1
|
Parikh R, Sorek E, Parikh S, Michael K, Bikovski L, Tshori S, Shefer G, Mingelgreen S, Zornitzki T, Knobler H, Chodick G, Mardamshina M, Boonman A, Kronfeld-Schor N, Bar-Joseph H, Ben-Yosef D, Amir H, Pavlovsky M, Matz H, Ben-Dov T, Golan T, Nizri E, Liber D, Liel Y, Brenner R, Gepner Y, Karnieli-Miller O, Hemi R, Shalgi R, Kimchi T, Percik R, Weller A, Levy C. Skin exposure to UVB light induces a skin-brain-gonad axis and sexual behavior. Cell Rep 2021; 36:109579. [PMID: 34433056 PMCID: PMC8411113 DOI: 10.1016/j.celrep.2021.109579] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/12/2021] [Accepted: 07/30/2021] [Indexed: 12/11/2022] Open
Abstract
Ultraviolet (UV) light affects endocrinological and behavioral aspects of sexuality via an unknown mechanism. Here we discover that ultraviolet B (UVB) exposure enhances the levels of sex-steroid hormones and sexual behavior, which are mediated by the skin. In female mice, UVB exposure increases hypothalamus-pituitary-gonadal axis hormone levels, resulting in larger ovaries; extends estrus days; and increases anti-Mullerian hormone (AMH) expression. UVB exposure also enhances the sexual responsiveness and attractiveness of females and male-female interactions. Conditional knockout of p53 specifically in skin keratinocytes abolishes the effects of UVB. Thus, UVB triggers a skin-brain-gonadal axis through skin p53 activation. In humans, solar exposure enhances romantic passion in both genders and aggressiveness in men, as seen in analysis of individual questionaries, and positively correlates with testosterone level. Our findings suggest opportunities for treatment of sex-steroid-related dysfunctions. UVB exposure increases circulating sex-steroid levels in mice and humans UVB exposure enhances female attractiveness and receptiveness toward males UVB exposure increases females’ estrus phase, HPG axis hormones, and follicle growth Skin p53 regulates UVB-induced sexual behavior and ovarian physiological changes
Collapse
Affiliation(s)
- Roma Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eschar Sorek
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shivang Parikh
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Keren Michael
- Department of Human Services, The Max Stern Yezreel Valley Academic College, Jezreel Valley 1930600, Israel
| | - Lior Bikovski
- The Myers Neuro-Behavioral Core Facility, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; School of Behavioral Sciences, Netanya Academic College, Netanya 4223587, Israel
| | - Sagi Tshori
- Research Authority, Kaplan Medical Center, Rehovot, Israel; Department of Biochemistry and Molecular Biology, Institute for Medical Research Israel-Canada, The Hebrew University, Jerusalem, Israel
| | - Galit Shefer
- Research Authority, Kaplan Medical Center, Rehovot, Israel
| | | | - Taiba Zornitzki
- Diabetes, Endocrinology and Metabolic Disease Institute, Kaplan Medical Center, Hadassah School of Medicine, Hebrew University in Jerusalem, Rehovot, Israel
| | - Hilla Knobler
- Diabetes, Endocrinology and Metabolic Disease Institute, Kaplan Medical Center, Hadassah School of Medicine, Hebrew University in Jerusalem, Rehovot, Israel
| | - Gabriel Chodick
- Maccabitech, Maccabi Healthcare Services, Tel Aviv, Israel; Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Mariya Mardamshina
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Arjan Boonman
- School of Zoology, Faculty of Life Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Noga Kronfeld-Schor
- School of Zoology, Faculty of Life Sciences and the Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Hadas Bar-Joseph
- The TMCR Unit, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dalit Ben-Yosef
- IVF Lab & Wolfe PGD-Stem Cell Lab, Fertility Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Cell Biology and Development, Sackler Faculty of Medicine & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Hadar Amir
- Fertility Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Mor Pavlovsky
- Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv 6423906, Israel
| | - Hagit Matz
- Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv 6423906, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tom Ben-Dov
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Department of Otolaryngology, Head and Neck surgery, Meir Medical Center, Kfar Saba 4428164, Israel
| | - Tamar Golan
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Eran Nizri
- Department of Dermatology, Tel Aviv Sourasky (Ichilov) Medical Center, Tel Aviv 6423906, Israel; Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daphna Liber
- Faculty of Humanities, Education and Social Sciences, Ono Academic College, Kiryat Ono, Israel
| | - Yair Liel
- Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronen Brenner
- Institute of Pathology, E. Wolfson Medical Center, Holon 58100, Israel
| | - Yftach Gepner
- School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orit Karnieli-Miller
- Department of Medical Education, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Rina Hemi
- Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Ruth Shalgi
- Department of Cell and Developmental Biology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tali Kimchi
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Ruth Percik
- Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Institute of Endocrinology, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | - Aron Weller
- Department of Psychology and the Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
2
|
Yang H, Wei H, Shen L, Kumar C S, Chen Q, Chen Y, Kumar SA. A novel stop-loss DAX1 variant affecting its protein-interaction with SF1 precedes the adrenal hypoplasia congenital with rare spontaneous precocious puberty and elevated hypothalamic-pituitary-gonadal/adrenal axis responses. Eur J Med Genet 2021; 64:104192. [PMID: 33766795 DOI: 10.1016/j.ejmg.2021.104192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/20/2021] [Accepted: 03/14/2021] [Indexed: 11/29/2022]
Abstract
The case study unveils the likely mechanism of a novel stop-loss DAX1 variant preceding the prolonged precocious puberty in the adrenal hypoplasia congenital (AHC) boy. A boy aged five years and nine months initially examined for the primary adrenal insufficiency symptoms. Next-generation sequencing confirmed the X-linked inheritance of a novel stop-loss DAX1 variant: c.1411T>C/p.Ter471Gln associated with AHC in the patient. The patient was subjected to a brief clinical follow-up from 11 to 15.1 years of age. The effect of the mutant-DAX1 variant (p.Ter471Gln) on DAX1-steroidogenic factor 1 (SF1) (protein-protein) interaction was studied by protein-protein docking using the ClusPro-online tool. At 5.9 yrs of age, the patient exhibited precocious puberty with the secondary sexual characteristics of Tanner 2 stage (of 9-14 yrs of age). The patient showed primary adrenal insufficiency with diminished cortisol concentrations at blood serum (25 ng/ml) and urine (3.55 μg/24 h) levels. Upon steroidal exposure, the patient showed normalized serum cortisol levels of 45-61 ng/ml. However, the precocious puberty got prolonged with the increased penis length of 8.5 cm and the bone age of 18 yrs old during the follow-up. The patient showed increased basal serum adrenocorticotropic hormone (110->2000 pg/ml) and follicle-stimulating hormone (18.4-22.3 mIU/ml) concentrations. Following an elevated hypothalamic-pituitary-gonadal axis activity witnessed upon gonarellin stimulation. Protein-protein docking confirmed a weaker interaction between the mutant-DAX1 (p.Ter471Gln) protein and the wild-SF1 protein. Overall, we hypothesize the weakened mutant-DAX1-SF1 (protein-protein) interaction could govern the prolonged precocious puberty augmented with the elevated hypothalamic-pituitary-gonadal/adrenal axis responses via SF1-induced neuronal nitric oxide synthetase activation in the patient.
