1
|
Movahed M, Louzada RA, Blandino-Rosano M. Enhanced dynorphin expression and secretion in pancreatic beta-cells under hyperglycemic conditions. Mol Metab 2025; 92:102088. [PMID: 39736444 PMCID: PMC11846442 DOI: 10.1016/j.molmet.2024.102088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/27/2024] [Accepted: 12/21/2024] [Indexed: 01/01/2025] Open
Abstract
OBJECTIVE Dynorphin, an endogenous opioid peptide predominantly expressed in the central nervous system and involved in stress response, pain, and addiction, has intrigued researchers due to its expression in pancreatic β-cells. In this study, we aimed to characterize dynorphin expression in mouse and human islets and explore the mechanisms regulating its expression. METHODS We used primary mouse and human islets with unbiased published datasets to examine how glucose and other nutrients regulate dynorphin expression and secretion in islets. RESULTS The prodynorphin gene is significantly upregulated in β-cells under hyperglycemic conditions. In vitro studies revealed that increased glucose concentrations correlate with increased dynorphin expression, indicating a critical interplay involving Ca2+, CamKII, and CREB pathways in β-cells. Perifusion studies allowed us to measure the dynamic secretion of dynorphin in response to glucose from mouse and human islets for the first time. Furthermore, we confirmed that increased dynorphin content within the β-cells directly correlates with enhanced dynorphin secretion. Finally, our findings demonstrate a synergistic effect of palmitate in conjunction with high glucose, further amplifying dynorphin levels and secretion in pancreatic islets. CONCLUSIONS This study demonstrates that the opioid peptide prodynorphin is expressed in mouse and human β-cells. Prodynorphin levels are regulated in parallel with insulin in response to glucose, palmitate, and amino acids. Our findings elucidate the signaling pathways involved, with CamKII playing a key role in regulating prodynorphin levels in β-cells. Finally, our findings are the first to demonstrate active dynorphin secretion from mouse and human islets in response to glucose.
Collapse
Affiliation(s)
- Miranda Movahed
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Ruy A Louzada
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Endocrinology, Diabetes and Metabolism, Miller School of Medicine, University of Miami, Miami, FL, USA.
| |
Collapse
|
2
|
Miranda MA, Macias-Velasco JF, Schmidt H, Lawson HA. Integrated transcriptomics contrasts fatty acid metabolism with hypoxia response in β-cell subpopulations associated with glycemic control. BMC Genomics 2023; 24:156. [PMID: 36978008 PMCID: PMC10052828 DOI: 10.1186/s12864-023-09232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 03/07/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Understanding how heterogeneous β-cell function impacts diabetes is imperative for therapy development. Standard single-cell RNA sequencing analysis illuminates some factors driving heterogeneity, but new strategies are required to enhance information capture. RESULTS We integrate pancreatic islet single-cell and bulk RNA sequencing data to identify β-cell subpopulations based on gene expression and characterize genetic networks associated with β-cell function in obese SM/J mice. We identify β-cell subpopulations associated with basal insulin secretion, hypoxia response, cell polarity, and stress response. Network analysis associates fatty acid metabolism and basal insulin secretion with hyperglycemic-obesity, while expression of Pdyn and hypoxia response is associated with normoglycemic-obesity. CONCLUSIONS By integrating single-cell and bulk islet transcriptomes, our study explores β-cell heterogeneity and identifies novel subpopulations and genetic pathways associated with β-cell function in obesity.
