1
|
Holliman AG, Mackay L, Biancardi VC, Tao YX, Foradori CD. Atrazine's effects on mammalian physiology. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025:1-40. [PMID: 40016167 DOI: 10.1080/10937404.2025.2468212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Atrazine is a chlorotriazine herbicide that is one of the most widely used herbicides in the USA and the world. For over 60 years atrazine has been used on major crops including corn, sorghum, and sugarcane to control broadleaf and grassy weed emergence and growth. Atrazine has exerted a major economic and environmental impact over that time, resulting in reduced production costs and increased conservation tillage practices. However, widespread use and a long half-life led to a high prevalence of atrazine in the environment. Indeed, atrazine is the most frequent herbicide contaminant detected in water sources in the USA. Due to its almost ubiquitous presence and questions regarding its safety, atrazine has been well-studied. First reported to affect reproduction with potential disruptive effects which were later linked to the immune system, cancer, stress response, neurological disorders, and cardiovascular ailments in experimental models. Atrazine impact on multiple interwoven systems broadens the significance of atrazine exposure. The endeavor to uncover the mechanisms underlying atrazine-induced dysfunction in mammals is ongoing, with new genetic and pharmacological targets being reported. This review aims to summarize the prominent effects of atrazine on mammalian physiology, primarily focusing on empirical studies conducted in lab animal models and establish correlations with epidemiological human studies when relevant. In addition, current common patterns of toxicity and potential underlying mechanisms of atrazine action will be examined.
Collapse
Affiliation(s)
- Anna G Holliman
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Laci Mackay
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Vinicia C Biancardi
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chad D Foradori
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
2
|
Zhao H, Qian H, Cui J, Ge Z, Shi J, Huo Y, Zhang Y, Ye L. Endocrine toxicity of atrazine and its underlying mechanisms. Toxicology 2024; 505:153846. [PMID: 38815618 DOI: 10.1016/j.tox.2024.153846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
Atrazine (ATR) is one of the most widely utilized herbicides globally and is prevalent in the environment due to its extensive use and long half-life. It can infiltrate the human body through drinking water, ingestion, and dermal contact, and has been recognized as an environmental endocrine disruptor. This study aims to comprehensively outline the detrimental impacts of ATR on the endocrine system. Previous research indicates that ATR is harmful to various bodily systems, including the reproductive system, nervous system, adrenal glands, and thyroi d gland. The toxic effects of ATR on the endocrine system and its underlying molecular mechanisms are summarized as follows: influencing the expression of kisspeptin in the HPG axis, consequently affecting steroid synthesis; disrupting DNA synthesis and meiosis, as well as modifying DNA methylation levels, leading to reproductive and developmental toxicity; impacting dopamine by altering Nurr1, VMAT2, and DAT expression, consequently affecting dopamine synthesis and transporter expression, and influencing other neurotransmitters, resulting in neurotoxicity; and changing adipose tissue synthesis and metabolism by reducing basal metabolism, impairing cellular oxidative phosphorylation, and inducing insulin resistance. Additionally, a compilation of natural products used to mitigate the toxic effects of ATR has been provided, encompassing melatonin, curcumin, quercetin, lycopene, flavonoids, vitamin C, vitamin E, and other natural remedies. It is important to note that existing research predominantly relies on in vitro and ex vivo experiments, with limited population-based empirical evidence available.