Collapse
Affiliation(s)
- Haihua Yang
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China
| | - Haiyan Wei
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China.
| | - Linghua Shen
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China
| | - Selvaa Kumar C
- School of Biotechnology and Bioinformatics, D. Y. Patil Deemed to Be University, Sector-15, CBD Belapur. Navi Mumbai, 400614, India
| | - Qiong Chen
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China
| | - Yongxing Chen
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China
| | - Senthil Arun Kumar
- Department of Endocrinology, Metabolism and Genetics, Henan Children's Hospital (aka. Children's Hospital Affiliated to Zhengzhou University), No-33, Longhu Waihuan East Road, Zhengzhou, 450018, China.
| |
Collapse
|
3
|
Winters SJ, Moore JP. PACAP: A regulator of mammalian reproductive function. Mol Cell Endocrinol 2020; 518:110912. [PMID: 32561449 PMCID: PMC7606562 DOI: 10.1016/j.mce.2020.110912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/14/2020] [Accepted: 06/06/2020] [Indexed: 12/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is an ancestral molecule that was isolated from sheep hypothalamic extracts based on its action to stimulate cAMP production by pituitary cell cultures. PACAP is one of a number of ligands that coordinate with GnRH to control reproduction. While initially viewed as a hypothalamic releasing factor, PACAP and its receptors are widely distributed, and there is growing evidence that PACAP functions as a paracrine/autocrine regulator in the CNS, pituitary, gonads and placenta, among other tissues. This review will summarize current knowledge concerning the expression and function of PACAP in the hypothalamic-pituitary-gonadal axis with special emphasis on its role in pituitary function in the fetus and newborn.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| | - Joseph P Moore
- Division of Endocrinology, Metabolism and Diabetes, University of Louisville School of Medicine, Louisville, KY, 40202, USA; Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| |
Collapse
|
4
|
Kotarba G, Zielinska-Gorska M, Biernacka K, Gajewska A. Gonadotropin-releasing hormone-Cu complex (Cu-GnRH) transcriptional activity in vivo in the female rat anterior pituitary gland. Brain Res Bull 2020; 156:67-75. [PMID: 31931118 DOI: 10.1016/j.brainresbull.2020.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 12/23/2019] [Accepted: 01/03/2020] [Indexed: 12/01/2022]
Abstract
Unlike gonadotropin-releasing hormone (GnRH) analogues characterized by amino acid replacement in decapeptide primary structure, Cu-GnRH molecule preserves the native sequence but contains a Cu2+ ion stably bound to the nitrogen atoms including that of the imidazole ring of His2. Cu-GnRH can operate via cAMP/PKA signalling in anterior pituitary cells, suggesting that it may affect selected gonadotropic network gene transcription in vivo. We analysed pituitary mRNA expression of Egr-1, Nr5a1, and Lhb based on their role in luteinizing hormone (LH) synthesis; and Nos1, Adcyap1, and Prkaca due to their dependence on cAMP/PKA activity. In two independent experiments, ovariectomized rats received intracerebroventricular pulsatile (one pulse/h or two pulses/h over 5 h) microinjections of 2 nM Cu-GnRH; 2 nM antide (GnRH antagonist) + 2 nM Cu-GnRH; 100 nM PACAP6-38 (PACAP receptor antagonist) + 2 nM Cu-GnRH. Relative expression of selected mRNAs was determined by qRT-PCR. LH serum concentration was examined according to RIA. All examined genes responded to Cu-GnRH stimulation with increased transcriptional activity in a manner dependent on pulse frequency pattern. Increased expression of Nr5a1, Lhb, Nos1, Adcyap1, and Prkaca mRNA was observed solely in rats receiving the complex with frequency of two pulses/h over 5 h. Egr-1 transcription was up-regulated for both applied Cu-GnRH pulsatile patterns. The stimulatory effect of Cu-GnRH on gene transcription was dependent on both GnRH receptor and PAC-1 activation. In conclusion, obtained results indicate that Cu-GnRH complex is a GnRH analogue able to induce both IP3/PKC and cAMP/PKA-dependent gonadotrope network gene transcription in vivo.
Collapse
Affiliation(s)
- Grzegorz Kotarba
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland.
| | - Marlena Zielinska-Gorska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland.
| | - Katarzyna Biernacka
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland
| | - Alina Gajewska
- Department of Animal Physiology, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, 3 Instytucka St., 05-110 Jablonna, Poland.
| |
Collapse
|
5
|
|
6
|
Ronchetti SA, Machiavelli LI, Quinteros FA, Duvilanski BH, Cabilla JP. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen. PLoS One 2016; 11:e0162455. [PMID: 27611913 PMCID: PMC5017659 DOI: 10.1371/journal.pone.0162455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary.
