1
|
Dearing C, Sanford E, Olmstead N, Morano R, Wulsin L, Myers B. Sex-specific cardiac remodeling in aged rats after adolescent chronic stress: associations with endocrine and metabolic factors. Biol Sex Differ 2024; 15:65. [PMID: 39180122 PMCID: PMC11342553 DOI: 10.1186/s13293-024-00639-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/07/2024] [Indexed: 08/26/2024] Open
Abstract
BACKGROUND Cardiovascular disease is a leading cause of death worldwide. Rates of cardiovascular disease vary both across the lifespan and between sexes. While multiple factors, including adverse life experiences, impact the development and progression of cardiovascular disease, the potential interactions of biological sex and stress history on the aged heart are unknown. To this end, we examined sex- and stress-specific impacts on left ventricular hypertrophy (VH) after aging. We hypothesized that early-life chronic stress exposure impacts behavioral and physiologic responses that predict cardiac remodeling in a sex-specific manner. METHODS Histological analysis was conducted on hearts of male and female rats previously exposed to chronic variable stress during the late adolescent period (postnatal days 43-62). These animals were challenged with a forced swim test and a glucose tolerance test before aging to 15 months and again being challenged. Predictive analyses were then used to isolate factors that relate to cardiac remodeling among these groups. RESULTS Early-life chronic stress impacted cardiac remodeling in a sex-specific manner. Among rats with a history of chronic stress, females had increased concentric VH. However, there were few associations within the female groups among individual behavioral and physiologic parameters and cardiac remodeling. While males as a group did not have VH after chronic stress, they exhibited multiple individual associations with cardiac susceptibility. Passive coping in young males and active coping in aged males related to VH in a stress history-dependent manner. Moreover, baseline corticosterone positively correlated with VH in unstressed males, while chronically-stressed males had positive correlations between VH and visceral adiposity. CONCLUSIONS These results indicate that females as a group are uniquely susceptible to the effects of early-life stress on cardiac remodeling later in life. Conversely, males have more individual differences in vulnerability, where susceptibility to cardiac remodeling relates to endocrine, metabolic, and behavioral measures depending on stress history. These results ultimately support a framework for assessing cardiovascular risk based on biological sex and prior adverse experiences.
Collapse
Affiliation(s)
- Carley Dearing
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ella Sanford
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Rachel Morano
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Lawson Wulsin
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Zhang BB, Ling XY, Shen QY, Zhang YX, Li QX, Xie ST, Li HZ, Zhang QP, Yung WH, Wang JJ, Ke Y, Zhang XY, Zhu JN. Suppression of excitatory synaptic transmission in the centrolateral amygdala via presynaptic histamine H3 heteroreceptors. J Physiol 2024. [PMID: 38953534 DOI: 10.1113/jp286392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/04/2024] [Indexed: 07/04/2024] Open
Abstract
The central histaminergic system has a pivotal role in emotional regulation and psychiatric disorders, including anxiety, depression and schizophrenia. However, the effect of histamine on neuronal activity of the centrolateral amygdala (CeL), an essential node for fear and anxiety processing, remains unknown. Here, using immunostaining and whole-cell patch clamp recording combined with optogenetic manipulation of histaminergic terminals in CeL slices prepared from histidine decarboxylase (HDC)-Cre rats, we show that histamine selectively suppresses excitatory synaptic transmissions, including glutamatergic transmission from the basolateral amygdala, on both PKC-δ- and SOM-positive CeL neurons. The histamine-induced effect is mediated by H3 receptors expressed on VGLUT1-/VGLUT2-positive presynaptic terminals in CeL. Furthermore, optoactivation of histaminergic afferent terminals from the hypothalamic tuberomammillary nucleus (TMN) also significantly suppresses glutamatergic transmissions in CeL via H3 receptors. Histamine neither modulates inhibitory synaptic transmission by presynaptic H3 receptors nor directly excites CeL neurons by postsynaptic H1, H2 or H4 receptors. These results suggest that histaminergic afferent inputs and presynaptic H3 heteroreceptors may hold a critical position in balancing excitatory and inhibitory synaptic transmissions in CeL by selective modulation of glutamatergic drive, which may not only account for the pathophysiology of psychiatric disorders but also provide potential psychotherapeutic targets. KEY POINTS: Histamine selectively suppresses the excitatory, rather than inhibitory, synaptic transmissions on both PKC-δ- and SOM-positive neurons in the centrolateral amygdala (CeL). H3 receptors expressed on VGLUT1- or VGLUT2-positive afferent terminals mediate the suppression of histamine on glutamatergic synaptic transmission in CeL. Optogenetic activation of hypothalamic tuberomammillary nucleus (TMN)-CeL histaminergic projections inhibits glutamatergic transmission in CeL via H3 receptors.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xin-Yu Ling
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing-Yi Shen
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang-Xun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qian-Xiao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Shu-Tao Xie
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Hong-Zhao Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qi-Peng Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Wing-Ho Yung
- Department of Neuroscience, City University of Hong Kong, Hong Kong, SAR, China
| | - Jian-Jun Wang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ya Ke
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Xiao-Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
| | - Jing-Ning Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, and Department of Physiology, School of Life Sciences, Nanjing University, Nanjing, China
- Institute for Brain Sciences, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Dearing C, Sanford E, Olmstead N, Morano R, Wulsin L, Myers B. Sex-Specific Cardiac Remodeling in Aged Rats after Early-Life Chronic Stress: Associations with Endocrine and Metabolic Factors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587944. [PMID: 38617312 PMCID: PMC11014584 DOI: 10.1101/2024.04.03.587944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Background Cardiovascular disease is a leading cause of death worldwide. Rates of cardiovascular disease vary both across the lifespan and between sexes. While multiple factors, including adverse life experiences, impact the development and progression of cardiovascular disease, the potential interactions of biological sex and stress history on the aged heart are unknown. To this end, we examined sex- and stress-specific impacts on left ventricular hypertrophy (VH) after aging. We hypothesized that early life chronic stress exposure impacts behavioral and physiologic responses that predict cardiac remodeling in a sex-specific manner. Methods Histological analysis was conducted on hearts of male and female rats previously exposed to chronic variable stress during the late adolescent period (postnatal days 43-62). These animals were challenged with a forced swim test and a glucose tolerance test before aging to 15 months and again being challenged. Predictive analyses were then used to isolate factors that relate to cardiac remodeling among these groups. Results Early-life chronic stress impacted cardiac remodeling in a sex-specific manner. Among rats with a history of chronic stress, females had increased inward VH. However, there were few associations within the female groups among individual behavioral and physiologic parameters and cardiac remodeling. While males as a group did not have VH after chronic stress, they exhibited multiple individual associations with cardiac susceptibility. Passive coping in young males and active coping in aged males related to VH in a stress history-dependent manner. Moreover, baseline corticosterone positively correlated with VH in unstressed males, while chronically-stressed males had positive correlations between VH and visceral adiposity. Conclusions These results indicate that females as a group are uniquely susceptible to the effects of early-life stress on cardiac remodeling later in life. Conversely, males have more individual differences in vulnerability, where susceptibility to cardiac remodeling relates to endocrine, metabolic, and behavioral measures depending on stress history. These results ultimately support a framework for accessing cardiovascular risk based on biological sex and prior adverse experiences.