Collapse
Affiliation(s)
- Haotang Zhao
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Honghao Qian
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jianwei Cui
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Zhili Ge
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Jingjing Shi
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yingchao Huo
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China
| | - Yuezhu Zhang
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| | - Lin Ye
- Department of Occupational and Environmental Health, School of Public Health, Jilin University, Changchun, China.
| |
Collapse
|
3
|
Owagboriaye F, Adekunle O, Oladunjoye R, Adeleke M, Aina S, Adenekan A, Bakare P, Fafioye O, Dedeke G, Lawal O. Implications of atrazine concentrations in drinking water from Ijebu-North, Southwest Nigeria on the hypothalamic-pituitary-adrenal axis. Drug Chem Toxicol 2024; 47:338-346. [PMID: 36847489 DOI: 10.1080/01480545.2023.2180025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/29/2022] [Accepted: 10/11/2022] [Indexed: 03/01/2023]
Abstract
There is an increasing overdependence and use of atrazine herbicide for the control of pre-and post-emergence broad leaf weeds on maize farms in rural agricultural communities in Nigeria. We carried out a survey of atrazine residue in 69 hand-dug wells (HDW), 40 boreholes (BH) and 4 streams from all the 6 communities (Awa, Mamu, Ijebu-Igbo, Ago-Iwoye, Oru and Ilaporu) in Ijebu North Local Government Area, Southwest Nigeria. The effect of the highest concentration of atrazine detected in the water from each of the communities on the hypothalamic-pituitary-adrenal (HPA) axis of albino rats was investigated. Varying concentrations of atrazine were detected in the HDW, BH and stream waters sampled. The highest concentration of atrazine recorded in the water from the communities ranged from 0.01 to 0.08 mg/L. Although there were no significant differences (p > 0.05) in serum levels of corticosterone, aldosterone and ROS of rats exposed to 0.01, 0.03 and 0.04 mg/L concentrations of atrazine compared to control, a significant increase (p < 0.05) was observed at 0.08 mg/L. Catalase activity increased significantly (p < 0.05) only at 0.03 and 0.04 mg/L of atrazine exposure. Butyrylcholinesterase activity, lipid peroxidation and serum ACTH of rats exposed to all the atrazine concentrations were not significantly different (p > 0.05) compared to control. Atrazine at environmentally relevant concentrations of 0.01, 0.03 and 0.04 mg/L detected in the water may not affect the HPA axis, attention should be given to 0.08 mg/L, which increases the serum corticosterone and aldosterone of the exposed rats.
Collapse
Affiliation(s)
- Folarin Owagboriaye
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University, Ago- Iwoye, Nigeria
| | - Oladunni Adekunle
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University, Ago- Iwoye, Nigeria
| | - Rasheed Oladunjoye
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University, Ago- Iwoye, Nigeria
| | - Mistura Adeleke
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University, Ago- Iwoye, Nigeria
| | - Sulaimon Aina
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University, Ago- Iwoye, Nigeria
| | - Adedamola Adenekan
- Department of Environmental Management and Toxicology, College of Environmental Management, Federal University of Agriculture, Abeokuta, Nigeria
| | - Pamilerin Bakare
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University, Ago- Iwoye, Nigeria
| | - Oyebamiji Fafioye
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University, Ago- Iwoye, Nigeria
| | - Gabriel Dedeke
- Department of Pure and Applied Zoology, College of Bioscience, Federal University of Agriculture, Abeokuta, Nigeria
| | - Olusegun Lawal
- Department of Zoology and Environmental Biology, Faculty of Science, Olabisi Onabanjo University, Ago- Iwoye, Nigeria
| |
Collapse
|
4
|
Li XW, Yi BJ, Wang ZY, Guo K, Saleem MAU, Ma XY, Li XN, Li JL. The ROS/SIRT1/STAR axis as a target for melatonin ameliorating atrazine-induced mitochondrial dysfunction and steroid disorders in granulosa cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115780. [PMID: 38056123 DOI: 10.1016/j.ecoenv.2023.115780] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
The granulosa cells (GCs) of birds are essential for the reproduction and maintenance of populations in nature. Atrazine (ATR) is a potent endocrine disruptor that can interfere with reproductive function in females and Diaminochlorotriazine (DACT) is the primary metabolite of ATR in the organism. Melatonin (MT) is an endogenous hormone with antioxidant properties that plays a crucial role in development of animal germ cells. However, how ATR causes mitochondrial dysfunction, abnormal secretion of steroid hormones, and whether MT prevents ATR-induced female reproductive toxicity remains unclear. Thus, the purpose of this study is to investigate the protective effect of MT against ATR-induced female reproduction. In the present study, the GCs of quail were divided into 6 groups, as follows: C (Serum-free medium), MT (10 µM MT), A250 (250 µM ATR), MA250 (10 µM MT+250 µM ATR), D200 (200 µM DACT) and MD200 (10 µM MT+200 µM DACT), and were cultured for 24 h. The results revealed that ATR prevented GCs proliferation and decreased cell differentiation. ATR caused oxidative damage and mitochondrial dysfunction, leading to disruption of steroid synthesis, which posed a severe risk to GC's function. However, MT supplements reversed these changes. Mechanistically, our study exhibited that the ROS/SIRT1/STAR axis as a target for MT to ameliorate ATR-induced mitochondrial dysfunction and steroid disorders in GCs, which provides new insights into the role of MT in ATR-induced reproductive capacity and species conservation in birds.