Collapse
Affiliation(s)
- Mario A Miranda
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA
| | - Juan F Macias-Velasco
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA
| | - Heather Schmidt
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA
| | - Heather A Lawson
- Department of Genetics, Washington University School of Medicine, 660 South Euclid Ave, Campus Box 8232, Saint Louis, MO, 63110, USA.
| |
Collapse
|
3
|
Zhang YK, Yu ZJ, Zhang XY, Bronislava V, Branislav P, Liu JZ. The mitochondrial genome of the ornate sheep tick, Dermacentor marginatus. EXPERIMENTAL & APPLIED ACAROLOGY 2019; 79:421-432. [PMID: 31784855 DOI: 10.1007/s10493-019-00440-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The ornate sheep tick, Dermacentor marginatus, is widespread in Europe. Its vector role of various zoonotic pathogens received much attention in these regions. However, the genomic resources of the ticks are limited. In this study, the complete mitochondrial genome of a single female D. marginatus collected in Slovakia was sequenced through the Illumina HiSeq sequencing platform. The mitochondrial genome is 15,067 bp long and contains 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. The overall G+C content is 21.6%. The gene order is identical to that of Metastriata ticks. The codon usage pattern is similar with that of other tick species. As in other ticks, two truncated tRNA genes were observed. Two control regions were found between tRNA-Leu and tRNA-Cys, tRNA-Ile and rrnS, respectively. The mitochondrial genome contains three noncoding regions, which is similar to that in D. nitens. The noncoding region located between rrnS and tRNA-Val is shorter than that of other Dermacentor species. Phylogenetic analyses indicate that D. marginatus is clustered with other Dermacentor species. These findings are helpful for exploring the systematics and evolution of ticks in the future.
Collapse
Affiliation(s)
- Yan-Kai Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zhi-Jun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Xiao-Yu Zhang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Víchová Bronislava
- Institute of Parasitology, Slovak Academy of Sciences, 04001, Košice, Slovak Republic
| | - Peťko Branislav
- Institute of Parasitology, Slovak Academy of Sciences, 04001, Košice, Slovak Republic
- University of Veterinary Medicine and Farmacy in Košice, 04185, Košice, Slovak Republic
| | - Jing-Ze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
4
|
Zhang K, Yang J, Ao N, Jin S, Qi R, Shan F, Du J. Methionine enkephalin (MENK) regulates the immune pathogenesis of type 2 diabetes mellitus via the IL-33/ST2 pathway. Int Immunopharmacol 2019; 73:23-40. [PMID: 31078923 DOI: 10.1016/j.intimp.2019.04.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 12/18/2022]
Abstract
The incidence and mortality of type 2 diabetes mellitus (T2DM) rank among the top ten worldwide. Emerging studies indicate pathological roles for the immune system in inflammation, insulin resistance and islet β-cell damage in subjects with T2DM. Methionine enkephalin (MENK) is present in endocrine cells of the pancreas and has been suggested to be an important mediator between the immune and neuroendocrine systems. Therefore, it may play a role in modulating insulin secretion from islet cells. Since little is known about the effect of MENK on T2DM, therefore it was the aim of this study to characterize the role and possible mechanism of action of MENK on plasma glucose and serum insulin levels in T2DM rats and INS-1 cells in vivo and in vitro. MENK significantly decreased the plasma glucose level and increased the serum insulin concentration in T2DM rats. It also increased the serum levels of the cytokines IL-5 and IL-10, while decreased TNF-α and IL-2 levels. We further confirmed that MENK regulated glucose metabolism by upregulating opioid receptor expression and modulating the IL-33/ST2 and MyD88-TRAF6-NF-κB p65 signaling pathways. Based on these results, an intraperitoneal injection of MENK represents a potentially new approach for T2DM.
Collapse
Affiliation(s)
- Keying Zhang
- Department of Endocrinology, No. 4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Jing Yang
- Department of Endocrinology, No. 4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Na Ao
- Department of Endocrinology, No. 4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Shi Jin
- Department of Endocrinology, No. 4 Teaching Hospital, China Medical University, Shenyang 110032, China
| | - Ruiqun Qi
- Department of Dermatology, No. 1 Teaching Hospital, China Medical University, Shenyang 110001, China
| | - Fengping Shan
- Department of Immunology, School of Basic Medical Science, China Medical University, Shenyang 110122, China
| | - Jian Du
- Department of Endocrinology, No. 4 Teaching Hospital, China Medical University, Shenyang 110032, China.