Collapse
Affiliation(s)
- Carley Dearing
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Ella Sanford
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Rachel Morano
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Lawson Wulsin
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
4
|
Pace SA, Lukinic E, Wallace T, McCartney C, Myers B. Cortical-brainstem circuitry attenuates physiological stress reactivity. J Physiol 2024; 602:949-966. [PMID: 38353989 PMCID: PMC10940195 DOI: 10.1113/jp285627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Exposure to stressful stimuli promotes multi-system biological responses to restore homeostasis. Catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) facilitate sympathetic activity and promote physiological adaptations, including glycaemic mobilization and corticosterone release. While it is unclear how brain regions involved in the cognitive appraisal of stress regulate RVLM neural activity, recent studies found that the rodent ventromedial prefrontal cortex (vmPFC) mediates stress appraisal and physiological stress responses. Thus, a vmPFC-RVLM connection could represent a circuit mechanism linking stress appraisal and physiological reactivity. The current study investigated a direct vmPFC-RVLM circuit utilizing genetically encoded anterograde and retrograde tract tracers. Together, these studies found that stress-activated vmPFC neurons project to catecholaminergic neurons throughout the ventrolateral medulla in male and female rats. Next, we utilized optogenetic terminal stimulation to evoke vmPFC synaptic glutamate release in the RVLM. Photostimulating the vmPFC-RVLM circuit during restraint stress suppressed glycaemic stress responses in males, without altering the female response. However, circuit stimulation decreased corticosterone responses to stress in both sexes. Circuit stimulation did not modulate affective behaviour in either sex. Further analysis indicated that circuit stimulation preferentially activated non-catecholaminergic medullary neurons in both sexes. Additionally, vmPFC terminals targeted medullary inhibitory neurons. Thus, both male and female rats have a direct vmPFC projection to the RVLM that reduces endocrine stress responses, likely by recruiting local RVLM inhibitory neurons. Ultimately, the excitatory/inhibitory balance of vmPFC synapses in the RVLM may regulate stress reactivity and stress-related health outcomes. KEY POINTS: Glutamatergic efferents from the ventromedial prefrontal cortex target catecholaminergic neurons throughout the ventrolateral medulla. Partially segregated, stress-activated ventromedial prefrontal cortex populations innervate the rostral and caudal ventrolateral medulla. Stimulating ventromedial prefrontal cortex synapses in the rostral ventrolateral medulla decreases stress-induced glucocorticoid release in males and females. Stimulating ventromedial prefrontal cortex terminals in the rostral ventrolateral medulla preferentially activates non-catecholaminergic neurons. Ventromedial prefrontal cortex terminals target medullary inhibitory neurons.
Collapse
Affiliation(s)
- Sebastian A. Pace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Ema Lukinic
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Carlie McCartney
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| |
Collapse
|
5
|
Jeanneteau F. Stress and the risk of Alzheimer dementia: Can deconstructed engrams be rebuilt? J Neuroendocrinol 2023; 35:e13235. [PMID: 36775895 DOI: 10.1111/jne.13235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
The exact neuropathological mechanism by which the dementia process unfolds is under intense scrutiny. The disease affects about 38 million people worldwide, 70% of which are clinically diagnosed with Alzheimer's disease (AD). If the destruction of synapses essential for learning, planning and decision-making is part of the problem, must the restoration of previously lost synapses be part of the solution? It is plausible that neuronal capacity to restitute information corresponds with the adaptive capacity of its connectivity reserve. A challenge will be to promote the functional connectivity that can compensate for the lost one. This will require better clarification of the remodeling of functional connectivity during the progression of AD dementia and its reversal upon experimental treatment. A major difficulty is to promote the neural pathways that are atrophied in AD dementia while suppressing others that are bolstered. Therapeutic strategies should aim at scaling functional connectivity to a just balance between the atrophic and hypertrophic systems. However, the exact factors that can help reach this objective are still unclear. Similarities between the effects of chronic stress and some neuropathological mechanisms underlying AD dementia support the idea that common components deserve prime attention as therapeutic targets.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de génomique fonctionnelle, Université de Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
6
|
Pace SA, Lukinic E, Wallace T, McCartney C, Myers B. Cortical-brainstem circuitry attenuates physiological stress reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549781. [PMID: 37502866 PMCID: PMC10370137 DOI: 10.1101/2023.07.19.549781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Exposure to stressful stimuli promotes multi-system biological responses to restore homeostasis. Catecholaminergic neurons in the rostral ventrolateral medulla (RVLM) facilitate sympathetic activity and promote physiological adaptations, including glycemic mobilization and corticosterone release. While it is unclear how brain regions involved in the cognitive appraisal of stress regulate RVLM neural activity, recent studies found that the rodent ventromedial prefrontal cortex (vmPFC) mediates stress appraisal and physiological stress responses. Thus, a vmPFC-RVLM connection could represent a circuit mechanism linking stress appraisal and physiological reactivity. The current study investigated a direct vmPFC-RVLM circuit utilizing genetically-encoded anterograde and retrograde tract tracers. Together, these studies found that stress-reactive vmPFC neurons project to catecholaminergic neurons throughout the ventrolateral medulla in male and female rats. Next, we utilized optogenetic terminal stimulation to evoke vmPFC synaptic glutamate release in the RVLM. Photostimulating the vmPFC-RVLM circuit during restraint stress suppressed glycemic stress responses in males, without altering the female response. However, circuit stimulation decreased corticosterone responses to stress in both sexes. Circuit stimulation did not modulate affective behavior in either sex. Further analysis indicated that circuit stimulation preferentially activated non-catecholaminergic medullary neurons in both sexes. Additionally, vmPFC terminals targeted medullary inhibitory neurons. Thus, both male and female rats have a direct vmPFC projection to the RVLM that reduces endocrine stress responses, likely through the recruitment of local RVLM inhibitory neurons. Ultimately, the excitatory/inhibitory balance of vmPFC synapses in the RVLM may regulate stress reactivity as well as stress-related health outcomes.