Collapse
Affiliation(s)
- Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Bao-Jin Yi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Zhao-Yi Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Guo
- Chifeng Agriculture and Animal Husbandry Comprehensive Administrative Law Enforcement Detachment, No. 70, Quanning Street, Songshan District, Chifeng City, Inner Mongolia, 024000, PR China
| | | | - Xiang-Yu Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
5
|
Ahkin Chin Tai JK, Horzmann KA, Jenkins TL, Akoro IN, Stradtman S, Aryal UK, Freeman JL. Adverse developmental impacts in progeny of zebrafish exposed to the agricultural herbicide atrazine during embryogenesis. ENVIRONMENT INTERNATIONAL 2023; 180:108213. [PMID: 37774458 PMCID: PMC10613503 DOI: 10.1016/j.envint.2023.108213] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/01/2023]
Abstract
Atrazine (ATZ) is an herbicide commonly used on crops in the Midwestern US and other select global regions. The US Environmental Protection Agency ATZ regulatory limit is 3 parts per billion (ppb; µg/L), but this limit is often exceeded. ATZ has a long half-life, is a common contaminant of drinking water sources, and is indicated as an endocrine disrupting chemical in multiple species. The zebrafish was used to test the hypothesis that an embryonic parental ATZ exposure alters protein levels leading to modifications in morphology and behavior in developing progeny. Zebrafish embryos (F1) were collected from adults (F0) exposed to 0, 0.3, 3, or 30 ppb ATZ during embryogenesis. Differential proteomics, morphology, and behavior assays were completed with offspring aged 120 or 144 h with no additional chemical treatment. Proteomic analysis identified differential expression of proteins associated with neurological development and disease; and organ and organismal morphology, development, and injury, specifically the skeletomuscular system. Head length and ratio of head length to total length was significantly increased in the F1 of 0.3 and 30 ppb ATZ groups (p < 0.05). Based on molecular pathway alterations, further craniofacial morphology assessment found decreased distance for cartilaginous structures, decreased surface area and distance between saccular otoliths, and a more posteriorly positioned notochord (p < 0.05), indicating delayed ossification and skeletal growth. The visual motor response assay showed hyperactivity in progeny of the 30 ppb treatment group for distance moved and of the 0.3 and 30 ppb treatment groups for time spent moving (p < 0.05). Due to the changes in saccular otoliths, an acoustic startle assay was completed and showed decreased response in the 0.3 and 30 ppb treatments (p < 0.05). These findings suggest that a single embryonic parental exposure alters cellular pathways in their progeny that lead to perturbations in craniofacial development and behavior.