Collapse
Affiliation(s)
- Sonia A. Ronchetti
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leticia I. Machiavelli
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernanda A. Quinteros
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Beatriz H. Duvilanski
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena P. Cabilla
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
7
|
A regulatory loop between miR-132 and miR-125b involved in gonadotrope cells desensitization to GnRH. Sci Rep 2016; 6:31563. [PMID: 27539363 PMCID: PMC4990909 DOI: 10.1038/srep31563] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/19/2016] [Indexed: 01/26/2023] Open
Abstract
The GnRH neurohormone is the main activator of the pituitary gonadotropins, LH and FSH. Here we investigated the contribution of microRNAs in mediating GnRH activation. We first established that miR-125b targets several actors of Gαq/11 signalling pathway, without altering Gαs pathway. We then showed that a Gαs-mediated, PKA-dependent phosphorylation of NSun2 methyltransferase leads to miR-125b methylation and thereby induces its down-regulation. We demonstrated that NSun2 mRNA is a target of miR-132 and that NSun2 may be inactivated by the PP1α phosphatase. Time-course analysis of GnRH treatment revealed an initial NSun2-dependent down-regulation of miR-125b with consecutive up-regulation of LH and FSH expression. Increase of miR-132 and of the catalytic subunit of PP1α then contributed to NSun2 inactivation and to the return of miR-125b to its steady-state level. The Gαq/11-dependent pathway was thus again silenced, provoking the down-regulation of LH, FSH and miR-132. Overall, this study reveals that a regulatory loop that tends to maintain or restore high and low levels of miR-125b and miR-132, respectively, is responsible for gonadotrope cells desensitization to sustained GnRH. A dysregulation of this loop might be responsible for the inverted dynamics of these two miRNAs reported in several neuronal and non-neuronal pathologies.
Collapse
|
8
|
Navolotskaya EV, Sadovnikov VB, Lipkin VM. Synthetic Peptide TPLVTLFK, a Selective Agonist of Nonopioid β-Endorphin Receptor, Reduces the Corticotropin and Corticosterone Response. Int J Pept Res Ther 2016. [DOI: 10.1007/s10989-016-9543-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Halvorson LM. PACAP modulates GnRH signaling in gonadotropes. Mol Cell Endocrinol 2014; 385:45-55. [PMID: 24095645 DOI: 10.1016/j.mce.2013.09.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/23/2013] [Accepted: 09/24/2013] [Indexed: 12/18/2022]
Abstract
Hypothalamic gonadotropin-releasing hormone is known to be critical for normal gonadotropin biosynthesis and secretion by the gonadotrope cells of the anterior pituitary gland. Additional regulation is provided by gonadal steroid feedback as well as by intrapituitary factors, such as activin and follistatin. Less well-appreciated is the role of pituitary adenylate-cyclase activating polypeptide (PACAP) as both a hypothalamic-pituitary releasing factor as well as an autocrine-paracrine factor within the pituitary. PACAP regulates gonadotropin expression alone and through modulation of GnRH responsiveness achieved by increases in GnRH receptor expression and interactions at the level of intracellular signaling pathways. In addition to direct effects on the gonadotrope, PACAP stimulates follistatin secretion by the folliculostellate cells and thereby contributes to differential expression of the gonadotropin subunits. Conversely, GnRH augments the ability of PACAP to regulate gonadotrope function by increasing pituitary PACAP and PACAP receptor expression. This review will summarize the current understanding of the mechanisms by which PACAP modulates gonadotrope function, with a focus on interactions with GnRH.
Collapse
Affiliation(s)
- Lisa M Halvorson
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9032, United States.
| |
Collapse
|
10
|
Perrett RM, McArdle CA. Molecular mechanisms of gonadotropin-releasing hormone signaling: integrating cyclic nucleotides into the network. Front Endocrinol (Lausanne) 2013; 4:180. [PMID: 24312080 PMCID: PMC3834291 DOI: 10.3389/fendo.2013.00180] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/06/2013] [Indexed: 01/21/2023] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is the primary regulator of mammalian reproductive function in both males and females. It acts via G-protein coupled receptors on gonadotropes to stimulate synthesis and secretion of the gonadotropin hormones luteinizing hormone and follicle-stimulating hormone. These receptors couple primarily via G-proteins of the Gq/ll family, driving activation of phospholipases C and mediating GnRH effects on gonadotropin synthesis and secretion. There is also good evidence that GnRH causes activation of other heterotrimeric G-proteins (Gs and Gi) with consequent effects on cyclic AMP production, as well as for effects on the soluble and particulate guanylyl cyclases that generate cGMP. Here we provide an overview of these pathways. We emphasize mechanisms underpinning pulsatile hormone signaling and the possible interplay of GnRH and autocrine or paracrine regulatory mechanisms in control of cyclic nucleotide signaling.
Collapse
Affiliation(s)
- Rebecca M. Perrett
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Craig A. McArdle
- Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Bristol, UK
- *Correspondence: Craig A. McArdle, Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, 1 Whitson Street, Bristol BS1 3NY, UK e-mail:
| |
Collapse
|
11
|
Huang X, Zhou Y, Ma J, Wang N, Zhang Z, Ji J, Ding Q, Chen G. Nitric oxide mediated effects on reproductive toxicity caused by carbon disulfide in male rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2012; 34:679-687. [PMID: 23146592 DOI: 10.1016/j.etap.2012.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 09/29/2012] [Accepted: 10/05/2012] [Indexed: 06/01/2023]
Abstract
This study investigated nitric oxide (NO) mediation of carbon disulfide (CS(2)) toxicity that compromised male rat spermatogenesis and endocrine function. Rats were exposed to multiple levels of CS(2) concentration (0, 50, 250, 1250 mg/m(3)). A 1250 mg/m(3) CS(2)+sodium nitroprusside (SNP) group and a 1250 mg/m(3) CS(2)+NG-monomethyl-L-arginine (L-NMMA) group were established to explore the role of NO in mediating CS(2) toxicity. NO concentrations, NO synthase (NOS) activity, and sex hormone levels were measured, and sperm characteristics were observed and analyzed. Our data show that CS(2) exposure decreased: NOS activity; tissue NO concentrations; serum levels of gonadotropin-releasing hormones, luteinizing hormones, and testosterone; and sperm count and activity. In contrast, increased serum follicle-stimulating hormone concentrations and teratospermia were observed with CS(2) exposure. SNP reduced some of the toxic effects of CS(2), while L-NMMA treatment showed no effect. The results suggests that NO mediates compromised reproductive system function caused by CS(2) exposure.