| |
Collapse
|
5
|
Berglund E, Daré E, Branca RM, Akcakaya P, Fröbom R, Berggren PO, Lui WO, Larsson C, Zedenius J, Orre L, Lehtiö J, Kim J, Bränström R. Secretome protein signature of human gastrointestinal stromal tumor cells. Exp Cell Res 2015; 336:158-70. [DOI: 10.1016/j.yexcr.2015.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/04/2015] [Accepted: 05/05/2015] [Indexed: 01/03/2023]
|
6
|
Shang Y, Guo F, Li J, Fan R, Ma X, Wang Y, Feng N, Yin Y, Jia M, Zhang S, Zhou J, Wang H, Pei J. Activation of κ-Opioid Receptor Exerts the Glucose-Homeostatic Effect in Streptozotocin-Induced Diabetic Mice. J Cell Biochem 2014; 116:252-9. [DOI: 10.1002/jcb.24962] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 08/29/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Yulong Shang
- Department of Physiology; National Key Discipline of Cell Biology; Fourth Military Medical University; Xi'an 710032 Shaanxi Province China
| | - Fan Guo
- Department of Radiology; Xijing Hospital; Fourth Military Medical University; Xi'an 710033 Shaanxi Province China
| | - Juan Li
- Department of Physiology; National Key Discipline of Cell Biology; Fourth Military Medical University; Xi'an 710032 Shaanxi Province China
| | - Rong Fan
- Department of Physiology; National Key Discipline of Cell Biology; Fourth Military Medical University; Xi'an 710032 Shaanxi Province China
| | - Xinliang Ma
- Department of Physiology; National Key Discipline of Cell Biology; Fourth Military Medical University; Xi'an 710032 Shaanxi Province China
| | - Yuemin Wang
- Department of Physiology; National Key Discipline of Cell Biology; Fourth Military Medical University; Xi'an 710032 Shaanxi Province China
| | - Na Feng
- Department of Physiology; National Key Discipline of Cell Biology; Fourth Military Medical University; Xi'an 710032 Shaanxi Province China
| | - Yue Yin
- Department of Physiology; National Key Discipline of Cell Biology; Fourth Military Medical University; Xi'an 710032 Shaanxi Province China
| | - Min Jia
- Department of Physiology; National Key Discipline of Cell Biology; Fourth Military Medical University; Xi'an 710032 Shaanxi Province China
| | - Shumiao Zhang
- Department of Physiology; National Key Discipline of Cell Biology; Fourth Military Medical University; Xi'an 710032 Shaanxi Province China
| | - Jingjun Zhou
- Department of Physiology; National Key Discipline of Cell Biology; Fourth Military Medical University; Xi'an 710032 Shaanxi Province China
| | - Hongbing Wang
- Department of Cardiac Surgery; Xijing Hospital; Fourth Military Medical University; Xi'an 710033 Shaanxi Province China
| | - Jianming Pei
- Department of Physiology; National Key Discipline of Cell Biology; Fourth Military Medical University; Xi'an 710032 Shaanxi Province China
| |
Collapse
|
7
|
Reprogramming of Pig Dermal Fibroblast into Insulin Secreting Cells by a Brief Exposure to 5-aza-cytidine. Stem Cell Rev Rep 2013; 10:31-43. [DOI: 10.1007/s12015-013-9477-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
8
|
Anton G, Peltecu G, Socolov D, Cornitescu F, Bleotu C, Sgarbura Z, Teleman S, Iliescu D, Botezatu A, Goia CD, Huica I, Anton AC. Type-specific human papillomavirus detection in cervical smears in Romania. APMIS 2010:1-19. [PMID: 21143521 PMCID: PMC3132448 DOI: 10.1111/j.1600-0463.2011.02765.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
