1
|
Tudorancea I, Șerban IL, Șerban DN, Costache-Enache II, Cătălin C, Naum AG, Iliescu R. Sympathetic nervous system inhibition enhances cardiac metabolism and improves hemodynamics and glucose-insulin dynamics in obese and lean rat models. Sci Rep 2025; 15:503. [PMID: 39747975 PMCID: PMC11697016 DOI: 10.1038/s41598-024-84218-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
This study aimed to investigate the effects of chronic sympathoinhibition on glucose uptake by the myocardium and by the skeletal muscle in an animal model of obesity associated with leptin signaling deficiency. 6 obese Zucker rats (OZR) and 6 control Lean Zucker rats (LZR) were studied during basal conditions, chronic clonidine administration (30 days, 300 µg/kg), and washout recovery period. Glucose uptake in the myocardium and in the skeletal muscle was measured using positron emission tomography (PET) and 2-[18F] fluoro-2-deoxy-D-glucose ([18F]FDG). The standardized uptake value (SUV) corrected for blood glucose was used for the semi-quantitative analysis. Body weight, food and water intake, blood glucose concentration, blood pressure variability as an index of sympathetic activity and hemodynamic parameters such as mean arterial blood pressure (MAP), systolic blood pressure (SBP), diastolic blood pressure (DBP) and heart rate (HR) were analyzed. Myocardial glucose uptake was significantly lower during basal conditions in OZR versus LZR. In both OZR and LZR, chronic clonidine significantly reduced myocardial glucose uptake and hemodynamic variables (such as MAP, SBP, DBP, HR), and sympathetic activity (SA). [18F]FDG skeletal muscle uptake did not significantly differ in OZR versus LZR. Our findings indicate that cardiac glucose metabolism is reduced in obesity presumably in relation with the level of sympathetic activation.
Collapse
Affiliation(s)
- Ionuț Tudorancea
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University St., Iași, Romania
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 1 Independenței Blvd, Iași, Romania
| | - Ionela Lăcrămioara Șerban
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University St., Iași, Romania
| | - Dragomir N Șerban
- Department of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University St., Iași, Romania
| | - Irina-Iuliana Costache-Enache
- Cardiology Clinic, "St. Spiridon" County Clinical Emergency Hospital, 1 Independenței Blvd, Iași, Romania
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University St., Iași, Romania
| | - Caratașu Cătălin
- Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 16 University St., Iași, Romania
| | - Alexandru Grațian Naum
- Department of Biophysics, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University St., Iași, Romania.
| | - Radu Iliescu
- Department of Pharmacology, "Grigore T. Popa" University of Medicine and Pharmacy, 16 University St., Iași, Romania
| |
Collapse
|
2
|
Xia M, Wang T, Wang Y, Hu T, Chen D, Wang B. A neural perspective on the treatment of hypertension: the neurological network excitation and inhibition (E/I) imbalance in hypertension. Front Cardiovasc Med 2024; 11:1436059. [PMID: 39323755 PMCID: PMC11422145 DOI: 10.3389/fcvm.2024.1436059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024] Open
Abstract
Despite the increasing number of anti-hypertensive drugs have been developed and used in the clinical setting, persistent deficiencies persist, including issues such as lifelong dosage, combination therapy. Notwithstanding receiving the treatment under enduring these deficiencies, approximately 4 in 5 patients still fail to achieve reliable blood pressure (BP) control. The application of neuromodulation in the context of hypertension presents a pioneering strategy for addressing this condition, con-currently implying a potential central nervous mechanism underlying hypertension onset. We hypothesize that neurological networks, an essential component of maintaining appropriate neurological function, are involved in hypertension. Drawing on both peer-reviewed research and our laboratory investigations, we endeavor to investigate the underlying neural mechanisms involved in hypertension by identifying a close relationship between its onset of hypertension and an excitation and inhibition (E/I) imbalance. In addition to the involvement of excitatory glutamatergic and GABAergic inhibitory system, the pathogenesis of hypertension is also associated with Voltage-gated sodium channels (VGSCs, Nav)-mediated E/I balance. The overloading of glutamate or enhancement of glutamate receptors may be attributed to the E/I imbalance, ultimately triggering hypertension. GABA loss and GABA receptor dysfunction have also proven to be involved. Furthermore, we have identified that abnormalities in sodium channel expression and function alter neural excitability, thereby disturbing E/I balance and potentially serving as a mechanism underlying hypertension. These insights are expected to furnish potential strategies for the advancement of innovative anti-hypertensive therapies and a meaningful reference for the exploration of central nervous system (CNS) targets of anti-hypertensives.