Collapse
Affiliation(s)
- Xiaoyu Huang
- MOE Key Lab of Environment and Health, Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan 430030, Hubei, PR China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Schang AL, Quérat B, Simon V, Garrel G, Bleux C, Counis R, Cohen-Tannoudji J, Laverrière JN. Mechanisms underlying the tissue-specific and regulated activity of the Gnrhr promoter in mammals. Front Endocrinol (Lausanne) 2012; 3:162. [PMID: 23248618 PMCID: PMC3521148 DOI: 10.3389/fendo.2012.00162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 11/28/2012] [Indexed: 01/27/2023] Open
Abstract
The GnRH receptor (GnRHR) plays a central role in the development and maintenance of reproductive function in mammals. Following stimulation by GnRH originating from the hypothalamus, GnRHR triggers multiple signaling events that ultimately stimulate the synthesis and the periodic release of the gonadotropins, luteinizing-stimulating hormone (LH) and follicle-stimulating hormones (FSH) which, in turn, regulate gonadal functions including steroidogenesis and gametogenesis. The concentration of GnRHR at the cell surface is essential for the amplitude and the specificity of gonadotrope responsiveness. The number of GnRHR is submitted to strong regulatory control during pituitary development, estrous cycle, pregnancy, lactation, or after gonadectomy. These modulations take place, at least in part, at the transcriptional level. To analyze this facet of the reproductive function, the 5' regulatory sequences of the gene encoding the GnRHR have been isolated and characterized through in vitro and in vivo approaches. This review summarizes results obtained with the mouse, rat, human, and ovine promoters either by transient transfection assays or by means of transgenic mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jean-Noël Laverrière
- *Correspondence: Jean-Noël Laverrière, Physiologie de l’Axe Gonadotrope, Biologie Fonctionnelle et Adaptative, EAC CNRS 4413, Sorbonne Paris Cité, Université Paris Diderot-Paris 7, Bâtiment Buffon, case courrier 7007, 4 rue MA Lagroua Weill-Hallé, 75205 Paris Cedex 13, France. e-mail:
| |
Collapse
|
13
|
Cohen-Tannoudji J, Avet C, Garrel G, Counis R, Simon V. Decoding high Gonadotropin-releasing hormone pulsatility: a role for GnRH receptor coupling to the cAMP pathway? Front Endocrinol (Lausanne) 2012; 3:107. [PMID: 22969749 PMCID: PMC3431540 DOI: 10.3389/fendo.2012.00107] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/15/2012] [Indexed: 01/06/2023] Open
Abstract
The gonadotropin-releasing hormone (GnRH) pulsatile pattern is critical for appropriate regulation of gonadotrope activity but only little is known about the signaling mechanisms by which gonadotrope cells decode such pulsatile pattern. Here, we review recent lines of evidence showing that the GnRH receptor (GnRH-R) activates the cyclic AMP (cAMP) pathway in gonadotrope cells, thus ending a long-lasting controversy. Interestingly, coupling of GnRH-R to the cAMP pathway as well as induction of nitric oxide synthase 1 (NOS1) or follistatin through this signaling pathway take place preferentially under high GnRH pulsatility. The preovulatory surge of GnRH in vivo is indeed associated with an important increase of pituitary cAMP and NOS1 expression levels, both being markedly inhibited by treatment with a GnRH antagonist. Altogether, this suggests that due to its atypical structure and desensitization properties, the GnRH-R may continue to signal through the cAMP pathway under conditions inducing desensitization for most other receptors. Such a mechanism may contribute to decode high GnRH pulsatile pattern and enable gonadotrope cell plasticity during the estrus cycle.
Collapse
Affiliation(s)
- Joëlle Cohen-Tannoudji
- *Correspondence: Joëlle Cohen-Tannoudji, Equipe Physiologie de l’Axe Gonadotrope, Unité de Biologie Fonctionnelle et Adaptative, CNRS-EAC 4413, Sorbonne Paris Cité, Université Paris Diderot-Paris 7, Case courrier 7007, 4 rue Marie-Andrée Lagroua- Weill-Hallé, 75013 Paris, France. e-mail:
| | | | | | | | | |
Collapse
|
14
|
Garrel G, Simon V, Denoyelle C, Cruciani-Guglielmacci C, Migrenne S, Counis R, Magnan C, Cohen-Tannoudji J. Unsaturated fatty acids stimulate LH secretion via novel PKCepsilon and -theta in gonadotrope cells and inhibit GnRH-induced LH release. Endocrinology 2011; 152:3905-16. [PMID: 21862612 DOI: 10.1210/en.2011-1167] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The activity of pituitary gonadotrope cells, crucial for reproductive function, is regulated by numerous factors including signals related to nutritional status. In this work, we demonstrated, for the first time, that in vivo central exposure of rats to lipids intracarotid infusion of a heparinized triglyceride emulsion selectively increases the expression of pituitary LH subunit genes without any alteration of pituitary GnRH receptor and hypothalamic GnRH or Kiss-1 transcript levels. Furthermore, we showed that unsaturated fatty acids (UFA), oleate and linoleate, increase LH release in a dose-dependent manner as well as LHβ mRNA levels in both immortalized LβT2 gonadotrope cell line and rat primary cell cultures. In contrast, the saturated palmitate was ineffective. ACTH or TSH secretion was unaffected by UFA treatment. We demonstrated in LβT2 cells that linoleate effect is mediated neither by activation of membrane fatty acid (FA) receptors GPR40 or GPR120 although we characterized these receptors in LβT2 cells, nor through nuclear peroxisome proliferator-activated receptors. Furthermore, linoleate β-oxidation is not required for its action on LH secretion. In contrast, pharmacological inhibition of protein kinase C (PKC) or ERK pathways significantly prevented linoleate-stimulated LH release. Accordingly, linoleate was shown to activate novel PKC isoforms, PKCε and -θ, as well as ERK1/2 in LβT2 cells. Lastly, unsaturated, but not saturated, FA inhibited GnRH-induced LH secretion in LβT2 cells as well as in pituitary cell cultures. Altogether, these results suggest that the pituitary is a relevant site of FA action and that UFA may influence reproduction by directly interfering with basal and GnRH-dependent gonadotrope activity.