Collapse
Affiliation(s)
- Sebastian A. Pace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Ema Lukinic
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Carlie McCartney
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA 80523
| |
Collapse
|
7
|
Radley JJ, Herman JP. Preclinical Models of Chronic Stress: Adaptation or Pathology? Biol Psychiatry 2023; 94:194-202. [PMID: 36631383 PMCID: PMC10166771 DOI: 10.1016/j.biopsych.2022.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 10/15/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022]
Abstract
The experience of prolonged stress changes how individuals interact with their environment and process interoceptive cues, with the end goal of optimizing survival and well-being in the face of a now-hostile world. The chronic stress response includes numerous changes consistent with limiting further damage to the organism, including development of passive or active behavioral strategies and metabolic adjustments to alter energy mobilization. These changes are consistent with symptoms of pathology in humans, and as a result, chronic stress has been used as a translational model for diseases such as depression. While it is of heuristic value to understand symptoms of pathology, we argue that the chronic stress response represents a defense mechanism that is, at its core, adaptive in nature. Transition to pathology occurs only after the adaptive capacity of an organism is exhausted. We offer this perspective as a means of framing interpretations of chronic stress studies in animal models and how these data relate to adaptation as opposed to pathology.
Collapse
Affiliation(s)
- Jason J Radley
- Department of Psychological and Brain Sciences, Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio; Cincinnati Veterans Administration Medical Center, Cincinnati, Ohio.
| |
Collapse
|
8
|
Wallace T, Myers B. Prefrontal representation of affective stimuli: importance of stress, sex, and context. Cereb Cortex 2023; 33:8232-8246. [PMID: 37032618 PMCID: PMC10321111 DOI: 10.1093/cercor/bhad110] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 04/11/2023] Open
Abstract
Stress-related disorders such as depression and anxiety exhibit sex differences in prevalence and negatively impact both mental and physical health. Affective illness is also frequently accompanied by changes in ventromedial prefrontal cortical (vmPFC) function. However, the neurobiology that underlies sex-specific cortical processing of affective stimuli is poorly understood. Although rodent studies have investigated the prefrontal impact of chronic stress, postmortem studies have focused largely on males and yielded mixed results. Therefore, genetically defined population recordings in behaving animals of both sexes were used to test the hypothesis that chronic variable stress (CVS) impairs the neural processing of affective stimuli in the rodent infralimbic region. Here, we targeted expression of a calcium indicator, GCaMP6s, to infralimbic pyramidal cells. In males, CVS reduced infralimbic responses to social interaction and restraint stress but increased responses to novel objects and food reward. In contrast, females did not have CVS-induced changes in infralimbic activity, which was partially dependent on the ovarian status. These results indicate that both male and female vmPFC cells encode social, stress, and reward stimuli. However, chronic stress effects are sex-dependent and behavior-specific. Ultimately, these findings extend the understanding of chronic stress-induced prefrontal dysfunction and indicate that sex is a critical factor for cortical processing of affective stimuli.
Collapse
Affiliation(s)
- Tyler Wallace
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
9
|
Johnson SB, Lingg RT, Skog TD, Hinz DC, Romig-Martin SA, Viau V, Narayanan NS, Radley JJ. Activity in a prefrontal-periaqueductal gray circuit overcomes behavioral and endocrine features of the passive coping stress response. Proc Natl Acad Sci U S A 2022; 119:e2210783119. [PMID: 36306326 PMCID: PMC9636920 DOI: 10.1073/pnas.2210783119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
The question of how the brain links behavioral and biological features of defensive responses has remained elusive. The importance of this problem is underscored by the observation that behavioral passivity in stress coping is associated with elevations in glucocorticoid hormones, and each may carry risks for susceptibility to a host of stress-related diseases. Past work implicates the medial prefrontal cortex (mPFC) in the top-down regulation of stress-related behaviors; however, it is unknown whether such changes have the capacity to buffer against the longer-lasting biological consequences associated with aversive experiences. Using the shock probe defensive burying test in rats to naturalistically measure behavioral and endocrine features of coping, we observed that the active behavioral component of stress coping is associated with increases in activity along a circuit involving the caudal mPFC and midbrain dorsolateral periaqueductal gray (PAG). Optogenetic manipulations of the caudal mPFC-to-dorsolateral PAG pathway bidirectionally modulated active (escape and defensive burying) behaviors, distinct from a rostral mPFC-ventrolateral PAG circuit that instead limited passive (immobility) behavior. Strikingly, under conditions that biased rats toward a passive coping response set, including exaggerated stress hormonal output and increased immobility, excitation of the caudal mPFC-dorsolateral PAG projection significantly attenuated each of these features. These results lend insight into how the brain coordinates response features to overcome passive coping and may be of importance for understanding how activated neural systems promote stress resilience.