Collapse
Affiliation(s)
- Min Xia
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Tianyu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Yizhu Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- College of Pharmacy, Dalian Medical University, Dalian, China
| | - Tingting Hu
- Department of Anesthesiology, General Hospital of The Yangtze River Shipping, Wuhan Brain Hospital, Wuhan, China
| | - Defang Chen
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
- Emergency Intensive Care Unit, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Bin Wang
- Liaoning Provincial Key Laboratory of Cerebral Diseases, Department of Physiology, College of Basic Medical Sciences, National-Local Joint Engineering Research Center for Drug Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
3
|
Masliukov PM. Changes of Signaling Pathways in Hypothalamic Neurons with Aging. Curr Issues Mol Biol 2023; 45:8289-8308. [PMID: 37886966 PMCID: PMC10605528 DOI: 10.3390/cimb45100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
The hypothalamus is an important regulator of autonomic and endocrine functions also involved in aging regulation. The aging process in the hypothalamus is accompanied by disturbed intracellular signaling including insulin/insulin-like growth factor-1 (IGF-1)/growth hormone (GH), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/the mammalian target of rapamycin (mTOR), mitogen activated protein kinase (MAPK), janus kinase (JAK)/signal transducer and activator of transcription (STAT), AMP-activated protein kinase (AMPK), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ĸB), and nitric oxide (NO). In the current review, I have summarized the current understanding of the changes in the above-mentioned pathways in aging with a focus on hypothalamic alterations.
Collapse
Affiliation(s)
- Petr M Masliukov
- Department Normal Physiology, Yaroslavl State Medical University, ul. Revoliucionnaya 5, 150000 Yaroslavl, Russia
| |
Collapse
|
4
|
Fiebel PR, Ramachandra SS, Holton KF. The low glutamate diet reduces blood pressure in veterans with Gulf War Illness: A CONSORT randomized clinical trial. Medicine (Baltimore) 2023; 102:e32726. [PMID: 36705367 PMCID: PMC9875976 DOI: 10.1097/md.0000000000032726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Gulf War Illness is a multi-symptom condition affecting veterans of the 1990 to 1991 Gulf War, which often presents with comorbid hypertension. The purpose of this study was to analyze the effects of the low glutamate diet, as well as an acute challenge of monosodium glutamate (MSG)/placebo, on resting heart rate, blood oxygenation level, and blood pressure (BP) in this population. METHODS These data were measured at 4 time points: baseline, after 1 month on the low glutamate diet, and during each challenge week, where subjects were randomized into a double-blind, placebo-controlled, crossover challenge with MSG/placebo over 3 days each week. Pre-post diet changes were analyzed using paired t tests, change in the percentage of veterans meeting the criteria for hypertension was compared using chi-square or Fisher exact tests, and crossover challenge results were analyzed using general linear modeling in SAS® 9.4. RESULTS There was a significant reduction in systolic BP (sitting and recumbent; both P < .001) and diastolic BP (sitting; P = .02) after 1 month on the diet. The percentage meeting the criteria for hypertension was also significantly reduced (P < .05). Challenge with MSG/placebo did not demonstrate an acute effect of glutamate on blood pressure. CONCLUSION Overall, these findings suggest that the low glutamate diet may be an effective treatment for lowering blood pressure in veterans with Gulf War Illness. This dietary effect does not appear to be driven by reduced consumption of free glutamate, but rather, by an increase in consumption of non-processed foods.