Collapse
Affiliation(s)
- Ghislaine Garrel
- Université Paris Diderot, Sorbonne Paris Cité, Biologie Fonctionnelle et Adaptative, Equipe d'accueil conventionnée, Centre National de la Recherche Scientifique 4413, 75205 Paris Cedex 13, France
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Hypothalamic-hypophysiotropic peptides are the proximate regulators of pituitary cells, but they cannot fully account for the complex functioning of these cells. Accordingly, awareness is growing that an array of peptides produced in the pituitary exert paracrine/autocrine functions. One such peptide, pituitary adenylate cyclase-activating polypeptide (PACAP), was originally identified as a hypothalamic activator of cAMP production in pituitary cells. Gonadotrophs and folliculostellate cells are the main source of pituitary PACAP, and each pituitary cell type expresses a PACAP receptor. PACAP increases alpha-subunit (Cga) and Lhb mRNAs, and it stimulates the transcription of follistatin (Fst) that, in turn, restrains activin signaling to repress Fshb and gonadotropin-releasing hormone-receptor (Gnrhr) expression as well as other activin-responsive genes. The PACAP (Adcyap1) promoter is activated by cAMP, and pituitary cells may communicate by a feed-forward, cAMP-dependent mechanism to maintain a high level of PACAP in the fetal pituitary. At birth, pituitary PACAP declines and pituitary follistatin levels decrease, which together with increased gonadotropin-releasing hormone secretion allow Gnrhr and Fshb to increase and facilitate activation of the newborn gonads. Changes in Adcyap1 expression levels in the adult pituitary may contribute to the selective rise in follicle-stimulating hormone (FSH) from age 20-30 days to the midcycle surge and to the secondary increase in FSH that occurs before estrus. These results provide further support for the notion that PACAP is a key player in reproduction through its actions as a pituitary autocrine/paracrine hormone.
Collapse
Affiliation(s)
- Stephen J Winters
- Division of Endocrinology, Metabolism, and Diabetes, University of Louisville School of Medicine, 550 Jackson Street, Louisville, KY 40202, USA.
| | | |
Collapse
|
16
|
Garrel G, Simon V, Thieulant ML, Cayla X, Garcia A, Counis R, Cohen-Tannoudji J. Sustained gonadotropin-releasing hormone stimulation mobilizes the cAMP/PKA pathway to induce nitric oxide synthase type 1 expression in rat pituitary cells in vitro and in vivo at proestrus. Biol Reprod 2010; 82:1170-9. [PMID: 20181617 DOI: 10.1095/biolreprod.109.082925] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Previous in vivo studies have established that pituitary nitric oxide synthase type 1 (NOS1) is regulated by gonadotropin-releasing hormone (GnRH). The aim of our study was to elucidate the mechanisms of NOS1 regulation by GnRH in rat pituitary cells. Using a perifused cell system, we demonstrated that NOS1 induction was sensitive to GnRH pulse frequency and was maximally induced under continuous GnRH stimulation. In primary cultures of rat pituitary cells, sustained stimulation with the GnRH agonist triptorelin (GnRHa) increased NOS1 protein levels, whereas NOS2 and NOS3 levels were unaffected. NOS1 up-regulation occurred in gonadotroph cells only, in a time-dependent and concentration-dependent manner (maximum increase, 2.5-fold; half-maximal concentration, 0.17 nM). GnRHa effect was mimicked by cAMP pathway activators and, most importantly, was blocked by disruption of the protein kinase A (PKA) pathway using pharmacological inhibitors such as Rp-cAMP or drug phosphatase technology-protein kinase inhibitor (DPT-PKI), a cell-permeant PKI peptide. In contrast, modulation of the PKC pathway and inhibition of the MAPK cascade were ineffective. Overall, these experiments demonstrated that GnRH-induced up-regulation of pituitary NOS1 is mediated notably by the cAMP/PKA pathway. Last, in vivo administration of a GnRH antagonist markedly inhibited the pituitary cAMP rise at proestrus in addition to suppressing NOS1 increase. Altogether, our data suggest that the cAMP/PKA signaling pathway is preferentially recruited under sustained GnRH stimulation in vivo during proestrus, allowing the expression of a specific set of PKA-regulated proteins, including NOS1, in gonadotroph cells.
Collapse
Affiliation(s)
- Ghislaine Garrel
- Physiologie de l'Axe Gonadotrope, Unité de Biologie Fonctionnelle et Adaptative, CNRS EAC 4413-University Paris Diderot-Paris 7, Paris, France
| | | | | | | | | | | | | |
Collapse
|
17
|
The GnRH receptor and the response of gonadotrope cells to GnRH pulse frequency code. A story of an atypical adaptation of cell function relying on a lack of receptor homologous desensitization. Folia Histochem Cytobiol 2010; 47:S81-7. [PMID: 20067899 DOI: 10.2478/v10042-009-0109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Brain control of the reproductive system is mediated through hypothalamic gonadotropin-releasing hormone (GnRH) which activates specific receptors (GnRHR) present at the surface of the pituitary gonadotropes to trigger secretion of the two gonadotropins LH and FSH. A unique feature of this system is the high dependence on the secretion mode of GnRH, which is basically pulsatile but undergoes considerable fluctuations in pulse frequency pattern in response to endogenous or external factors. How the physiological fluctuations of GnRH secretion that orchestrate normal reproduction are decoded by the gonadotrope cell machinery to ultimately control gonadotropin release and/or subunit gene transcription has been the subject of intensive studies during the past decades. Surprisingly, the mammalian GnRHR is unique among G protein-coupled receptor family as it lacks the carboxy-terminal tail usually involved in classical endocytotic process. Accordingly, it does not desensitize properly and internalizes very poorly. Both this atypical intrinsic property and post-receptor events may thus contribute to decode the GnRH signal. This includes the participation of a network of signaling pathways that differently respond to GnRH together with a growing amount of genes differentially sensitive to pulse frequency. Among these are two pairs of genes, the transcription factors EGR-1 and NAB, and the regulatory factors activin and follistatin, that function as intracellular autoregulatory feedback loops controlling respectively LHbeta and FSHbeta gene expression and hence, LH and FSH synthesis. Pituitary gonadotropes thus represent a unique model of cells functionally adapted to respond to a considerably fluctuating neuroendocrine stimulation, from short individual pulses to sustained GnRH as observed at the proestrus of ovarian cycle. Altogether, the data emphasize the adaptative reciprocal complementarity of hypothalamic GnRH neurones and pituitary gonadotropes to function as an original unit.