Collapse
Affiliation(s)
- Shane B. Johnson
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Ryan T. Lingg
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Timothy D. Skog
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
| | - Dalton C. Hinz
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Sara A. Romig-Martin
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
| | - Victor Viau
- Department of Cellular and Physiological Sciences, The University of British Columbia, Vancouver, BC V6T 1Z2, Canada
| | - Nandakumar S. Narayanan
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
- Department of Neurology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242
| | - Jason J. Radley
- Interdisciplinary Neuroscience Program, The University of Iowa, Iowa City, IA 52242
- Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA 52242
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242
| |
Collapse
|
10
|
The Central Nervous Mechanism of Stress-Promoting Cancer Progression. Int J Mol Sci 2022; 23:ijms232012653. [PMID: 36293510 PMCID: PMC9604265 DOI: 10.3390/ijms232012653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Evidence shows that stress can promote the occurrence and development of tumors. In recent years, many studies have shown that stress-related hormones or peripheral neurotransmitters can promote the proliferation, survival, and angiogenesis of tumor cells and impair the body’s immune response, causing tumor cells to escape the “surveillance” of the immune system. However, the perception of stress occurs in the central nervous system (CNS) and the role of the central nervous system in tumor progression is still unclear, as are the underlying mechanisms. This review summarizes what is known of stress-related CNS-network activation during the stress response and the influence of the CNS on tumors and discusses available adjuvant treatment methods for cancer patients with negative emotional states, such as anxiety and depression.
Collapse
|
11
|
Jeanneteau F, Coutellier L. The glucocorticoid footprint on the memory engram. CURRENT OPINION IN ENDOCRINE AND METABOLIC RESEARCH 2022; 25:100378. [PMID: 38486965 PMCID: PMC10938917 DOI: 10.1016/j.coemr.2022.100378] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
The complexity of the classical inverted U-shaped relationship between cortisol levels and responses transposable to stress reactivity has led to an incomplete understanding of the mechanisms enabling healthy and toxic effects of stress on brain and behavior. A clearer, more detailed, picture of those relationships can be obtained by integrating cortisol effects on large-scale brain networks, in particular, by focusing on neural network configurations from the perspective of inhibition and excitation. A unifying view of Semon and Hebb's theories of cellular memory links the biophysical and metabolic changes in neuronal ensembles to the strengthening of collective synapses. In that sense, the neuronal capacity to record, store, and retrieve information directly relates to the adaptive capacity of its connectivity and metabolic reserves. Here, we use task-activated cell ensembles or simply engram cells as an example to demonstrate that the adaptive behavioral responses to stress result from collective synapse strength within and across networks of interneurons and excitatory ones.
Collapse
Affiliation(s)
- Freddy Jeanneteau
- Institut de Génomique Fonctionnelle, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Laurence Coutellier
- Departments of Psychology and Neuroscience, Ohio State University, Columbus, USA
| |
Collapse
|
12
|
Schaeuble D, Myers B. Cortical–Hypothalamic Integration of Autonomic and Endocrine Stress Responses. Front Physiol 2022; 13:820398. [PMID: 35222086 PMCID: PMC8874315 DOI: 10.3389/fphys.2022.820398] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022] Open
Abstract
The prevalence and severity of cardiovascular disease (CVD) are exacerbated by chronic stress exposure. While stress-induced sympathetic activity and elevated glucocorticoid secretion impair cardiovascular health, the mechanisms by which stress-responsive brain regions integrate autonomic and endocrine stress responses remain unclear. This review covers emerging literature on how specific cortical and hypothalamic nuclei regulate cardiovascular and neuroendocrine stress responses. We will also discuss the current understanding of the cellular and circuit mechanisms mediating physiological stress responses. Altogether, the reviewed literature highlights the current state of stress integration research, as well unanswered questions about the brain basis of CVD risk.
Collapse
|
13
|
Dearing C, Morano R, Ptaskiewicz E, Mahbod P, Scheimann JR, Franco-Villanueva A, Wulsin L, Myers B. Glucoregulation and coping behavior after chronic stress in rats: Sex differences across the lifespan. Horm Behav 2021; 136:105060. [PMID: 34537487 PMCID: PMC8629951 DOI: 10.1016/j.yhbeh.2021.105060] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/27/2021] [Accepted: 08/24/2021] [Indexed: 01/01/2023]
Abstract
The purpose of the current study was to determine how biological sex shapes behavioral coping and metabolic health across the lifespan after chronic stress. We hypothesized that examining chronic stress-induced behavioral and endocrine outcomes would reveal sex differences in the biological basis of susceptibility. During late adolescence, male and female Sprague-Dawley rats experienced chronic variable stress (CVS). Following completion of CVS, all rats experienced a forced swim test (FST) followed 3 days later by a fasted glucose tolerance test (GTT). The FST was used to determine coping in response to a stressor. Endocrine metabolic function was evaluated in the GTT by measuring glucose and corticosterone, the primary rodent glucocorticoid. Rats then aged to 15 months when the FST and GTT were repeated. In young rats, chronically stressed females exhibited more passive coping and corticosterone release in the FST. Additionally, chronically stressed females had elevated corticosterone and impaired glucose clearance in the GTT. Aging affected all measurements as behavioral and endocrine outcomes were sex specific. Furthermore, regression analysis between hormonal and behavioral responses identified associations depending on sex and stress. Collectively, these data indicate increased female susceptibility to the effects of chronic stress during adolescence. Further, translational investigation of coping style and glucose homeostasis may identify biomarkers for stress-related disorders.
