1
|
Watkins OC, Pillai RA, Selvam P, Yong HE, Cracknell‐Hazra VK, Sharma N, Cazenave‐Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan S. Myo-inositol alters the effects of glucose, leptin and insulin on placental palmitic acid and oleic acid metabolism. J Physiol 2023; 601:4151-4169. [PMID: 37602663 PMCID: PMC10952252 DOI: 10.1113/jp285036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Well-regulated placental palmitic acid (PA) and oleic acid (OA) metabolism is vital for optimal placental function and fetal development, but dysregulation occurs with gestational diabetes (GDM). We hypothesized that such dysregulation might arise from increased maternofetal glucose, leptin or insulin concentrations present in GDM, and that dysregulated PA and OA lipid metabolism could be moderated by myo-inositol, a natural polyol and potential GDM intervention. Placental explants from 21 women were incubated with stable isotope-labelled 13 C-PA or 13 C-OA for 48 h. Explants were treated with glucose (5, 10 mm) or leptin (13 nm) or insulin (150 nm) in combination with myo-inositol (0.3, 30, 60 μm). Forty-seven 13 C-PA lipids and 37 13 C-OA lipids were measured by liquid chromatography-mass spectrometry (LCMS). Compared with controls (5 mm glucose), glucose (10 mm) increased 19 13 C-OA lipids and nine 13 C-PA lipids, but decreased 13 C-OA phosphatidylethanolamine 38:5 and 13 C-PA phosphatidylethanolamine 36:4. The effects of leptin and insulin were less prominent than glucose, with leptin increasing 13 C-OA acylcarnitine 18:1, and insulin increasing four 13 C-PA triacylglycerides. Most glucose, leptin and insulin-induced alterations in lipids were attenuated by co-incubation with myo-inositol (30 or 60 μm), with attenuation also occurring in all subgroups stratified by GDM status and fetal sex. However, glucose-induced increases in acylcarnitine were not attenuated by myo-inositol and were even exaggerated in some instances. Myo-inositol therefore appears to generally act as a moderator, suppressing the perturbation of lipid metabolic processes by glucose, leptin and insulin in placenta in vitro. Whether myo-inositol protects the fetus and pregnancy from unfavourable outcomes requires further research. KEY POINTS: Incubation of placental explants with additional glucose, or to a lesser extent insulin or leptin, alters the placental production of 13 C-lipids from 13 C-palmitic acid (PA) and 13 C-oleic acid (OA) in vitro compared with untreated controls from the same placenta. Co-incubation with myo-inositol attenuated most alterations induced by glucose, insulin or leptin in 13 C-lipids, but did not affect alterations in 13 C-acylcarnitines. Alterations induced by glucose and leptin in 13 C-PA triacylglycerides and 13 C-PA phospholipids were influenced by fetal sex and gestational diabetes status, but were all still attenuated by myo-inositol co-incubation. Insulin differently affected 13 C-PA triacylglycerides and 13 C-PA phospholipids depending on fetal sex, with alterations also attenuated by myo-inositol co-incubation.