Collapse
|
18
|
Larivière S, Garrel-Lazayres G, Simon V, Shintani N, Baba A, Counis R, Cohen-Tannoudji J. Gonadotropin-releasing hormone inhibits pituitary adenylyl cyclase-activating polypeptide coupling to 3',5'-cyclic adenosine-5'-monophosphate pathway in LbetaT2 gonadotrope cells through novel protein kinase C isoforms and phosphorylation of pituitary adenylyl cyclase-activating polypeptide type I receptor. Endocrinology 2008; 149:6389-98. [PMID: 18755795 DOI: 10.1210/en.2008-0504] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Gonadotrope cells are primarily regulated by GnRH but are also targets of the pituitary adenylyl cyclase-activating polypeptide (PACAP). Although it has been reported that reciprocal interactions between both neuropeptides contribute to regulation of gonadotrope function, the underlying mechanisms remain poorly understood. In this study, we reevaluated PACAP coupling to the cAMP pathway in LbetaT2 gonadotrope cells and analyzed GnRH effect on PACAP signaling. We established that PACAP38 markedly increases intracellular cAMP levels (EC50 of 4.7 +/- 1.3 nm) through the PACAP type 1 receptor (PAC1-R), as evidenced by pharmacological and RT-PCR studies. Interestingly, although GnRH couples to cAMP pathway in LbetaT2 cells, the effects of both neuropeptides were not synergistic. Instead, the GnRH agonist (GnRHa) triptorelin rapidly and strongly inhibited (70% inhibition as early as 5 min) PACAP38-induced cAMP production. Inhibition was calcium independent, mimicked by the phorbol ester phorbol 12-myristate 13-acetate, and blocked by the protein kinase C (PKC) inhibitor bisindoylmaleimide, indicating that GnRHa inhibitory action relies on PKC. Selective down-regulation of both conventional and novel PKC prevented a GnRHa effect, whereas pharmacological inhibition of conventional PKC only was ineffective, strongly suggesting the involvement of novel PKC isoforms. GnRHa did not inhibit forskolin- or cholera toxin-stimulated cAMP accumulation, suggesting that PAC1-R is the predominant target of GnRH. Accordingly, we demonstrated for the first time that GnRH increases PAC1-R phosphorylation through PKC, providing a potential molecular mechanism which may account for GnRH inhibitory effect.
Collapse
Affiliation(s)
- Sigolène Larivière
- Unité Mixte de Recherche-Centre National de la Recherche Scientifique 7079 Physiologie and Physiopathologie, Université Pierre and Marie Curie-Paris 6, Case 256, 4 Place Jussieu, 75252 Paris cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Shafiee-Kermani F, Han SO, Miller WL. Chronic gonadotropin-releasing hormone inhibits activin induction of the ovine follicle-stimulating hormone beta-subunit: involvement of 3',5'-cyclic adenosine monophosphate response element binding protein and nitric oxide synthase type I. Endocrinology 2007; 148:3346-55. [PMID: 17446183 DOI: 10.1210/en.2006-1740] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
FSH is induced by activin, and this expression is modulated by GnRH through FSHB expression. This report focuses on the inhibitory effect of GnRH on activin-induced FSHB expression. Activin-treated primary murine pituitary cultures robustly express mutant ovine FSHBLuc-DeltaAP1, a luciferase transgene driven by 4.7 kb of ovine FSHB promoter. This promoter lacks two GnRH-inducible activator protein-1 sites, making it easier to observe GnRH-mediated inhibition. Luciferase expression from this transgene was decreased 94% by 100 nM GnRH with a half-time of approximately 4 h in pituitary cultures, and this inhibition was independent of follistatin. Activators of cAMP and protein kinase C like forskolin and phorbol 12-myristate 3-acetate (PMA), respectively, mimicked GnRH action. Kinetic studies of wild-type ovine FSHBLuc in LbetaT2 cells showed continuous induction by activin (4-fold) over 20 h. Most of this induction (78%) was blocked, beginning at 6 h. cAMP response element binding protein (CREB) was implicated in this inhibition because overexpression of its constitutively active mutant mimicked GnRH, and its inhibitor (inducible cAMP early repressor isoform II) reversed the inhibition caused by GnRH, forskolin, or PMA. In addition, GnRH, forskolin, or PMA increased the expression of a CREB-responsive reporter gene, 6xCRE-37PRL-Luc. Inhibition of nitric oxide type I (NOSI) by 7-nitroindazole also reversed GnRH-mediated inhibition by 60%. It is known that GnRH and CREB induce production of NOSI in gonadotropes and neuronal cells, respectively. These data support the concept that chronic GnRH inhibits activin-induced ovine FSHB expression by sequential activation of CREB and NOSI through the cAMP and/or protein kinase C pathways.