To study type 1 diabetes (T1D), excellent animal models exist, both spontaneously diabetic and virus-induced. Based on knowledge from these, this review focuses on the environmental factors leading to T1D, concentrated into four areas which are: (1) The thymus-dependent immune system: T1D is a T cell driven disease and the beta cells are destroyed in an inflammatory insulitis process. Autoimmunity is breakdown of self-tolerance and the balance between regulator T cells and aggressive effector T cells is disturbed. Inhibition of the T cells (by e.g. anti-CD3 antibody or cyclosporine) will stop the T1D process, even if initiated by virus. Theoretically, the risk from immunotherapy elicits a higher frequency of malignancy. (2) The activity of the beta cells: Resting beta cells display less antigenicity and are less sensitive to immune destruction. Beta-cell rest can be induced by giving insulin externally in metabolic doses or by administering potassium-channel openers. Both procedures prevent T1D in animal models, whereas no good human data exist due to the risk of hypoglycemia. (3) NKT cells: According to the hygiene hypothesis, stimulation of NKT cells by non-pathogen microbes gives rise to less T cell reaction and less autoimmunity. Glycolipids presented by CD1 molecules are central in this stimulation. (4) Importance of the intestine and gliadin intake: Gluten-free diet dramatically inhibits T1D in animal models, and epidemiological data are supportive of such an effect in humans. The mechanisms include less subclinical intestinal inflammation and permeability, and changed composition of bacterial flora, which can also be obtained by intake of probiotics. Gluten-free diet is difficult to implement, and short-term intake has no effect. Regarding the onset of the T1D disease process, slow-acting enterovirus and gliadin deposits are speculated to be etiological in genetically susceptible individuals, followed by the mentioned four pathogenetic factors acting in concert. Neutralization of any one of these factors is capable of stopping T1D development, as lessons are learned from the animal models.
Collapse
Affiliation(s)
- Gabriela Anton
- "Stefan S. Nicolau" Institute of Virology, Bucharest, Romania.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wen T, Peng B, Pintar JE. The MOR-1 opioid receptor regulates glucose homeostasis by modulating insulin secretion. Mol Endocrinol 2009; 23:671-8. [PMID: 19221053 DOI: 10.1210/me.2008-0345] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In addition to producing analgesia, opioids have also been proposed to regulate glucose homeostasis by altering insulin secretion. A considerable controversy exists, however, regarding the contribution of the mu-opioid receptor (MOR-1) to insulin secretion dynamics. We employed congenic C57BL/6J MOR-1 knockout (KO) mice to clarify the role of MOR in glucose homeostasis. We first found that both sexes of MOR-1 KO mice weigh more than wild-type mice throughout postnatal life and that this increase includes preferentially increased fat deposition. We also found that MOR-1 KO mice exhibit enhanced glucose tolerance that results from insulin hypersecretion that reflects increased beta-cell mass and increased secretory dynamics in the MOR-1 mutant mice compared with wild type. Analysis of the isolated islets indicated that islet insulin hypersecretion is mediated directly by MOR expressed on islet cells via a mechanism downstream of ATP-sensitive K(+) channel activation by glucose. These findings indicate that MOR-1 regulates body weight by a mechanism that involves insulin secretion and thus may represent a novel target for new diabetes therapies.