Collapse
Affiliation(s)
| | - Katharine A Horzmann
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Thomas L Jenkins
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Isabelle N Akoro
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Sydney Stradtman
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - Uma K Aryal
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA; Bindley Bioscience Center, Discovery Park, Purdue University, West Lafayette, IN, USA
| | | |
Collapse
|
6
|
Li G, Wang K, Zuo K, Shi G, Cai Q, Huang M. TDP-43 is a potential marker of dopaminergic neuronal damage caused by atrazine exposure. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114780. [PMID: 36933483 DOI: 10.1016/j.ecoenv.2023.114780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/01/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Atrazine (ATR) is one of the herbicides widely used worldwide. Meanwhile, it is an environmental endocrine disruptor that can cross the blood-brain barrier and cause damage to the endocrine-nervous system, especially by affecting the normal secretion of dopamine (DA). Regrettably, effector markers and cascade response mechanisms in damaged dopaminergic neurons induced by ATR exposure remain elusive. In this paper, we focus on investigating aggregation and position change of transactive response DNA-binding protein-43 (TDP-43) after ATR exposure, and illustrating whether TDP-43 can serve as a potential marker of mitochondrial dysfunction which causes damage to dopaminergic neurons. In our study, we used rat adrenal pheochromocytoma cell line 12 (PC12) to establish an in vitro model of dopaminergic neurons. After PC12 was intervened by ATR, we found reduced DA cycling and DA levels, and that TDP-43 aggregated continuously in the cytoplasm and then translocated to mitochondria. Furthermore, the studies we have performed showed that the translocation can cause mitochondrial dysfunction through activating the unfolded mitochondrial protein response (UPRmt), ultimately causing damage to dopaminergic neuron. The research we have done suggests that TDP-43 can serve as a potential effector marker of dopaminergic neuron damaged caused by ATR exposure.
Collapse
Affiliation(s)
- Guoliang Li
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Kaidong Wang
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Kai Zuo
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Ge Shi
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China
| | - Qian Cai
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| | - Min Huang
- School of Public Health and Management, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China; Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, No.1160, Shengli Street, Xingqing District, Yinchuan, Ningxia, China.
| |
Collapse
|
7
|
Silva M, Kwok RKH. Use of computational toxicology models to predict toxicological points of departure: A case study with triazine herbicides. Birth Defects Res 2023; 115:525-544. [PMID: 36584090 DOI: 10.1002/bdr2.2144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Atrazine simazine and propazine, widely used triazine herbicides on food crops and in residential areas, disrupt the neuroendocrine system raising human health concerns. USEPA developed a PBPK model based on triazine common Mode of Action (MOA)-suppression of luteinizing hormone surge in female rats-to generate human regulatory points of departure (POD: mg/kg/day). We compared triazine Human Administered Equivalent Dose (AEDHuman mg/kg/day) predictions from open access computational tools to the PBPK PODs to assess concordance. METHODS Computational tools were the following: ToxCast/Tox21 in vitro assays; Toxicogenomic databases to assess concordance with ToxCast/Tox21 targets; integrated chemical environment (ICE) models with ToxCast/Tox21 inputs to predict AEDHuman PODs and population-based age-refined high throughput toxicokinetics (HTTK-Pop) to compare to age-related PBPK PODs. RESULTS ToxCast/Tox21 assays identified critical targets in the triazine common MOA and gene databases; ICE AEDHuman predictions were mainly concordant with the USEPA PBPK PODs quantitatively. Low fold-differences between PBPK POD and ICE AEDHuman predictions indicated that the ICE models are health-protective. HTTK-Pop age-refinements were within 10-fold of the USEPA PBPK PODs. CONCLUSIONS CompTox tools were used to identify assay targets in the MOA and identify potential molecular initiating targets in the adverse outcome pathway for potential use in risk assessment.