Collapse
Affiliation(s)
- Oliver C. Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Hannah E.J. Yong
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
| | - Victoria K.B. Cracknell‐Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustUK
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Amaury Cazenave‐Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine and Precision Medicine TRPNational University of SingaporeSingapore
- Singapore Lipidomics Incubator, Life Sciences InstituteNational University of SingaporeSingapore
| | - Anne K. Bendt
- Singapore Lipidomics Incubator, Life Sciences InstituteNational University of SingaporeSingapore
| | - Keith M. Godfrey
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustUK
| | - Rohan M. Lewis
- MRC Lifecourse Epidemiology Centre and NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustUK
| | - Markus R. Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine and Precision Medicine TRPNational University of SingaporeSingapore
- Singapore Lipidomics Incubator, Life Sciences InstituteNational University of SingaporeSingapore
| | - Shiao‐Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of MedicineNational University of SingaporeSingapore
- Singapore Institute for Clinical SciencesAgency for Science, Technology and ResearchSingapore
| |
Collapse
|
2
|
Easton ZJW, Sarr O, Zhao L, Buzatto AZ, Luo X, Zhao S, Li L, Regnault TRH. An Integrated Multi-OMICS Approach Highlights Elevated Non-Esterified Fatty Acids Impact BeWo Trophoblast Metabolism and Lipid Processing. Metabolites 2023; 13:883. [PMID: 37623828 PMCID: PMC10456680 DOI: 10.3390/metabo13080883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/26/2023] Open
Abstract
Maternal obesity and gestational diabetes mellitus (GDM) are linked with impaired placental function and early onset of non-communicable cardiometabolic diseases in offspring. Previous studies have highlighted that the dietary non-esterified fatty acids (NEFAs) palmitate (PA) and oleate (OA), key dietary metabolites associated with maternal obesity and GDM, are potential modulators of placental lipid processing. Using the BeWo cell line model, the current study integrated transcriptomic (mRNA microarray), metabolomic, and lipidomic readouts to characterize the underlying impacts of exogenous PA and OA on placental villous trophoblast cell metabolism. Targeted gas chromatography and thin-layer chromatography highlighted that saturated and monounsaturated NEFAs differentially impact BeWo cell lipid profiles. Furthermore, cellular lipid profiles differed when exposed to single and multiple NEFA species. Additional multi-omic analyses suggested that PA exposure is associated with enrichment in β-oxidation pathways, while OA exposure is associated with enrichment in anti-inflammatory and antioxidant pathways. Overall, this study further demonstrated that dietary PA and OA are important regulators of placental lipid metabolism. Encouraging appropriate dietary advice and implementing dietary interventions to maintain appropriate placental function by limiting excessive exposure to saturated NEFAs remain crucial in managing at-risk obese and GDM pregnancies.
Collapse
Affiliation(s)
- Zachary J. W. Easton
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Ousseynou Sarr
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Lin Zhao
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
| | - Adriana Zardini Buzatto
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Xian Luo
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Shuang Zhao
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
| | - Liang Li
- The Metabolomics Innovation Centre (TMIC), University of Alberta, Edmonton, AB T6G 2G2, Canada; (A.Z.B.); (X.L.); (S.Z.); (L.L.)
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada
| | - Timothy R. H. Regnault
- Department of Physiology and Pharmacology, Western University, Medical Sciences Building Room 216, London, ON N6A 5C1, Canada; (Z.J.W.E.); (O.S.); (L.Z.)
- Department of Obstetrics and Gynaecology, Western University, B2-401 London Health Science Centre-Victoria Hospital, 800 Commissioners Rd E, London, ON N6H 5W9, Canada
- Children’s Health Research Institute, 800 Commissioners Rd E, London, ON N6C 2V5, Canada
- Lawson Health Research Institute, 750 Base Line Rd E, London, ON N6C 2R5, Canada
| |
Collapse
|
3
|
Cai J, Peng J, Feng J, Li R, Ren P, Zang X, Wu Z, Lu Y, Luo L, Hu Z, Wang J, Dai X, Zhao P, Wang J, Yan M, Liu J, Deng R, Wang D. Antioxidant hepatic lipid metabolism can be promoted by orally administered inorganic nanoparticles. Nat Commun 2023; 14:3643. [PMID: 37339977 DOI: 10.1038/s41467-023-39423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 06/12/2023] [Indexed: 06/22/2023] Open
Abstract
Accumulation of inorganic nanoparticles in living organisms can cause an increase in cellular reactive oxygen species (ROS) in a dose-dependent manner. Low doses of nanoparticles have shown possibilities to induce moderate ROS increases and lead to adaptive responses of biological systems, but beneficial effects of such responses on metabolic health remain elusive. Here, we report that repeated oral administrations of various inorganic nanoparticles, including TiO2, Au, and NaYF4 nanoparticles at low doses, can promote lipid degradation and alleviate steatosis in the liver of male mice. We show that low-level uptake of nanoparticles evokes an unusual antioxidant response in hepatocytes by promoting Ces2h expression and consequently enhancing ester hydrolysis. This process can be implemented to treat specific hepatic metabolic disorders, such as fatty liver in both genetic and high-fat-diet obese mice without causing observed adverse effects. Our results demonstrate that low-dose nanoparticle administration may serve as a promising treatment for metabolic regulation.