Collapse
Affiliation(s)
- Ting Wen
- Department of Cell Biology and Neuroscience, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
10
|
Ossipov MH, Bazov I, Gardell LR, Kowal J, Yakovleva T, Usynin I, Ekström TJ, Porreca F, Bakalkin G. Control of chronic pain by the ubiquitin proteasome system in the spinal cord. J Neurosci 2007; 27:8226-37. [PMID: 17670969 PMCID: PMC6673055 DOI: 10.1523/jneurosci.5126-06.2007] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chronic pain is maintained in part by long-lasting neuroplastic changes in synapses and several proteins critical for synaptic plasticity are degraded by the ubiquitin-proteasome system (UPS). Here, we show that proteasome inhibitors administered intrathecally or subcutaneously prevented the development and reversed nerve injury-induced pain behavior. They also blocked pathological pain induced by sustained administration of morphine or spinal injection of dynorphin A, an endogenous mediator of chronic pain. Proteasome inhibitors blocked mechanical allodynia and thermal hyperalgesia in all three pain models although they did not modify responses to mechanical stimuli, but partially inhibited responses to thermal stimuli in control rats. In the spinal cord, these compounds abolished the enhanced capsaicin-evoked calcitonin gene-related peptide (CGRP) release and dynorphin A upregulation, both elicited by nerve injury. Model experiments demonstrated that the inhibitors may act directly on dynorphin-producing cells, blocking dynorphin secretion. Thus, the effects of proteasome inhibitors on chronic pain were apparently mediated through several cellular mechanisms indispensable for chronic pain, including those of dynorphin A release and postsynaptic actions, and of CGRP secretion. Levels of several UPS proteins were reduced in animals with neuropathic pain, suggesting that UPS downregulation, like effects of proteasome inhibitors, counteracts the development of chronic pain. The inhibitors did not produce marked or disabling motor disturbances at doses that were used to modify chronic pain. These results suggest that the UPS is a critical intracellular regulator of pathological pain, and that UPS-mediated protein degradation is required for maintenance of chronic pain and nociceptive, but not non-nociceptive responses in normal animals.
Collapse
Affiliation(s)
- Michael H. Ossipov
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, Arizona 85724, and
| | - Igor Bazov
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Luis R. Gardell
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, Arizona 85724, and
| | - Justin Kowal
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, Arizona 85724, and
| | - Tatiana Yakovleva
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Ivan Usynin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Tomas J. Ekström
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm S-17176, Sweden
| | - Frank Porreca
- Department of Pharmacology, University of Arizona Health Sciences Center, Tucson, Arizona 85724, and
| | - Georgy Bakalkin
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm S-17176, Sweden
| |
Collapse
|
11
|
Jacobson DA, Cho J, Landa LR, Tamarina NA, Roe MW, Buxbaum JD, Philipson LH. Downstream regulatory element antagonistic modulator regulates islet prodynorphin expression. Am J Physiol Endocrinol Metab 2006; 291:E587-95. [PMID: 16621893 DOI: 10.1152/ajpendo.00612.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium-binding proteins regulate transcription and secretion of pancreatic islet hormones. Here, we demonstrate neuroendocrine expression of the calcium-binding downstream regulatory element antagonistic modulator (DREAM) and its role in glucose-dependent regulation of prodynorphin (PDN) expression. DREAM is distributed throughout beta- and alpha-cells in both the nucleus and cytoplasm. As DREAM regulates neuronal dynorphin expression, we determined whether this pathway is affected in DREAM(-/-) islets. Under low glucose conditions, with intracellular calcium concentrations of <100 nM, DREAM(-/-) islets had an 80% increase in PDN message compared with controls. Accordingly, DREAM interacts with the PDN promoter downstream regulatory element (DRE) under low calcium (<100 nM) conditions, inhibiting PDN transcription in beta-cells. Furthermore, beta-cells treated with high glucose (20 mM) show increased cytoplasmic calcium (approximately 200 nM), which eliminates DREAM's interaction with the DRE, causing increased PDN promoter activity. As PDN is cleaved into dynorphin peptides, which stimulate kappa-opioid receptors expressed predominantly in alpha-cells of the islet, we determined the role of dynorphin A-(1-17) in glucagon secretion from the alpha-cell. Stimulation with dynorphin A-(1-17) caused alpha-cell calcium fluctuations and a significant increase in glucagon release. DREAM(-/-) islets also show elevated glucagon secretion in low glucose compared with controls. These results demonstrate that PDN transcription is regulated by DREAM in a calcium-dependent manner and suggest a role for dynorphin regulation of alpha-cell glucagon secretion. The data provide a molecular basis for opiate stimulation of glucagon secretion first observed over 25 years ago.
Collapse
|