Collapse
Affiliation(s)
- Marilyn Silva
- Retired from the California Environmental Protection Agency, Sacramento, California, USA
| | | |
Collapse
|
8
|
Carriquiriborde P, Fernandino JI, López CG, Benito EDS, Gutierrez-Villagomez JM, Cristos D, Trudeau VL, Somoza GM. Atrazine alters early sexual development of the South American silverside, Odontesthes bonariensis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 254:106366. [PMID: 36459853 DOI: 10.1016/j.aquatox.2022.106366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/18/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATZ) is a frequent contaminant in freshwater ecosystems within agricultural regions. The capacity of this herbicide to interfere with the vertebrate endocrine system is broadly recognized, but the mechanisms and responses usually differ among species. In this study, ATZ effects on hypothalamus-pituitary-gonadal (HPG) axis key genes expression and early gonadal development were evaluated in Odontesthes bonariensis larvae waterborne exposed during the gonadal differentiation period. Fish were treated to 0, 0.7, 7.0, and 70 µg ATZ/L at 25 °C from the 2nd to 6th week after hatching (wah), and a group was kept in clean water until the 12th wah. Parallelly, a group was submitted to 0.05 µg/L of ethinylestradiol (EE2) as a positive estrogenic control. From each treatment, eight larvae were sampled at 6 wah for gene expression analysis and twelve larvae at 12 wah for phenotypic sex histological determination. The expression of gnrh1, lhb, fshb, and cyp19a1b was assessed in the head, and the ones of amha, 11βhsd2, and cyp19a1a in the trunk. Fish growth was significantly higher in fish exposed to 7 and 70 µg ATZ/L in the 6 wah, but the effect vanished at the 12 wah. The expression of lhb was upregulated in both sex larvae exposed from 7 µg ATZ/L. However, a dimorphic effect was induced on cyp19a1a expression at 70 µg ATZ/L, up or downregulating mRNA transcription in males and females, respectively. Delayed ovarian development and increased number of testicular germ cells were histologically observed from 7 to 70 µg ATZ/L, respectively, and a sex inversion (genotypic male to phenotypic female) was found in one larva at 70 µg ATZ/L. The lhb expression was also upregulated by EE2, but the cyp19a1a expression was not affected, and a complete male-to-female reversal was induced. Further, EE2 upregulated gnrh1 in females and cyp19a1b in both sexes, but it did not alter any assessed gene in the trunk. In conclusion, ATZ disrupted HPG axis physiology and normal gonadal development in O. bonariensis larvae at environmentally relevant concentrations. The responses to ATZ only partially overlapped and were less active when compared to the model estrogenic compound EE2.
Collapse
Affiliation(s)
- Pedro Carriquiriborde
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | - Juan Ignacio Fernandino
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Carina G López
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina
| | - Eduardo de San Benito
- Centro de Investigaciones del Medioambiente (CIM, UNLP-CONICET), La Plata, Buenos Aires, Argentina
| | | | - Diego Cristos
- Instituto Nacional de Tecnología Agropecuaria, Centro de Investigación de Agroindustria (CIA-INTA), Castelar, Buenos Aires Argentina
| | - Vance L Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, K1S 6N5, Canada
| | - Gustavo M Somoza
- Instituto Tecnológico de Chascomús (CONICET-UNSAM), Chascomús, Buenos Aires, Argentina; Escuela de Bio y Nanotecnologías. UNSAM. Argentina.