Collapse
Affiliation(s)
- Jie Cai
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou, 310029, PR China.
| | - Jie Peng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Juan Feng
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Ruocheng Li
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Peng Ren
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Xinwei Zang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zezong Wu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Yi Lu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Lin Luo
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Zhenzhen Hu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Jiaying Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Juan Wang
- Institute of Environmental Health, MOE Key Laboratory of Environmental Remediation and Ecosystem Health, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Mi Yan
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jianxin Liu
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China
| | - Renren Deng
- State Key Laboratory of Silicon and Advanced Semiconductor Materials, Institute for Composites Science Innovation, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China.
| | - Diming Wang
- College of Animal Sciences, Dairy Science Institute, MOE Key Laboratory of Molecular Animal Nutrition, Zhejiang University, Hangzhou, 310029, PR China.
| |
Collapse
|
4
|
Watkins OC, Cracknell-Hazra VKB, Pillai RA, Selvam P, Yong HEJ, Sharma N, Patmanathan SN, Cazenave-Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Myo-Inositol Moderates Glucose-Induced Effects on Human Placental 13C-Arachidonic Acid Metabolism. Nutrients 2022; 14:nu14193988. [PMID: 36235641 PMCID: PMC9572372 DOI: 10.3390/nu14193988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Maternal hyperglycemia is associated with disrupted transplacental arachidonic acid (AA) supply and eicosanoid synthesis, which contribute to adverse pregnancy outcomes. Since placental inositol is lowered with increasing glycemia, and since myo-inositol appears a promising intervention for gestational diabetes, we hypothesized that myo-inositol might rectify glucose-induced perturbations in placental AA metabolism. Term placental explants (n = 19) from women who underwent a mid-gestation oral glucose-tolerance-test were cultured with 13C-AA for 48 h in media containing glucose (5, 10 or 17 mM) and myo-inositol (0.3 or 60 µM). Newly synthesized 13C-AA-lipids were quantified by liquid-chromatography-mass-spectrometry. Increasing maternal fasting glycemia was associated with decreased proportions of 13C-AA-phosphatidyl-ethanolamines (PE, PE-P), but increased proportions of 13C-AA-triacylglycerides (TGs) relative to total placental 13C-AA lipids. This suggests altered placental AA compartmentalization towards storage and away from pools utilized for eicosanoid production and fetal AA supply. Compared to controls (5 mM glucose), 10 mM glucose treatment decreased the amount of four 13C-AA-phospholipids and eleven 13C-AA-TGs, whilst 17 mM glucose increased 13C-AA-PC-40:8 and 13C-AA-LPC. Glucose-induced alterations in all 13C-AA lipids (except PE-P-38:4) were attenuated by concurrent 60 µM myo-inositol treatment. Myo-inositol therefore rectifies some glucose-induced effects, but further studies are required to determine if maternal myo-inositol supplementation could reduce AA-associated pregnancy complications.
Collapse
Affiliation(s)
- Oliver C. Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Victoria K. B. Cracknell-Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hannah E. J. Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Sathya Narayanan Patmanathan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Anne K. Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Keith M. Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Rohan M. Lewis
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Markus R. Wenk
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- Correspondence: ; Tel.: +65-67-722-672
| |
Collapse
|
5
|
Watkins OC, Yong HEJ, Mah TKL, Cracknell-Hazra VKB, Pillai RA, Selvam P, Sharma N, Cazenave-Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Sex-Dependent Regulation of Placental Oleic Acid and Palmitic Acid Metabolism by Maternal Glycemia and Associations with Birthweight. Int J Mol Sci 2022; 23:8685. [PMID: 35955818 PMCID: PMC9369035 DOI: 10.3390/ijms23158685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/29/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
Pregnancy complications such as maternal hyperglycemia increase perinatal mortality and morbidity, but risks are higher in males than in females. We hypothesized that fetal sex-dependent differences in placental palmitic-acid (PA) and oleic-acid (OA) metabolism influence such risks. Placental explants (n = 22) were incubated with isotope-labeled fatty acids (13C-PA or 13C-OA) for 24 or 48 h and the production of forty-seven 13C-PA lipids and thirty-seven 13C-OA lipids quantified by LCMS. Linear regression was used to investigate associations between maternal glycemia, BMI and fetal sex with 13C lipids, and between 13C lipids and birthweight centile. Placental explants from females showed greater incorporation of 13C-OA and 13C-PA into almost all lipids compared to males. Fetal sex also influenced relationships with maternal glycemia, with many 13C-OA and 13C-PA acylcarnitines, 13C-PA-diacylglycerols and 13C-PA phospholipids positively associated with glycemia in females but not in males. In contrast, several 13C-OA triacylglycerols and 13C-OA phospholipids were negatively associated with glycemia in males but not in females. Birthweight centile in females was positively associated with six 13C-PA and three 13C-OA lipids (mainly acylcarnitines) and was negatively associated with eight 13C-OA lipids, while males showed few associations. Fetal sex thus influences placental lipid metabolism and could be a key modulator of the impact of maternal metabolic health on perinatal outcomes, potentially contributing toward sex-specific adaptions in which females prioritize survival.