Collapse
Affiliation(s)
- Carley Dearing
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Rachel Morano
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Elaine Ptaskiewicz
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America
| | - Parinaz Mahbod
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Jessie R Scheimann
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Ana Franco-Villanueva
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States of America
| | - Lawson Wulsin
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, United States of America
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States of America.
| |
Collapse
|
14
|
Wallace T, Myers B. Effects of Biological Sex and Stress Exposure on Ventromedial Prefrontal Regulation of Mood-Related Behaviors. Front Behav Neurosci 2021; 15:737960. [PMID: 34512290 PMCID: PMC8426926 DOI: 10.3389/fnbeh.2021.737960] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
The ventral portion of the medial prefrontal cortex (vmPFC) regulates mood, sociability, and context-dependent behaviors. Consequently, altered vmPFC activity has been implicated in the biological basis of emotional disorders. Recent methodological advances have greatly enhanced the ability to investigate how specific prefrontal cell populations regulate mood-related behaviors, as well as the impact of long-term stress on vmPFC function. However, emerging preclinical data identify prominent sexual divergence in vmPFC behavioral regulation and stress responsivity. Notably, the rodent infralimbic cortex (IL), a vmPFC subregion critical for anti-depressant action, shows marked functional divergence between males and females. Accordingly, this review examines IL encoding and modulation of mood-related behaviors, including coping style, reward, and sociability, with a focus on sex-based outcomes. We also review how these processes are impacted by prolonged stress exposure. Collectively, the data suggest that chronic stress has sex-specific effects on IL excitatory/inhibitory balance that may account for sex differences in the prevalence and course of mood disorders.
Collapse
Affiliation(s)
- Tyler Wallace
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
15
|
Wallace T, Schaeuble D, Pace SA, Schackmuth MK, Hentges ST, Chicco AJ, Myers B. Sexually divergent cortical control of affective-autonomic integration. Psychoneuroendocrinology 2021; 129:105238. [PMID: 33930756 PMCID: PMC8217303 DOI: 10.1016/j.psyneuen.2021.105238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/23/2021] [Accepted: 04/15/2021] [Indexed: 12/22/2022]
Abstract
Depression and cardiovascular disease reduce quality of life and increase mortality risk. These conditions commonly co-occur with sex-based differences in incidence and severity. However, the biological mechanisms linking the disorders are poorly understood. In the current study, we hypothesized that the infralimbic (IL) prefrontal cortex integrates mood-related behaviors with the cardiovascular burden of chronic stress. In a rodent model, we utilized optogenetics during behavior and in vivo physiological monitoring to examine how the IL regulates affect, social motivation, neuroendocrine-autonomic stress reactivity, and the cardiac consequences of chronic stress. Our results indicate that IL glutamate neurons increase socio-motivational behaviors specifically in males. IL activation also reduced endocrine and cardiovascular stress responses in males, while increasing reactivity in females. Moreover, prior IL stimulation protected males from subsequent chronic stress-induced sympatho-vagal imbalance and cardiac hypertrophy. Our findings suggest that cortical regulation of behavior, physiological stress responses, and cardiovascular outcomes fundamentally differ between sexes.
Collapse
Affiliation(s)
- Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Derek Schaeuble
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Sebastian A Pace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Morgan K Schackmuth
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Shane T Hentges
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Adam J Chicco
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
16
|
Martelle SE, Cotella EM, Nawreen N, Chen C, Packard BA, Fitzgerald M, Herman JP. Prefrontal cortex PACAP signaling: organization and role in stress regulation. Stress 2021; 24:196-205. [PMID: 33726625 PMCID: PMC8025233 DOI: 10.1080/10253890.2021.1887849] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an excitatory neuromodulatory peptide strongly implicated in nervous stress processing. Human polymorphism of the primary PACAP receptor (PAC1) is linked to psychiatric disorders, including posttraumatic stress disorder (PTSD). Prefrontal cortex PACAP signaling is associated with processing of traumatic stress and fear learning, suggesting a potential role in PTSD-related deficits. We used RNAscope to define the cellular location of PACAP and PAC1 in the infralimbic cortex (IL). Subsequent experiments used a pharmacological approach to assess the impact of IL PACAP infusion on behavioral and physiological stress response and fear memory. Adult male Sprague-Dawley rats were bilaterally microinjected with PACAP (1 ug) or vehicle into the IL, 30 minutes prior to forced swim test (FST). Blood was sampled at 15, 30, 60, and 120 minutes for analysis of hypothalamic pituitary adrenal (HPA) axis reactivity. Five days after, animals were tested in a 3-day passive avoidance paradigm with subsequent testing of fear retention two weeks later. We observed that PACAP is highly expressed in putative pyramidal neurons (identified by VGlut1 expression), while PAC1 is enriched in interneurons (identified by GAD). Pretreatment with PACAP increased active coping style in the FST, despite higher levels of ACTH and corticosterone. The treatment was also sufficient to cause an increase in anxiety-like behavior in a dark/light crossover test and enhanced retention of passive avoidance. Our data suggest that IL PACAP plays a role in driving stress responses and in processing of fear memories, likely mediated by inhibition of cortical drive.
