one residue in the TM5 bulge of the template. The stability of the model was assessed by molecular dynamics simulations. TM5 straightened during the equilibration phase and was stable for the remainder of the simulations. Our data support a structural model of the TSHR transmembrane domain with a bulged TM2 and a straight TM5 that is specific of glycoprotein hormone receptors.
Collapse
MESH Headings
- Amino Acid Sequence
- Amino Acid Substitution
- Computational Biology
- Cyclic AMP/metabolism
- Evolution, Molecular
- Glycosylation
- HEK293 Cells
- Humans
- Models, Molecular
- Molecular Dynamics Simulation
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Phylogeny
- Protein Structure, Tertiary
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/classification
- Receptors, G-Protein-Coupled/genetics
- Receptors, Thyrotropin/chemistry
- Receptors, Thyrotropin/genetics
- Receptors, Thyrotropin/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Deletion
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Vanessa Chantreau
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Bruck Taddese
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Mathilde Munier
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Louis Gourdin
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
- Reference Centre for the pathologies of hormonal receptivity, Department of Endocrinology, Centre Hospitalier Universitaire of Angers, Angers, France
| | - Daniel Henrion
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| | - Patrice Rodien
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
- Reference Centre for the pathologies of hormonal receptivity, Department of Endocrinology, Centre Hospitalier Universitaire of Angers, Angers, France
| | - Marie Chabbert
- UMR CNRS 6214 –INSERM 1083, Laboratory of Integrated Neurovascular and Mitochondrial Biology, University of Angers, Angers, France
| |
Collapse
|
8
|
Abstract
The availability of human monoclonal antibodies (MAbs) to the TSHR has enabled major advances in our understanding of how TSHR autoantibodies interact with the receptor. These advances include determination of the crystal structures of the TSHR LRD in complex with a stimulating autoantibody (M22) and with a blocking type autoantibody (K1-70). The high affinity of MAbs for the TSHR makes them particularly suitable for use as ligands in assays for patient serum TSHR autoantibodies. Also, M22 and K1-70 are effective at low concentrations in vivo as TSHR agonists and antagonists respectively. K1-70 has important potential in the treatment of the hyperthyroidism of Graves' disease and Graves' ophthalmopathy. Small molecule TSHR antagonists described to date do not appear to have the potency and/or specificity shown by K1-70. New models of the TSHR ECD in complex with various ligands have been built. These models suggest that initial binding of TSH to the TSHR causes a conformational change in the hormone. This opens a positively charged pocket in receptor-bound TSH which attracts the negatively charged sulphated tyrosine 385 on the hinge region of the receptor. The ensuing movement of the receptor's hinge region may then cause activation. Similar activation mechanisms seem to take place in the case of FSH and the FSHR and LH and the LHR. However, stimulating TSHR autoantibodies do not appear to activate the TSHR in the same way as TSH.
Collapse
Affiliation(s)
- J Furmaniak
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - J Sanders
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - R Núñez Miguel
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| | - B Rees Smith
- FIRS Laboratories, RSR Ltd, Parc Ty Glas, Llanishen, Cardiff, UK
| |
Collapse
|
9
|
Davies TF, Latif R. Targeting the thyroid-stimulating hormone receptor with small molecule ligands and antibodies. Expert Opin Ther Targets 2015; 19:835-47. [PMID: 25768836 DOI: 10.1517/14728222.2015.1018181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The thyroid-stimulating hormone receptor (TSHR) is the essential molecule for thyroid growth and thyroid hormone production. Since it is also a key autoantigen in Graves' disease and is involved in thyroid cancer pathophysiology, the targeting of the TSHR offers a logical model for disease control. AREAS COVERED We review the structure and function of the TSHR and the progress in both small molecule ligands and TSHR antibodies for their therapeutic potential. EXPERT OPINION Stabilization of a preferential conformation for the TSHR by allosteric ligands and TSHR antibodies with selective modulation of the signaling pathways is now possible. These tools may be the next generation of therapeutics for controlling the pathophysiological consequences mediated by the effects of the TSHR in the thyroid and other extrathyroidal tissues.
Collapse
Affiliation(s)
- Terry F Davies
- Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, Thyroid Research Unit , 1 Gustave L Levy Place, New York, NY 10029 , USA +1 212 241 7975 ; +1 212 428 6748 ;
| | | |
Collapse
|
10
|
Latif R, Ali MR, Ma R, David M, Morshed SA, Ohlmeyer M, Felsenfeld DP, Lau Z, Mezei M, Davies TF. New small molecule agonists to the thyrotropin receptor. Thyroid 2015; 25:51-62. [PMID: 25333622 PMCID: PMC4291085 DOI: 10.1089/thy.2014.0119] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Novel small molecular ligands (SMLs) to the thyrotropin receptor (TSHR) have potential as improved molecular probes and as therapeutic agents for the treatment of thyroid dysfunction and thyroid cancer. METHODS To identify novel SMLs to the TSHR, we developed a transcription-based luciferase-cAMP high-throughput screening system and we screened 48,224 compounds from a 100K library in duplicate. RESULTS We obtained 62 hits using the cut-off criteria of the mean±three standard deviations above the baseline. Twenty molecules with the greatest activity were rescreened against the parent CHO-luciferase cell for nonspecific activation, and we selected two molecules (MS437 and MS438) with the highest potency for further study. These lead molecules demonstrated no detectible cross-reactivity with homologous receptors when tested against luteinizing hormone (LH)/human chorionic gonadotropin receptor and follicle stimulating hormone receptor-expressing cells. Molecule MS437 had a TSHR-stimulating potency with an EC50 of 13×10(-8) M, and molecule MS438 had an EC50 of 5.3×10(-8) M. The ability of these small molecule agonists to bind to the transmembrane domain of the receptor and initiate signal transduction was suggested by their activation of a chimeric receptor consisting of an LHR ectodomain and a TSHR transmembrane. Molecular modeling demonstrated that these molecules bound to residues S505 and E506 for MS438 and T501 for MS437 in the intrahelical region of transmembrane helix 3. We also examined the G protein activating ability of these molecules using CHO cells co-expressing TSHRs transfected with luciferase reporter vectors in order to measure Gsα, Gβγ, Gαq, and Gα12 activation quantitatively. The MS437 and MS438 molecules showed potent activation of Gsα, Gαq, and Gα12 similar to TSH, but neither the small molecule agonists nor TSH showed activation of the Gβγ pathway. The small molecules MS437 and MS438 also showed upregulation of thyroglobulin (Tg), sodium iodine symporter (NIS), and TSHR gene expression. CONCLUSIONS Pharmacokinetic analysis of MS437 and MS438 indicated their pharmacotherapeutic potential, and their intraperitoneal administration to normal female mice resulted in significantly increased serum thyroxine levels, which could be maintained by repeated treatments. These molecules can therefore serve as lead molecules for further development of powerful TSH agonists.
Collapse
Affiliation(s)
- Rauf Latif
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - M. Rejwan Ali
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Risheng Ma
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Martine David
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Syed A. Morshed
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| | - Michael Ohlmeyer
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Dan P. Felsenfeld
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zerlina Lau
- Integrated Screening Core, Experimental Therapeutics Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mihaly Mezei
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Terry F. Davies
- Thyroid Research Unit, Department of Medicine, Icahn School of Medicine at Mount Sinai and the James J. Peters VA Medical Center, New York, New York
| |
Collapse
|