Collapse
Affiliation(s)
| | - Shalini S. Ramachandra
- Department of Health Studies, American University, WA DC
- Department of Mathematics and Statistics, American University, WA DC
| | - Kathleen F. Holton
- Department of Neuroscience, American University, WA DC
- Department of Health Studies, American University, WA DC
- Center for Neuroscience and Behavior, American University, WA DC
- * Correspondence: Kathleen F. Holton, Departments of Health Studies and Neuroscience, Center for Neuroscience and Behavior, American University, 4400 Massachusetts Ave NW, Washington DC 20016 (e-mail: )
| |
Collapse
|
5
|
|
6
|
Maternal high-fat-diet exposure is associated with elevated blood pressure and sustained increased leptin levels through epigenetic memory in offspring. Sci Rep 2021; 11:316. [PMID: 33431976 PMCID: PMC7801715 DOI: 10.1038/s41598-020-79604-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 12/03/2020] [Indexed: 12/14/2022] Open
Abstract
Maternal metabolism dysregulation during pregnancy predisposes offspring to major diseases, including hypertension, in later life, but the mechanism involved remains to be fully elucidated. A high-fat-diet (HFD) pregnant rat model was used to investigate whether excessive intrauterine lipid exposure was associated with elevated blood pressure in offspring and increased levels of leptin, an important biomarker and mediator of vascular dysfunction and hypertension. We found that gestational hyperlipidemia predisposed offspring to blood pressure elevation and sustained increases in leptin levels with no difference in body weight in the rat model. Increased leptin expression and leptin promoter hypomethylation were found in adipose tissues of HFD-exposed offspring. The treatment of mesenchymal stem cells with free fatty acids during adipogenic differentiation resulted in increased leptin expression, accompanied by leptin promoter hypomethylation. In addition, we also followed up 121 children to evaluate the association between maternal triglyceride levels and offspring blood pressure. Consistent with the animal study results, we observed elevated serum leptin levels and blood pressure in the offspring born to women with gestational hypertriglyceridemia. Our findings provide new insights that maternal hyperlipidemia is associated with elevated blood pressure in offspring and is associated with increases in leptin levels through epigenetic memory.
Collapse
|
7
|
Abstract
Over the past decade, hypothalamic microinflammation has been studied and appreciated as a core mechanism involved in the advancement of metabolic syndrome and aging. Accumulating evidence suggests that atypical microinflammatory insults disturb hypothalamic regulation resulting in metabolic imbalance and aging progression, establishing a common causality for these two pathophysiologic statuses. Studies have causally linked these changes to activation of key proinflammatory pathways, especially NF-κB signaling within the hypothalamus, which leads to hypothalamic neuronal dysregulation, astrogliosis, microgliosis, and loss of adult hypothalamic neural stem/progenitor cells. While hypothalamic microinflammation is a complex, multifaceted process, initial work has been done to reveal how it contributes to the pathogenesis of metabolic syndrome and aging, and studies inhibiting hypothalamic microinflammation through targeting proinflammatory signaling pathways have shown to be beneficial against these disorders and diseases. In this chapter, we provide a broad overview on hypothalamic microinflammation, focusing on its features, inducers, and shared pathogenic roles in metabolic syndrome and aging.
Collapse
Affiliation(s)
- Dongsheng Cai
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States.
| | - Sinan Khor
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, United States
| |
Collapse
|
8
|
Dessie G, Ayelign B, Akalu Y, Shibabaw T, Molla MD. Effect of Leptin on Chronic Inflammatory Disorders: Insights to Therapeutic Target to Prevent Further Cardiovascular Complication. Diabetes Metab Syndr Obes 2021; 14:3307-3322. [PMID: 34305402 PMCID: PMC8296717 DOI: 10.2147/dmso.s321311] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
In response to obesity-associated chronic inflammatory disorders, adipose tissue releases a biologically active peptide known as leptin. Leptin activates the secretion of chemical mediators, which contribute to the pathogenesis of chronic inflammatory disorders, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and psoriasis. Conversely, adiposity and obesity are the major aggravating risk factors in the pathogenesis of metabolic syndrome (MetS), including type II diabetes mellitus and obesity-associated hypertension. Elevated level of leptin in obesity-associated hypertension causes an increase in the production of aldosterone, which also results in elevation of arterial blood pressure. Hyperleptinemia is associated with the progress of the atherosclerosis through secretion of pro-inflammatory cytokines, like interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), IL-17, and other cytokines to promote inflammation. The release of those cytokines leads to chronic inflammatory disorders and obesity-associated MetS. Thus, the aberrant leptin level in both MetS and chronic inflammatory disorders also leads to the complication of cardiovascular diseases (CVD). Therapeutic target of leptin regarding its pro-inflammatory effect and dysregulated sympathetic nervous system activity may prevent further cardiovascular complication. This review mainly assesses the mechanism of leptin on the pathogenesis and further cardiovascular risk complication of chronic inflammatory disorders.