| |
Collapse
|
9
|
Yin J, Hong X, Wang J, Li W, Shi Y, Wang D, Liu R. DNA methylation 6 mA and histone methylation involved in multi-/trans-generational reproductive effects in Caenorhabditis elegans induced by Atrazine. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114348. [PMID: 36508798 DOI: 10.1016/j.ecoenv.2022.114348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Atrazine (ATR), a widely used triazine herbicide, is an environmental endocrine disruptor that can cause health problems. However, whether there are multi/trans-generational reproductive impacts of ATR have not been studied. Therefore, in this study, Caenorhabditis elegans was used as a preferable model organism to identify the multi/trans-generational reproductive toxicity of ATR. Only parental C.elegans (P0) were exposed to different concentrations (0.0004-40 mg/L) for 48 h and the subsequent offspring (F1-F5) were grown under ATR-free conditions and ATR conditions.The results showed that ATR exposure during P0 decreased fecundity, including a reduction in fertilized eggs, oocytes, and ovulation rate, delayed gonadal development, and decreased the relative area of gonad arm and germ cell number. Furthermore, continuous ATR exposure (P0-F5) causes a significant increase in reproductive toxicity in subsequent generations, although no significant toxicity occurred in the P0 generation after exposure to environmental-related concentrations, suggesting that ATR exposure might have cumulative effects. Likewise, parental exposure to ATR caused transgenerational toxicity impairments. Interestingly, only reproductive toxicity, not development toxicity, was transmitted to several generations (F1-F4), and the F2 generation showed the most notable changes. QRT-PCR results showed that genes expression related to DNA methylation 6 mA (damt-1, nmad-1) and histone H3 methylation (mes-4, met-2, set-25, set-2, and utx-1) can also be passed on to offspring. The function of H3K4 and H3K9 methylation were explored by using loss-of-function mutants for set-2, set-25, and met-2. Transmissible reproductive toxicity was absent in met-2(n4256), set-2(ok952), and set-25(n5021) mutants, which suggests that the histone methyltransferases H3K4 and H3K9 activity are indispensable for the transgenerational effect of ATR. Finally, the downstream genes of DNA methylation and histone H3 methylation were determined. ATR upregulated the expression of ZC317.7, hsp-6, and hsp-60. Mitochondrial stress in parental generation dependent transcription 6 mA modifiers may establish these epigenetic marks in progeny.
Collapse
Affiliation(s)
- Jiechen Yin
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Xiang Hong
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Jia Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Weixi Li
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Yingchi Shi
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Dayong Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ran Liu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China.
| |
Collapse
|
10
|
Stradtman SC, Freeman JL. Mechanisms of Neurotoxicity Associated with Exposure to the Herbicide Atrazine. TOXICS 2021; 9:207. [PMID: 34564358 PMCID: PMC8473009 DOI: 10.3390/toxics9090207] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/20/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Atrazine is an herbicide commonly used on crops to prevent broadleaf weeds. Atrazine is an endocrine-disrupting chemical mainly targeting the neuroendocrine system and associated axes, especially as a reproductive toxicant through attenuation of the luteinizing hormone (LH). Current regulatory levels for chronic exposure are based on no observed adverse effect levels (NOAELs) of these LH alterations in rodent studies. Atrazine has also been studied for its effects on the central nervous system and neurotransmission. The European Union (EU) recognized the health risks of atrazine exposure as a public health concern with no way to contain contamination of drinking water. As such, the EU banned atrazine use in 2003. The United States recently reapproved atrazine's use in the fall of 2020. Research has shown that there is a wide array of adverse health effects that are seen across multiple models, exposure times, and exposure periods leading to dysfunction in many different systems in the body with most pointing to a neuroendocrine target of toxicity. There is evidence of crosstalk between systems that can be affected by atrazine exposure, causing widespread dysfunction and leading to changes in behavior even with no direct link to the hypothalamus. The hypothetical mechanism of toxicity of atrazine endocrine disruption and neurotoxicity can therefore be described as a web of pathways that are influenced through changes occurring in each and their multiple feedback loops with further research needed to refine NOAELs for neurotoxic outcomes.