Collapse
Affiliation(s)
- Susan E Martelle
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Wake Forest Innovations, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Evelin M Cotella
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| | - Nawshaba Nawreen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| | - Carrie Chen
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Benjamin A Packard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Maureen Fitzgerald
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - James P Herman
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
17
|
Pace SA, Christensen C, Schackmuth MK, Wallace T, McKlveen JM, Beischel W, Morano R, Scheimann JR, Wilson SP, Herman JP, Myers B. Infralimbic cortical glutamate output is necessary for the neural and behavioral consequences of chronic stress. Neurobiol Stress 2020; 13:100274. [PMID: 33344727 PMCID: PMC7739189 DOI: 10.1016/j.ynstr.2020.100274] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/08/2020] [Accepted: 11/17/2020] [Indexed: 01/03/2023] Open
Abstract
Exposure to prolonged stress is a major risk-factor for psychiatric disorders such as generalized anxiety and major depressive disorder. Human imaging studies have identified structural and functional abnormalities in the prefrontal cortex of subjects with depression and anxiety disorders, particularly Brodmann's area 25 (BA25). Further, deep brain stimulation of BA25 reduces symptoms of treatment-resistant depression. The rat homolog of BA25 is the infralimbic cortex (IL), which is critical for cognitive appraisal, executive function, and physiological stress reactivity. Previous studies indicate that the IL undergoes stress-induced changes in excitatory/inhibitory balance culminating in reduced activity of glutamate output neurons. However, the regulatory role of IL glutamate output in mood-related behaviors after chronic variable stress (CVS) is unknown. Here, we utilized a lentiviral-packaged small-interfering RNA to reduce translation of vesicular glutamate transporter 1 (vGluT1 siRNA), thereby constraining IL glutamate output. This viral-mediated gene transfer was used in conjunction with a quantitative anatomical analysis of cells expressing the stable immediate-early gene product FosB/ΔFosB, which accumulates in response to repeated neural activation. Through assessment of FosB/ΔFosB-expressing neurons across the frontal lobe in adult male rats, we mapped regions altered by chronic stress and determined the coordinating role of the IL in frontal cortical plasticity. Specifically, CVS-exposed rats had increased density of FosB/ΔFosB-expressing cells in the IL and decreased density in the insula. The latter effect was dependent on IL glutamate output. Next, we examined the interaction of CVS and reduced IL glutamate output in behavioral assays examining coping, anxiety-like behavior, associative learning, and nociception. IL glutamate knockdown decreased immobility during the forced swim test compared to GFP controls, both in rats exposed to CVS as well as rats without previous stress exposure. Further, vGluT1 siRNA prevented CVS-induced avoidance behaviors, while also reducing risk aversion and passive coping. Ultimately, this study identifies the necessity of IL glutamatergic output for regulating frontal cortical neural activity and behavior following chronic stress. These findings also highlight how disruption of excitatory/inhibitory balance within specific frontal cortical cell populations may impact neurobehavioral adaptation and lead to stress-related disorders.
Collapse
Affiliation(s)
- Sebastian A. Pace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | | | - Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Jessica M. McKlveen
- National Institutes of Health, National Center for Complementary and Integrative Health, Bethesda, MD, USA
| | - Will Beischel
- Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Morano
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Jessie R. Scheimann
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Steven P. Wilson
- Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - James P. Herman
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
18
|
Herman JP, Nawreen N, Smail MA, Cotella EM. Brain mechanisms of HPA axis regulation: neurocircuitry and feedback in context Richard Kvetnansky lecture. Stress 2020; 23:617-632. [PMID: 33345670 PMCID: PMC8034599 DOI: 10.1080/10253890.2020.1859475] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 11/28/2020] [Indexed: 12/11/2022] Open
Abstract
Regulation of stress reactivity is a fundamental priority of all organisms. Stress responses are critical for survival, yet can also cause physical and psychological damage. This review provides a synopsis of brain mechanisms designed to control physiological responses to stress, focusing primarily on glucocorticoid secretion via the hypothalamo-pituitary-adrenocortical (HPA) axis. The literature provides strong support for multi-faceted control of HPA axis responses, involving both direct and indirect actions at paraventricular nucleus (PVN) corticotropin releasing hormone neurons driving the secretory cascade. The PVN is directly excited by afferents from brainstem and hypothalamic circuits, likely relaying information on homeostatic challenge. Amygdala subnuclei drive HPA axis responses indirectly via disinhibition, mediated by GABAergic relays onto PVN-projecting neurons in the hypothalamus and bed nucleus of the stria terminalis (BST). Inhibition of stressor-evoked HPA axis responses is mediated by an elaborate network of glucocorticoid receptor (GR)-containing circuits, providing a distributed negative feedback signal that inhibits PVN neurons. Prefrontal and hippocampal neurons play a major role in HPA axis inhibition, again mediated by hypothalamic and BST GABAergic relays to the PVN. The complexity of the regulatory process suggests that information on stressors is integrated across functional disparate brain circuits prior to accessing the PVN, with regions such as the BST in prime position to relay contextual information provided by these sources into appropriate HPA activation. Dysregulation of the HPA in disease is likely a product of inappropriate checks and balances between excitatory and inhibitory inputs ultimately impacting PVN output.