Collapse
Affiliation(s)
- Oliver C. Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Hannah E. J. Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| | - Tania Ken Lin Mah
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| | - Victoria K. B. Cracknell-Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Anne K. Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Keith M. Godfrey
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- MRC Lifecourse Epidemiology Centre, University of Southampton, Southampton SO17 1BJ, UK
| | - Rohan M. Lewis
- NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton SO17 1BJ, UK
- Institute of Developmental Sciences, Faculty of Medicine, University of Southampton, Southampton SO17 1BJ, UK
| | - Markus R. Wenk
- Department of Biochemistry and Precision Medicine TRP, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore 119077, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore 117609, Singapore
| |
Collapse
|
6
|
Uhl O, Lewis RM, Hirschmugl B, Crozier S, Inskip H, Gazquez A, Harvey NC, Cooper C, Desoye G, Koletzko B, Wadsack C, Demmelmair H, Godfrey KM. Placental polar lipid composition is associated with placental gene expression and neonatal body composition. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:158971. [PMID: 34029703 DOI: 10.1016/j.bbalip.2021.158971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 05/05/2021] [Accepted: 05/18/2021] [Indexed: 11/24/2022]
Abstract
The polar-lipid composition of the placenta reflects its cellular heterogeneity and metabolism. This study explored relationships between placental polar-lipid composition, gene expression and neonatal body composition. Placental tissue and maternal and offspring data were collected in the Southampton Women's Survey. Lipid and RNA were extracted from placental tissue and polar lipids measured by mass spectrometry, while gene expression was assessed using the nCounter analysis platform. Principal component analysis was used to identify patterns within placental lipid composition and these were correlated with neonatal body composition and placental gene expression. In the analysis of placental lipids, the first three principal components explained 19.1%, 12.7% and 8.0% of variation in placental lipid composition, respectively. Principal component 2 was characterised by high principal component scores for acyl-alkyl-glycerophosphatidylcholines and lipid species containing DHA. Principal component 2 was associated with placental weight and neonatal lean mass; this component was associated with gene expression of APOE, PLIN2, FATP2, FABP4, LEP, G0S2, PNPLA2 and SRB1. Principal components 1 and 3 were not related to birth outcomes but they were associated with the gene expression of lipid related genes. Principal component 1 was associated with expression of LEP, APOE, FATP2 and ACAT2. Principal component 3 was associated with expression of PLIN2, PLIN3 and PNPLA2. This study demonstrates that placentas of different sizes have specific differences in polar-lipid composition and related gene expression. These differences in lipid composition were associated with birth weight and neonatal lean mass, suggesting that placental lipid composition may influence prenatal lean mass accretion.
Collapse
Affiliation(s)
- Olaf Uhl
- Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospitals, Ludwig-Maximilians-Universität Munich, Germany
| | | | - Birgit Hirschmugl
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Sarah Crozier
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK; NIHR Applied Research Collaboration Wessex, Southampton Science Park, UK.
| | - Hazel Inskip
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Antonio Gazquez
- Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospitals, Ludwig-Maximilians-Universität Munich, Germany; University of Murcia, Department of Physiology, Murcia, Spain.
| | - Nicholas C Harvey
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| | - Gernot Desoye
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria.
| | - Berthold Koletzko
- Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospitals, Ludwig-Maximilians-Universität Munich, Germany.
| | - Christian Wadsack
- Department of Obstetrics and Gynecology, Medical University of Graz, Graz, Austria; BioTechMed-Graz, Graz, Austria.
| | - Hans Demmelmair
- Department of Paediatrics, Dr von Hauner Children's Hospital, University Hospitals, Ludwig-Maximilians-Universität Munich, Germany.