Collapse
Affiliation(s)
- Farideh Shafiee-Kermani
- Department of Molecular and Structural Biochemistry, Box 7622, North Carolina State University, Raleigh, North Carolina 27695-7622, USA
| | | | | |
Collapse
|
20
|
Galmiche G, Richard N, Corvaisier S, Kottler ML. The expression of aromatase in gonadotropes is regulated by estradiol and gonadotropin-releasing hormone in a manner that differs from the regulation of luteinizing hormone. Endocrinology 2006; 147:4234-44. [PMID: 16763067 DOI: 10.1210/en.2005-1650] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The role of estrogens is dual: they suppress basal expression of gonadotropins and enhance GnRH responsiveness at the time of the LH surge. Estrogens are synthesized by cytochrome P450 aromatase (P450arom), encoded by the cyp19 gene. We focused on the cyp19 gene in rat and showed that it is expressed in gonadotropes through promoters PII and PI.f, using RT-PCR and dual fluorescence labeling with anti-P450arom and -LH antibodies. Real-time PCR quantification revealed that aromatase mRNA levels varied during the estrous cycle and were significantly increased after ovariectomy. This effect is prevented by estradiol (E2) as well as GnRH antagonist administration, suggesting that GnRH may mediate the steroid effect. Interestingly, the long-acting GnRH agonist that induces LH desensitization does not modify aromatase expression in ovariectomized rats. Administration of E2 in ovariectomized rats receiving either GnRH agonist or GnRH antagonist clearly demonstrated that E2 also reduces cyp19 expression at the pituitary level. The selective estrogen receptor-alpha ligand propyl pyrazole triol and the selective estrogen receptor-beta ligand diarylpropionitrile both mimic the E2 effects. By contrast, propyl pyrazole triol reduces LH beta expression whereas diarylpropionitrile does not. In addition, using transient transfection assays in an L beta T2 gonadotrope cell line, we provided evidence that GnRH agonist stimulated, in a dose-dependant manner, cyp19 promoters PII and PI.f and that E2 decreased the GnRH stimulation. In conclusion, our data demonstrate that GnRH is an important signal in the regulation of cyp19 in gonadotrope cells. Both common and specific intracellular factors were responsible for dissociated variations of LH beta and cyp19 expression.
Collapse
Affiliation(s)
- Guillaume Galmiche
- Département Génétique et Reproduction, UFR de médecine, F-14033 Caen, France.
| | | | | | | |
Collapse
|
21
|
Cabilla JP, Díaz MDC, Machiavelli LI, Poliandri AH, Quinteros FA, Lasaga M, Duvilanski BH. 17 beta-estradiol modifies nitric oxide-sensitive guanylyl cyclase expression and down-regulates its activity in rat anterior pituitary gland. Endocrinology 2006; 147:4311-8. [PMID: 16740976 DOI: 10.1210/en.2006-0367] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies showed that 17 beta-estradiol (17 beta-E2) regulates the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cGMP pathway in many tissues. Evidence from our laboratory indicates that 17 beta-E2 disrupts the inhibitory effect of NO on prolactin release, decreasing sGC activity and affecting the cGMP pathway in anterior pituitary gland of adult ovariectomized and estrogenized rats. To ascertain the mechanisms by which 17 beta-E2 affects sGC activity, we investigated the in vivo and in vitro effects of 17 beta-E2 on sGC protein and mRNA expression in anterior pituitary gland from immature female rats. In the present work, we showed that 17 beta-E2 acute treatment exerted opposite effects on the two sGC subunits, increasing alpha1 and decreasing beta1 subunit protein and mRNA expression. This action on sGC protein expression was maximal 6-9 h after 17 beta-E2 administration. 17beta-E2 also caused the same effect on mRNA expression at earlier times. Concomitantly, 17 beta-E2 dramatically decreased sGC activity 6 and 9 h after injection. These effects were specific of 17 beta-E2, because they were not observed with the administration of other steroids such as progesterone and 17 alpha-estradiol. This inhibitory action of 17beta-E2 on sGC also required the activation of estrogen receptor (ER), because treatment with the pure ER antagonist ICI 182,780 completely blocked 17 beta-E2 action. 17 beta-E2 acute treatment caused the same effects on pituitary cells in culture. These results suggest that 17 beta-E2 exerts an acute inhibitory effect on sGC in anterior pituitary gland by down-regulating sGC beta 1 subunit and sGC activity in a specific, ER-dependent manner.
Collapse
Affiliation(s)
- Jimena P Cabilla
- Departamento de Química Biológica, Instituto de Química y Fisico Química Biológicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires (C1113AAD), Argentina
| | | | | | | | | | | | | |
Collapse
|
22
|
Andric SA, Kostic TS, Stojilkovic SS. Contribution of multidrug resistance protein MRP5 in control of cyclic guanosine 5'-monophosphate intracellular signaling in anterior pituitary cells. Endocrinology 2006; 147:3435-45. [PMID: 16614078 DOI: 10.1210/en.2006-0091] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The energy-dependent cyclic nucleotide cellular efflux is operative in numerous eukaryotic cells and could be mediated by multidrug resistance proteins MRP4, MRP5, and MRP8. In pituitary cells, however, the operation of export pumps and their contribution to the control of intracellular cyclic nucleotide levels were not studied previously. Here we show that cellular efflux of cyclic nucleotides was detectable in normal and immortalized GH(3) pituitary cells under resting conditions and was enlarged after concurrent stimulation of cAMP and cGMP production with GHRH, corticotropin-releasing factor, vasoactive intestinal peptide, pituitary adenylate cyclase-activating polypeptide, and forskolin. In resting and stimulated cells, the efflux pumps transported the majority of de novo-produced cGMP, limiting its intracellular accumulation in a concentration range of 1-2 microm. In contrast, only a small fraction of cAMP was released and there was a time- and concentration-dependent accumulation of this messenger in the cytosol, ranging from 1-100 microm. Stimulation and inhibition of cGMP production alone did not affect cAMP efflux, suggesting the operation of two different transport pathways in pituitary cells. The rates of cAMP and cGMP effluxes were comparable, and both pathways were blocked by probenecid and progesterone. Pituitary cells expressed mRNA transcripts for MRP4, MRP5, and MRP8, whereas GH(3) cells expressed only transcripts for MRP5. Down-regulation of MRP5 expression in GH(3) cells decreased cGMP release without affecting cAMP efflux. These results indicate that cyclic nucleotide cellular efflux plays a critical role in elimination of intracellular cGMP but not cAMP in pituitary cells and that such selectivity is achieved by expression of MRP5.