Collapse
Affiliation(s)
| | - Jennifer L. Freeman
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN 47907, USA;
| |
Collapse
|
11
|
Zimmerman AD, Mackay L, Kemppainen RJ, Jones MA, Read CC, Schwartz D, Foradori CD. The Herbicide Atrazine Potentiates Angiotensin II-Induced Aldosterone Synthesis and Release From Adrenal Cells. Front Endocrinol (Lausanne) 2021; 12:697505. [PMID: 34335472 PMCID: PMC8317615 DOI: 10.3389/fendo.2021.697505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/22/2021] [Indexed: 12/06/2022] Open
Abstract
Atrazine is one of the most commonly used pre-emergence and early post-emergence herbicides in the world. We have shown previously that atrazine does not directly stimulate the pituitary or adrenal to trigger hormone release but acts centrally to activate a stress-like activation of the hypothalamic-pituitary-adrenal axis. In doing so, atrazine treatment has been shown to cause adrenal morphology changes characteristic of repeated stress. In this study, adrenals from atrazine treated and stressed animals were directly compared after 4 days of atrazine treatment or restraint stress. Both atrazine and stressed animals displayed reduced adrenocortical zona glomerulosa thickness and aldosterone synthase (CYP11B2) expression, indicative of repeated adrenal stimulation by adrenocorticotropic hormone. To determine if reduced CYP11B2 expression resulted in attenuated aldosterone synthesis, stressed and atrazine treated animals were challenged with angiotensin II (Ang II). As predicted, stressed animals produced less aldosterone compared to control animals when stimulated. However, atrazine treated animals had higher circulating aldosterone concentrations compared to both stressed and control groups. Ang II-induced aldosterone release was also potentiated in atrazine pretreated human adrenocortical carcinoma cells (H295R). Atrazine pretreated did not alter the expression of the rate limiting steroidogenic StAR protein or angiotensin II receptor 1. Atrazine treated animals also presented with higher basal blood pressure than vehicle treated control animals suggesting sustained elevations in circulating aldosterone levels. Our results demonstrate that treatment with the widely used herbicide, atrazine, directly increases stimulated production of aldosterone in adrenocortical cells independent of expression changes to rate limiting steroidogenic enzymes.
Collapse
|
12
|
Graceli JB, Dettogni RS, Merlo E, Niño O, da Costa CS, Zanol JF, Ríos Morris EA, Miranda-Alves L, Denicol AC. The impact of endocrine-disrupting chemical exposure in the mammalian hypothalamic-pituitary axis. Mol Cell Endocrinol 2020; 518:110997. [PMID: 32841708 DOI: 10.1016/j.mce.2020.110997] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
The hypothalamic-pituitary axis (HP axis) plays a critical and integrative role in the endocrine system control to maintain homeostasis. The HP axis is responsible for the hormonal events necessary to regulate the thyroid, adrenal glands, gonads, somatic growth, among other functions. Endocrine-disrupting chemicals (EDCs) are a worldwide public health concern. There is growing evidence that exposure to EDCs such as bisphenol A (BPA), some phthalates, polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and biphenyls (PBBs), dichlorodiphenyltrichloroethane (DDT), tributyltin (TBT), and atrazine (ATR), is associated with HP axis abnormalities. EDCs act on hormone receptors and their downstream signaling pathways and can interfere with hormone synthesis, metabolism, and actions. Because the HP axis function is particularly sensitive to endogenous hormonal changes, disruptions by EDCs can alter HP axis proper function, leading to important endocrine irregularities. Here, we review the evidence that EDCs could directly affect the mammalian HP axis function.
Collapse
Affiliation(s)
- Jones B Graceli
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Raquel S Dettogni
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Eduardo Merlo
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Oscar Niño
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Charles S da Costa
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Jordana F Zanol
- Department of Morphology, Health Sciences Center, Federal University of Espirito Santo. Av. Marechal Campos, 1468, CEP: 290440-090 Vitória, ES, Brazil.
| | - Eduardo A Ríos Morris
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil. Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil.
| | - Leandro Miranda-Alves
- Laboratory of Experimental Endocrinology-LEEx, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil. Graduate Program in Endocrinology, Faculty of Medicine, Federal University of Rio de Janeiro, Brazil. Graduate Program in Pharmacology and Medicinal Chemistry, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Brazil.
| | - Anna C Denicol
- Department of Animal Science, University of California, Davis, One Shields Avenue Davis, CA, 95616, USA.