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK.
| |
Collapse
|
7
|
Watkins OC, Selvam P, Appukuttan Pillai R, Cracknell-Hazra VKB, Yong HEJ, Sharma N, Cazenave-Gassiot A, Bendt AK, Godfrey KM, Lewis RM, Wenk MR, Chan SY. Placental 13C-DHA metabolism and relationship with maternal BMI, glycemia and birthweight. Mol Med 2021; 27:84. [PMID: 34362294 PMCID: PMC8349043 DOI: 10.1186/s10020-021-00344-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fetal docosahexaenoic acid (DHA) supply relies on preferential transplacental transfer, which is regulated by placental DHA lipid metabolism. Maternal hyperglycemia and obesity associate with higher birthweight and fetal DHA insufficiency but the role of placental DHA metabolism is unclear. METHODS Explants from 17 term placenta were incubated with 13C-labeled DHA for 48 h, at 5 or 10 mmol/L glucose treatment, and the production of 17 individual newly synthesized 13C-DHA labeled lipids quantified by liquid chromatography mass spectrometry. RESULTS Maternal BMI positively associated with 13C-DHA-labeled diacylglycerols, triacylglycerols, lysophospholipids, phosphatidylcholine and phosphatidylethanolamine plasmalogens, while maternal fasting glycemia positively associated with five 13C-DHA triacylglycerols. In turn, 13C-DHA-labeled phospholipids and triacylglycerols positively associated with birthweight centile. In-vitro glucose treatment increased most 13C-DHA-lipids, but decreased 13C-DHA phosphatidylethanolamine plasmalogens. However, with increasing maternal BMI, the magnitude of the glucose treatment induced increase in 13C-DHA phosphatidylcholine and 13C-DHA lysophospholipids was curtailed, with further decline in 13C-DHA phosphatidylethanolamine plasmalogens. Conversely, with increasing birthweight centile glucose treatment induced increases in 13C-DHA triacylglycerols were exaggerated, while glucose treatment induced decreases in 13C-DHA phosphatidylethanolamine plasmalogens were diminished. CONCLUSIONS Maternal BMI and glycemia increased the production of different placental DHA lipids implying impact on different metabolic pathways. Glucose-induced elevation in placental DHA metabolism is moderated with higher maternal BMI. In turn, findings of associations between many DHA lipids with birthweight suggest that BMI and glycemia promote fetal growth partly through changes in placental DHA metabolism.
Collapse
Affiliation(s)
- Oliver C Watkins
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Preben Selvam
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Reshma Appukuttan Pillai
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Victoria K B Cracknell-Hazra
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Neha Sharma
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore
| | - Amaury Cazenave-Gassiot
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Anne K Bendt
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Keith M Godfrey
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Rohan M Lewis
- MRC Lifecourse Epidemiology Unit and NIHR Southampton Biomedical Research Centre, University of Southampton and University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Markus R Wenk
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Singapore Lipidomics Incubator, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, 1E Kent Ridge Road, NUHS Tower Block, Level 12, Singapore, 119228, Singapore.
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.