Collapse
Affiliation(s)
- Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Gashaw Dessie Tel +251 975152796 Email
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
9
|
Kheirouri S, Alizadeh M. Maternal excessive gestational weight gain as a risk factor for autism spectrum disorder in offspring: a systematic review. BMC Pregnancy Childbirth 2020; 20:645. [PMID: 33092575 PMCID: PMC7579946 DOI: 10.1186/s12884-020-03324-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background Abnormal gestational weight gain (GWG) is a prenatal complication that may contribute to long-term behavioral and neurodevelopmental differences in offspring. This systematic review summarizes research on the association between maternal GWG and risk of autism spectrum disorder (ASD) in offspring. Methods Google and electronic databases, including PubMed, SCOPUS, Embase, Cochrane Library and Google Scholar, were searched for original human studies published in English through June 2020. Articles that examined the association between GWG and risk of ASD in offspring were included. Duplicate and irrelevant studies were removed; and data were obtained through critical analysis. Results Of 96 articles searched, eight studies were included in the final review. All studies (n = 7) investigating the association of maternal excessive GWG with risk of ASD in offspring indicated that high GWG was independently associated with an increased risk of ASD. Of five studies investigating the association of inadequate GWG with the risk of ASD, four indicated that low GWG was not associated with an increased risk of ASD. Of seven studies examining the association of maternal pre-pregnancy BMI or weight with the risk of ASD, five reported that maternal pre-pregnancy BMI or weight did not appear to be independently associated with risk of ASD. The GWG-ASD association is independent of maternal BMI and child’s intellectual disability, but offspring’s genetic susceptibility connection to the GWG-ASD association remains a topic of debate. Conclusions The findings suggest that maternal excessive GWG may be associated with increased risk of ASD in offspring. However, insufficient GWG does not appear to have such association.
Collapse
Affiliation(s)
- Sorayya Kheirouri
- Department of Nutrition, Tabriz University of Medical Sciences, Attar Nishabouri St., POBOX: 14711, Tabriz, IR, Postal code: 5166614711, Iran.
| | - Mohammad Alizadeh
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
10
|
Shi Z, Pelletier NE, Wong J, Li B, Sdrulla AD, Madden CJ, Marks DL, Brooks VL. Leptin increases sympathetic nerve activity via induction of its own receptor in the paraventricular nucleus. eLife 2020; 9:e55357. [PMID: 32538782 PMCID: PMC7316512 DOI: 10.7554/elife.55357] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
Whether leptin acts in the paraventricular nucleus (PVN) to increase sympathetic nerve activity (SNA) is unclear, since PVN leptin receptors (LepR) are sparse. We show in rats that PVN leptin slowly increases SNA to muscle and brown adipose tissue, because it induces the expression of its own receptor and synergizes with local glutamatergic neurons. PVN LepR are not expressed in astroglia and rarely in microglia; instead, glutamatergic neurons express LepR, some of which project to a key presympathetic hub, the rostral ventrolateral medulla (RVLM). In PVN slices from mice expressing GCaMP6, leptin excites glutamatergic neurons. LepR are expressed mainly in thyrotropin-releasing hormone (TRH) neurons, some of which project to the RVLM. Injections of TRH into the RVLM and dorsomedial hypothalamus increase SNA, highlighting these nuclei as likely targets. We suggest that this neuropathway becomes important in obesity, in which elevated leptin maintains the hypothalamic pituitary thyroid axis, despite leptin resistance.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and PharmacologyPortlandUnited States
| | | | - Jennifer Wong
- Department of Physiology and PharmacologyPortlandUnited States
| | - Baoxin Li
- Department of Physiology and PharmacologyPortlandUnited States
| | - Andrei D Sdrulla
- Department of Anesthesiology and Perioperative MedicinePortlandUnited States
| | | | - Daniel L Marks
- Department of Pediatrics, Pape Family Pediatric Research Institute, Brenden-Colson Center for Pancreatic Care Oregon Health & Science UniversityPortlandUnited States