Collapse
Affiliation(s)
- James P Herman
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| | - Nawshaba Nawreen
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Marissa A Smail
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
| | - Evelin M Cotella
- Department of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH, USA
- Cincinnati Veterans Administration Medical Center, Cincinnati, OH, USA
| |
Collapse
|
19
|
Schaeuble D, Packard AEB, McKlveen JM, Morano R, Fourman S, Smith BL, Scheimann JR, Packard BA, Wilson SP, James J, Hui DY, Ulrich‐Lai YM, Herman JP, Myers B. Prefrontal Cortex Regulates Chronic Stress-Induced Cardiovascular Susceptibility. J Am Heart Assoc 2019; 8:e014451. [PMID: 31838941 PMCID: PMC6951062 DOI: 10.1161/jaha.119.014451] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Background The medial prefrontal cortex is necessary for appropriate appraisal of stressful information, as well as coordinating visceral and behavioral processes. However, prolonged stress impairs medial prefrontal cortex function and prefrontal-dependent behaviors. Additionally, chronic stress induces sympathetic predominance, contributing to health detriments associated with autonomic imbalance. Previous studies identified a subregion of rodent prefrontal cortex, infralimbic cortex (IL), as a key regulator of neuroendocrine-autonomic integration after chronic stress, suggesting that IL output may prevent chronic stress-induced autonomic imbalance. In the current study, we tested the hypothesis that the IL regulates hemodynamic, vascular, and cardiac responses to chronic stress. Methods and Results A viral-packaged small interfering RNA construct was used to knockdown vesicular glutamate transporter 1 (vGluT1) and reduce glutamate packaging and release from IL projection neurons. Male rats were injected with a vGluT1 small interfering RNA-expressing construct or GFP (green fluorescent protein) control into the IL and then remained as unstressed controls or were exposed to chronic variable stress. IL vGluT1 knockdown increased heart rate and mean arterial pressure reactivity, while chronic variable stress increased chronic mean arterial pressure only in small interfering RNA-treated rats. In another cohort, chronic variable stress and vGluT1 knockdown interacted to impair both endothelial-dependent and endothelial-independent vasoreactivity ex vivo. Furthermore, vGluT1 knockdown and chronic variable stress increased histological markers of fibrosis and hypertrophy. Conclusions Knockdown of glutamate release from IL projection neurons indicates that these cells are necessary to prevent the enhanced physiological responses to stress that promote susceptibility to cardiovascular pathophysiology. Ultimately, these findings provide evidence for a neurobiological mechanism mediating the relationship between stress and poor cardiovascular health outcomes.
Collapse
Affiliation(s)
| | | | - Jessica M. McKlveen
- National Institutes of HealthNational Center for Complimentary and Integrative HealthBethesdaMD
| | - Rachel Morano
- Pharmacology and Systems PhysiologyUniversity of CincinnatiOH
| | - Sarah Fourman
- Pathology and Laboratory MedicineUniversity of CincinnatiOH
| | | | | | | | - Steven P. Wilson
- Pharmacology, Physiology, and NeuroscienceUniversity of South CarolinaColumbiaSC
| | - Jeanne James
- Division of CardiologyDepartment of PediatricsMedical College of WisconsinMilwaukeeWI
| | - David Y. Hui
- Pathology and Laboratory MedicineUniversity of CincinnatiOH
| | | | - James P. Herman
- Pharmacology and Systems PhysiologyUniversity of CincinnatiOH
| | - Brent Myers
- Biomedical SciencesColorado State UniversityFort CollinsCO
| |
Collapse
|
20
|
McKlveen JM, Moloney RD, Scheimann JR, Myers B, Herman JP. "Braking" the Prefrontal Cortex: The Role of Glucocorticoids and Interneurons in Stress Adaptation and Pathology. Biol Psychiatry 2019; 86:669-681. [PMID: 31326084 DOI: 10.1016/j.biopsych.2019.04.032] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/11/2019] [Accepted: 04/30/2019] [Indexed: 01/06/2023]
Abstract
The medial prefrontal cortex (mPFC) receives information regarding stimuli and appropriately orchestrates neurophysiological, autonomic, and behavioral responses to stress. The cellular and neurochemical heterogeneity of the mPFC and its projections are key to fine-tuning of stress responses and adaptation. Output of the mPFC is mediated by glutamatergic pyramidal neurons whose activity is coordinated by an intricate network of interneurons. Excitatory/inhibitory (E/I) balance in the mPFC is critical for appropriate responsiveness to stress, and E/I imbalance occurs in numerous neuropsychiatric disorders that co-occur with chronic stress. Moreover, there is mounting data suggesting that chronic stress may precipitate E/I imbalance. This review will provide information regarding the cellular and anatomical makeup of the mPFC and discuss the impact of acute and chronic stress in adulthood and early life on interneuron function, with implications for E/I balance affecting functional connectivity. Specifically, the review will highlight the importance of interneuron type, connectivity, and location (both layer- and subregion-specific). The discussion of local mPFC networks will focus on stress context, including stressor duration (acute vs. chronic) and timing (early life vs. adulthood), as these factors have significant implications for the interpretation of experiments and mPFC E/I balance. Indeed, interneurons appear to play a prominent role in prefrontal adaptation, and a better understanding of the interactions between stress and interneuron function may yield insight to the transition from adaptation to pathology. Ultimately, determining the mechanisms mediating adaptive versus pathologic plasticity will promote the development of novel treatments for neuropsychiatric disorders related to prefrontal E/I imbalance.
Collapse
Affiliation(s)
- Jessica M McKlveen
- National Center for Complimentary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Rachel D Moloney
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Jessie R Scheimann
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - James P Herman
- Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
21
|
Carr ZJ, Miller L, Ruiz-Velasco V, Kunselman AR, Karamchandani K. In a Model of Neuroinflammation Designed to Mimic Delirium, Quetiapine Reduces Cortisol Secretion and Preserves Reversal Learning in the Attentional Set Shifting Task. J Neuroimmune Pharmacol 2019; 14:383-390. [PMID: 31119596 DOI: 10.1007/s11481-019-09857-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/13/2019] [Indexed: 01/21/2023]
Abstract
Quetiapine, an atypical antipsychotic medication has lacked pre-clinical validation for its purported benefits in the treatment of delirium. This laboratory investigation examined the effects of quetiapine on the attentional set shifting task (ASST), a measure of cognitive flexibility and executive functioning, in a rodent model of lipopolysaccharide (LPS) mediated neuroinflammation. 19 Sprague Dawley female rats were randomly selected to receive intraperitoneal placebo (N = 5), LPS and placebo (N = 7) or LPS and quetiapine (n = 7) and performed the ASST. We measured trials to criterion, errors, non-locomotion episodes and latency to criterion, serum cortisol and tumor necrosis factor alpha (TNF-α) levels. TNF-α levels were not different between groups at 24 h. Cortisol levels in the LPS + Quetiapine group were reduced compared to LPS + Placebo (P < 0.001) and did not differ from the placebo group (P = 0.15). Analysis between LPS + Quetiapine and LPS + Placebo treated rats demonstrated improvement in the compound discrimination reversal (CD Rev1) (P = 0.016) and the intra-dimensional reversal (ID Rev2) (P = 0.007) discriminations on trials to criterion. LPS + Quetiapine treated rats had fewer errors than LPS + Placebo treated animals in the compound discrimination (CD) (P = 0.007), CD Rev1 (P = 0.005), ID Rev2 (P < 0.001) discriminations. There was no difference in non-locomotion frequency or latency to criterion between the three groups in all discriminations (P > 0.0167). We demonstrated preserved reversal learning, no effect on attentional set shifting and normalized cortisol levels in quetiapine-treated rats in this neuroinflammatory model of delirium. This suggests that quetiapine's beneficial effects in delirium may be related to the preservation of reversal learning and potential downstream effects related to reduction in cortisol production. Graphical Abstract.