| |
Collapse
|
8
|
Placental mobilization of free fatty acids contributes to altered materno-fetal transfer in obesity. Int J Obes (Lond) 2021; 45:1114-1123. [PMID: 33637949 PMCID: PMC8081658 DOI: 10.1038/s41366-021-00781-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 01/08/2021] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Metabolic changes in obese pregnant women, such as changes of plasma lipids beyond physiological levels, may subsequently affect fetal development in utero. These metabolic derangements may remain in the offspring and continue throughout life. The placenta mediates bidirectional exchange of nutrients between mother and fetus. The impact of prepregnancy obesity on placental transfer of lipids is still unknown. OBJECTIVE We aimed to examine materno-to-fetal free fatty acid (FFA) transfer by a combined experimental and modeling approach. Flux of 13C-labeled FFA was evaluated by ex vivo perfusion of human placentae as a function of prepregnancy obesity. Mathematical modeling complemented ex vivo results by providing FFA kinetic parameters. RESULTS Obesity was strongly associated with elevated materno-to-fetal transfer of applied 13C-FFA. Clearance of polyunsaturated 13C-docosahexaenoic acid (DHA) was most prominently affected. The use of the mathematical model revealed a lower tissue storage capacity for DHA in obese compared with lean placentae. CONCLUSION Besides direct materno-to-fetal FFA transfer, placental mobilization accounts for the fetal FA supply. Together, with metabolic changes in the mother and an elevated materno-fetal FFA transfer shown in obesity, these changes suggest that they may be transmitted to the fetus, with yet unknown consequences.
Collapse
|
9
|
Abascal-Saiz A, Fuente-Luelmo E, Haro M, de la Calle M, Ramos-Álvarez MP, Perdomo G, Bartha JL. Placental Compartmentalization of Lipid Metabolism: Implications for Singleton and Twin Pregnancies. Reprod Sci 2020; 28:1150-1160. [PMID: 33171514 DOI: 10.1007/s43032-020-00385-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/01/2020] [Indexed: 11/27/2022]
Abstract
The study of placental lipid metabolism in uncomplicated pregnancies has not been developed in the literature to date. Its importance lies in expanding the knowledge of placental function to enable comparison with pathological pregnancies in future research. The aim of the present study was to compare the lipid metabolic activity and storage of the maternal and fetal sides of the placenta in healthy pregnancies. Moreover, we compare singleton vs. twin pregnancies to determine if placental metabolic needs differ. We analyzed placental explants from uncomplicated pregnancies, 20 from singleton and 8 from bichorial-biamniotic twin pregnancies (n = 28). Six cotyledon fragments were collected from each placenta at different distances from the umbilical cord, three close to the chorionic plate (hereinafter, we will refer to them as "fetal side") and another three close to the anchoring villi into the decidua basalis (referred to as "maternal side"). The samples were analyzed for quantitative assay placental fatty acid oxidation (FAO) and esterification (FAE) activities and triglyceride levels. The location of lipid storage in the chorionic villi was assessed by Oil red-O staining. Placental fatty acid oxidation did not show differences when comparing the maternal and fetal sides of the placenta or between single and twin pregnancies. When comparing placental sides, FAE was increased twofold in the maternal side compared to the fetal side of the placenta (P = 0.013). The tendency for lipogenesis in the placenta was exemplified by the FAE/FAO ratio, which was a 37.1% higher on the maternal side (P = 0.019). Despite this, triglyceride levels were five times higher in the fetal side than in the maternal one (P = 0.024). When analyzing singleton vs. twins, FAE was superior in the fetal side in multiple pregnancies (× 2.6, P = 0.007) and the FAE/FAO ratio was significantly higher in twins than in singleton pregnancies, on both sides of the placenta. Despite this finding, triglyceride levels were similar in twin and singleton pregnancies. Comparing the placentas of twins in the same pregnancy, there were no differences in lipid metabolism (FAO or FAE) or placental triglyceride levels between the two co-twins. Using Oil red-O staining, lipid storage in chorionic villi was found to be located on the syncytiotrophoblast cells and not in the connecting axis. The maternal side of the placenta is more active in the esterification of fatty acids, while the storage of neutral lipids concentrates on the fetal side. Moreover, multiple gestations have increased esterification without changes in the concentration of placental triglycerides, probably due to a higher transfer to the fetal circulation in response to the greater energy demand from twin fetuses.
Collapse
Affiliation(s)
- Alejandra Abascal-Saiz
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Eva Fuente-Luelmo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - María Haro
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - María de la Calle
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - María P Ramos-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, CEU-San Pablo University, Madrid, Spain
| | - Germán Perdomo
- Department of Health Sciences, University of Burgos, Burgos, Spain.,Institute of Molecular Biology and Genetic (IMBG), CSIC - University of Valladolid, Valladolid, Spain
| | - José L Bartha
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, La Paz University Hospital, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|