| | | |
Collapse
|
11
|
Worker CJ, Li W, Feng CY, Souza LAC, Gayban AJB, Cooper SG, Afrin S, Romanick S, Ferguson BS, Feng Earley Y. The neuronal (pro)renin receptor and astrocyte inflammation in the central regulation of blood pressure and blood glucose in mice fed a high-fat diet. Am J Physiol Endocrinol Metab 2020; 318:E765-E778. [PMID: 32228320 PMCID: PMC7272727 DOI: 10.1152/ajpendo.00406.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report here that the neuronal (pro)renin receptor (PRR), a key component of the brain renin-angiotensin system (RAS), plays a critical role in the central regulation of high-fat-diet (HFD)-induced metabolic pathophysiology. The neuronal PRR is known to mediate formation of the majority of angiotensin (ANG) II, a key bioactive peptide of the RAS, in the central nervous system and to regulate blood pressure and cardiovascular function. However, little is known about neuronal PRR function in overnutrition-related metabolic physiology. Here, we show that PRR deletion in neurons reduces blood pressure, neurogenic pressor activity, and fasting blood glucose and improves glucose tolerance without affecting food intake or body weight following a 16-wk HFD. Mechanistically, we found that a HFD increases levels of the PRR ligand (pro)renin in the circulation and hypothalamus and of ANG II in the hypothalamus, indicating activation of the brain RAS. Importantly, PRR deletion in neurons reduced astrogliosis and activation of the astrocytic NF-κB p65 (RelA) in the arcuate nucleus and the ventromedial nucleus of the hypothalamus. Collectively, our findings indicate that the neuronal PRR plays essential roles in overnutrition-related metabolic pathophysiology.
Collapse
Affiliation(s)
- Caleb J Worker
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Wencheng Li
- Department of Pathology, Wake Forest University, Winston-Salem, North Carolina
| | - Cheng-Yuan Feng
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Lucas A C Souza
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Ariana Julia B Gayban
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Silvana G Cooper
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Sanzida Afrin
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| | - Samantha Romanick
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Bradley S Ferguson
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
- Department of Neurology, Loma Linda University, Loma Linda, California
| | - Yumei Feng Earley
- Department of Pharmacology and Physiology and Cell Biology, University of Nevada, Reno, School of Medicine, Reno, Nevada
- Center for Molecular and Cellular Signal Transduction in the Cardiovascular System, University of Nevada, Reno, Nevada
| |
Collapse
|
12
|
Abstract
Obesity increases sympathetic nerve activity (SNA) in men, but not women. Here, we review current evidence suggesting that sexually dimorphic sympathoexcitatory responses to leptin and insulin may contribute. More specifically, while insulin increases SNA similarly in lean males and females, this response is markedly amplified in obese males, but is abolished in obese females. In lean female rats, leptin increases a subset of sympathetic nerves only during the high estrogen proestrus reproductive phase; thus, in obese females, because reproductive cycling can become impaired, the sporadic nature of leptin-induced sympathoexcitaton could minimize its action, despite elevated leptin levels. In contrast, in males, obesity preserves or enhances the central sympathoexcitatory response to leptin, and current evidence favors leptin’s contribution to the well-established increases in SNA induced by obesity in men. Leptin and insulin increase SNA via receptor binding in the hypothalamic arcuate nucleus and a neuropathway that includes arcuate neuropeptide Y (NPY) and proopiomelanocortin (POMC) projections to the paraventricular nucleus. These metabolic hormones normally suppress sympathoinhibitory NPY neurons and activate sympathoexcitatory POMC neurons. However, obesity appears to alter the ongoing activity and responsiveness of arcuate NPY and POMC neurons in a sexually dimorphic way, such that SNA increases in males but not females. We propose hypotheses to explain these sex differences and suggest areas of future research.