| |
Collapse
|
13
|
Bano F, Mohanty B. Thyroid disrupting pesticides mancozeb and fipronil in mixture caused oxidative damage and genotoxicity in lymphoid organs of mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 79:103408. [PMID: 32413496 DOI: 10.1016/j.etap.2020.103408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 03/26/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
The interference in endocrine signaling in particular of hypothyroid-pituitary-thyroid axis during embryonic/neonatal development increases the risk of long-lasting immune dysfunctioning. Anticipating that, environmentally realistic exposure of established thyroid disrupting pesticides of dithiocarbamate group mancozeb and phenylpyrazole fipronil was given to mice as individual and as mixtures (MIX-I/MIX-II) during the critical initiation phase of the immune response from postnatal day (PND) 31 till PND 60 (maturation phase). The direct exposure effect was assessed at PND 61 and the persistent effect was assessed at PND 91. Pronounced oxidative stress/genotoxicity in lymphoid organs at even low dose mixture exposure of pesticides (MIX-I/ MIX-II) continued to suppress the immune system till adulthood; might be due to the synergistic/additive action. The oxidative stress/genotoxicity effect was prevented on T4 supplementation to inhibit immunotoxicity as T4 is an immune enhancer and antioxidants. Oxidative stress/genotoxicity is suggested as a mechanism of thyroid disruption mediated immune suppression.
Collapse
Affiliation(s)
- Farhad Bano
- Department of Zoology, University of Allahabad, Prayagraj 211001, U. P., India.
| | - Banalata Mohanty
- Department of Zoology, University of Allahabad, Prayagraj 211001, U. P., India.
| |
Collapse
|
14
|
Chávez-Pichardo ME, Reyes-Bravo DY, Mendoza-Trejo MS, Marín-López AG, Giordano M, Hernández-Chan N, Domínguez-Marchan K, Ortega-Rosales LC, Rodríguez VM. Brain alterations in GABA, glutamate and glutamine markers after chronic atrazine exposure in the male albino rat. Arch Toxicol 2020; 94:3217-3230. [PMID: 32561961 DOI: 10.1007/s00204-020-02806-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 06/15/2020] [Indexed: 11/28/2022]
Abstract
Atrazine (ATR; 2-chloro-4-ethylamino-6-isopropylamino-s-triazine) is an herbicide widely used to kill annual grasses and broadleaf weeds in crops such as corn, sorghum, and sugarcane. Studies in rodents have shown that chronic ATR exposure is associated with alterations in the nigrostriatal dopaminergic pathway such as hyperactivity, decreased striatal dopamine levels, and diminished numbers of tyrosine hydroxylase positive cells in substantia nigra pars compacta. However, the effects of ATR on neurotransmitters such as GABA and glutamate have been scarcely studied. To evaluate the impact of ATR on motor and anxiety tasks, tissue levels of GABA, glutamate, glutamine, and extracellular and potassium-evoked release of glutamate in the striatum, we daily exposed Sprague-Dawley male rats to 1 or 10 mg ATR/kg of body weight for 12-14 months. As previously reported, chronic ATR exposure causes hyperactivity in the group exposed to 10 mg ATR/kg and increased anxiety in both groups exposed to ATR. GABA, glutamate, and glutamine levels were differentially altered in brain regions related to nigrostriatal and mesolimbic systems, the amygdala, and the prefrontal cortex. The groups exposed to 10 mg ATR/kg showed increased extracellular levels and release of glutamate in the striatum. These neurochemical alterations could underlie the behavioral changes observed in rats. These results indicate that chronic exposure to the herbicide ATR disrupts the neurochemistry of several brain structures and could be a risk factor for the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- M E Chávez-Pichardo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - D Y Reyes-Bravo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - M S Mendoza-Trejo
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - A G Marín-López
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - M Giordano
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - N Hernández-Chan
- Facultad de Ingeniería, Universidad Autónoma de Querétaro, Querétaro, México
| | - K Domínguez-Marchan
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - L C Ortega-Rosales
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México
| | - V M Rodríguez
- Departamento de Neurobiología Conductual y Cognitiva, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Boulevard Juriquilla 3001, Querétaro, Querétaro, 76230, México.
| |
Collapse
|