Collapse
Affiliation(s)
- Zyad J Carr
- Department of Anesthesiology & Perioperative Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA. .,Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA. .,Department of Anesthesiology & Perioperative Medicine, H187, 500 University Dr., Hershey, PA, 17078, USA.
| | - Lauren Miller
- Department of Anesthesiology & Perioperative Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Victor Ruiz-Velasco
- Department of Anesthesiology & Perioperative Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA.,Department of Neural and Behavioral Sciences, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Allen R Kunselman
- Department of Public Health Sciences, Penn State College of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| | - Kunal Karamchandani
- Department of Anesthesiology & Perioperative Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, 17033, USA
| |
Collapse
|
22
|
Wood M, Adil O, Wallace T, Fourman S, Wilson SP, Herman JP, Myers B. Infralimbic prefrontal cortex structural and functional connectivity with the limbic forebrain: a combined viral genetic and optogenetic analysis. Brain Struct Funct 2019; 224:73-97. [PMID: 30269223 PMCID: PMC6369015 DOI: 10.1007/s00429-018-1762-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 09/21/2018] [Indexed: 12/23/2022]
Abstract
The medial prefrontal cortex is critical for contextual appraisal, executive function, and goal-directed behavior. Additionally, the infralimbic (IL) subregion of the prefrontal cortex has been implicated in stress responding, mood, and fear memory. However, the specific circuit mechanisms that mediate these effects are largely unknown. To date, IL output to the limbic forebrain has been examined largely qualitatively or within a restricted number of sites. To quantify IL presynaptic input to structures throughout the forebrain, we utilized a lentiviral construct expressing synaptophysin-mCherry. Thus, allowing quantification of IL efferents that are specifically synaptic, as opposed to fibers of passage. Additionally, this approach permitted the determination of IL innervation on a sub-structural level within the multiple heterogeneous limbic nuclei. To examine the functional output of the IL, optogenetic activation of IL projections was followed by quantification of neuronal activation throughout the limbic forebrain via fos-related antigen (Fra). Quantification of synaptophysin-mCherry indicated that the IL provides robust synaptic input to a number of regions within the thalamus, hypothalamus, amygdala, and bed nucleus of the stria terminalis, with limited input to the hippocampus and nucleus accumbens. Furthermore, there was high concordance between structural connectivity and functional activation. Interestingly, some regions receiving substantial synaptic input did not exhibit significant increases in Fra-immunoreactivity. Collectively, these studies represent a step toward a comprehensive and quantitative analysis of output circuits. This large-scale efferent quantification or 'projectome' also opens the door for data-driven analyses of the downstream synaptic mechanisms that mediate the integrative aspects of cortico-limbic interactions.
Collapse
Affiliation(s)
- Miranda Wood
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Othman Adil
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Tyler Wallace
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Sarah Fourman
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Steven P Wilson
- Pharmacology, Physiology, and Neuroscience, University of South Carolina, Columbia, SC, USA
| | - James P Herman
- Psychiatry and Behavioral Neuroscience, University of Cincinnati, Cincinnati, OH, USA
| | - Brent Myers
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
23
|
Gehrand AL, Hoeynck B, Jablonski M, Leonovicz C, Cullinan WE, Raff H. Programming of the Adult HPA Axis After Neonatal Separation and Environmental Stress in Male and Female Rats. Endocrinology 2018; 159:2777-2789. [PMID: 29878093 DOI: 10.1210/en.2018-00370] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
Abstract
Maternal separation, hypoxia, and hypothermia are common stressors in the premature neonate. Using our rat model of human prematurity, we evaluated sexual dimorphisms in the long-term effects of these neonatal stressors on behavior of the hypothalamic-pituitary-adrenal (HPA) axis in adult rats. Neonatal rats were exposed daily on postnatal days 2 to 6 to maternal separation with normoxia, with hypoxia allowing spontaneous hypothermia, with hypothermia per se, and with hypoxia while maintaining isothermia with external heat. The major findings were that (a) prior maternal-neonatal separation during the first week of postnatal life attenuated the plasma ACTH and corticosterone response to restraint stress in adult male but not female rats, (b) prior neonatal hypothermia augmented the plasma ACTH and corticosterone response to restraint stress in adult male rats, but not female rats, and (c) changes in hypothalamic, pituitary, and adrenal mRNA expression did not account for most of these HPA axis effects. Most of the programming effects on adult HPA axis was attributed to prior maternal-neonatal separation alone (with normoxia) because the addition of hypoxia with spontaneous hypothermia, hypothermia per se, and hypoxia while preventing hypothermia during maternal-neonatal separation had minimal effects on the HPA axis. These results may inform strategies to prevent sexually dimorphic sequelae of neonatal stress including those due to medical interventions.
Collapse
Affiliation(s)
- Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Brian Hoeynck
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Mack Jablonski
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - Cole Leonovicz
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
| | - William E Cullinan
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|