Collapse
Affiliation(s)
- Zhigang Shi
- Department of Physiology and Pharmacology, L-334, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Jennifer Wong
- Department of Physiology and Pharmacology, L-334, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA
| | - Virginia L Brooks
- Department of Physiology and Pharmacology, L-334, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR, 97239, USA.
| |
Collapse
|
13
|
Abstract
Under conditions leading to aging and metabolic syndrome, the hypothalamus atypically undergoes proinflammatory signaling activation leading to a chronic and stable background inflammation, referred to as "hypothalamic microinflammation." Through the past decade of research, progress has been made to causally link this hypothalamic inflammation to the mechanism of aging as well as metabolic syndrome, promoting the "hypothalamic microinflammation" theory, which helps characterize the consensus of these epidemic health problems. In general, it is consistently appreciated that hypothalamic microinflammation emerges during the early stages of aging and metabolic syndrome and evolves to be multifaceted and advanced alongside disease progression, while inhibition of key inflammatory components in the hypothalamus has a broad range of effects in counteracting these disorders. Herein, focusing on aging and metabolic syndrome, this writing aims to provide an overview of and insights into the mediators, signaling components, cellular impacts, and physiological significance of this hypothalamic microinflammation.
Collapse
|
14
|
Yang M, Yu Z, Chen X, Guo Z, Deng S, Chen L, Wu Q, Liang F. Active Acupoints Differ from Inactive Acupoints in Modulating Key Plasmatic Metabolites of Hypertension: A Targeted Metabolomics Study. Sci Rep 2018; 8:17824. [PMID: 30546033 PMCID: PMC6292875 DOI: 10.1038/s41598-018-36199-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 11/15/2018] [Indexed: 11/09/2022] Open
Abstract
The effect of active acupoints versus inactive acupoints in treating hypertension is not well documented. Metabolic phenotypes, depicted by metabolomics analysis, reflect the influence of external exposures, nutrition, and lifestyle on the integrated system of the human body. Therefore, we utilized high-performance liquid chromatography tandem mass spectrometry to compare the targeted metabolic phenotype changes induced by two different acupoint treatments. The clinical outcomes show that active acupoint treatment significantly lowers 24-hour systolic blood pressure but not diastolic blood pressure, as compared with inactive acupoint treatment. Furthermore, distinctive changes are observed between the metabolomics data of the two groups. Multivariate analysis shows that only in the active acupoint treatment group can the follow-up plasma be clearly separated from the baseline plasma. Moreover, the follow-up plasma of these two groups can be clearly separated, indicating two different post-treatment metabolic phenotypes. Three metabolites, sucrose, cellobiose, and hypoxanthine, are shown to be the most important features of active acupoint treatment. This study demonstrates that metabolomic analysis is a potential tool that can be used to efficiently differentiate the effect of active acupoints from inactive acupoints in treating hypertension. Possible mechanisms are the alternation of hypothalamic microinflammation and the restoration of host-gut microbiota interactions induced by acupuncture.
Collapse
Affiliation(s)
- Mingxiao Yang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pokfulam, Hong Kong SAR, China
- Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, 1 Haiyuan Road, Futian District, Shenzhen, 518053, Guangdong, China
| | - Zheng Yu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China
| | - Xiaomin Chen
- Metabolomics, Scientific Technology Department, BGI, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, Guangdong, China
| | - Zhenyu Guo
- Metabolomics, Scientific Technology Department, BGI, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, Guangdong, China
| | - Shufang Deng
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China
| | - Lin Chen
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China
| | - Qiaofeng Wu
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China.
| | - Fanrong Liang
- College of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, 37 Shierqiao Road, Jinniu Street, Chengdu, 610075, Sichuan, China.
| |
Collapse
|