Collapse
Affiliation(s)
- Silvana A Andric
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, Building 49, Room 6A-36, 49 Convent Drive, Bethesda, Maryland 20892-4510, USA
| | | | | |
Collapse
|
23
|
Secondo A, Pannaccione A, Cataldi M, Sirabella R, Formisano L, Di Renzo G, Annunziato L. Nitric oxide induces [Ca2+]i oscillations in pituitary GH3 cells: involvement of IDR and ERG K+ currents. Am J Physiol Cell Physiol 2005; 290:C233-43. [PMID: 16207796 DOI: 10.1152/ajpcell.00231.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of nitric oxide (NO) in the occurrence of intracellular Ca2+ concentration ([Ca2+]i) oscillations in pituitary GH3 cells was evaluated by studying the effect of increasing or decreasing endogenous NO synthesis with L-arginine and nitro-L-arginine methyl ester (L-NAME), respectively. When NO synthesis was blocked with L-NAME (1 mM) [Ca2+]i, oscillations disappeared in 68% of spontaneously active cells, whereas 41% of the quiescent cells showed [Ca2+]i oscillations in response to the NO synthase (NOS) substrate L-arginine (10 mM). This effect was reproduced by the NO donors NOC-18 and S-nitroso-N-acetylpenicillamine (SNAP). NOC-18 was ineffective in the presence of the L-type voltage-dependent Ca2+ channels (VDCC) blocker nimodipine (1 microM) or in Ca2+-free medium. Conversely, its effect was preserved when Ca2+ release from intracellular Ca2+ stores was inhibited either with the ryanodine-receptor blocker ryanodine (500 microM) or with the inositol 1,4,5-trisphosphate receptor blocker xestospongin C (3 microM). These results suggest that NO induces the appearance of [Ca2+]i oscillations by determining Ca2+ influx. Patch-clamp experiments excluded that NO acted directly on VDCC but suggested that NO determined membrane depolarization because of the inhibition of voltage-gated K+ channels. NOC-18 and SNAP caused a decrease in the amplitude of slow-inactivating (IDR) and ether-à-go-go-related gene (ERG) hyperpolarization-evoked, deactivating K+ currents. Similar results were obtained when GH3 cells were treated with L-arginine. The present study suggests that in GH3 cells, endogenous NO plays a permissive role for the occurrence of spontaneous [Ca2+]i oscillations through an inhibitory effect on IDR and on IERG.
Collapse
Affiliation(s)
- Agnese Secondo
- Division of Pharmacology, Dept. of Neuroscience, School of Medicine, Federico II Univ. of Naples, via Sergio Pansini 5, 80131 Naples, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Bachir LK, Garrel G, Lozach A, Laverrière JN, Counis R. The rat pituitary promoter of the neuronal nitric oxide synthase gene contains an Sp1-, LIM homeodomain-dependent enhancer and a distinct bipartite gonadotropin-releasing hormone-responsive region. Endocrinology 2003; 144:3995-4007. [PMID: 12933674 DOI: 10.1210/en.2002-0183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The neuronal nitric oxide synthase (NOS I) is expressed and hormonally regulated in rat anterior pituitary gonadotropes. In the present study, we investigated the mechanisms that underlie the constitutive and GnRH up-regulated activity of the pituitary exon 1p promoter of the NOS I gene in these cells. Through the use of 5'-deletions and transient transfections in L beta T2, a gonadotrope-derived cell line, we delineated a NOS I cell-specific (NCS) enhancer region (-73/-59) that is required for constitutive activity. Independently of the NCS enhancer, GnRH responsiveness is supported by a bipartite regulatory domain referred to as the GnRH response element I and II located between -33/-10 and -4/+4, the latter consisting of a cAMP-like response element. By combining transient transfections, gel shift, and supershift assays, we demonstrate that Sp1 and LIM-homeodomain-related protein bind the NCS enhancer, whereas cAMP response element binding protein and cAMP regulatory element modulator-like factors bind the GnRH response element II motif. We further show that factors involved in GnRH regulation are also implicated in constitutive activity, suggesting intimate links between constitutive and regulated promoter activity. We speculate that specific expression of the NOS I gene in gonadotropes together with its regulation by GnRH is suggestive of a critical participation of NOS I in gonadotrope function.
Collapse
Affiliation(s)
- Lydia K Bachir
- Signalisation Cellulaire, Régulation de Gènes et Physiologie de l'Axe Gonadotrope, Centre National de la Recherche Scientifique-Unité Mixte de Recherche 7079, Physiologie et Physiopathologie, Université Pierre et Marie Curie, 75252 Paris, France
| | | | | | | | | |
Collapse
|
25
|
Andric SA, Gonzalez-Iglesias AE, Van Goor F, Tomić M, Stojilkovic SS. Nitric oxide inhibits prolactin secretion in pituitary cells downstream of voltage-gated calcium influx. Endocrinology 2003; 144:2912-21. [PMID: 12810546 DOI: 10.1210/en.2002-0147] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The coupling between nitric oxide (NO)-cGMP signaling pathway and prolactin (PRL) release in pituitary lactotrophs has been established previously. However, the messenger that mediates the action of this signaling pathway on hormone secretion and the secretory mechanism affected, calcium dependent or independent, have not been identified. In cultured pituitary cells, basal PRL release was controlled by spontaneous voltage-gated calcium influx and was further enhanced by depolarization of cells and stimulation with TRH. Inhibition of constitutively expressed neuronal NO synthase decreased NO and cGMP levels and increased basal PRL release. The addition of a slowly releasable NO donor increased cGMP levels and inhibited basal PRL release in a time-dependent manner. Expression of inducible NO synthase also increased NO and cGMP levels and inhibited basal, depolarization-induced, and TRH-induced PRL release, whereas inhibition of this enzyme decreased NO and cGMP production and recovered PRL release. None of these treatments affected spontaneous and stimulated voltage-gated calcium influx. At basal NO levels, the addition of permeable cGMP analogs did not inhibit PRL secretion. At elevated NO levels, inhibition of cGMP production and facilitation of its degradation did not reverse inhibited PRL secretion. These experiments indicate that NO inhibits calcium-dependent PRL secretion in a cGMP-independent manner and downstream of voltage-gated calcium influx.
Collapse
Affiliation(s)
- Silvana A Andric
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, 49 Convent Drive, Bethesda, MD 20892-4510, USA
| | | | | | | | | |
Collapse
|
26
|
Wei X, Sasaki M, Huang H, Dawson VL, Dawson TM. The orphan nuclear receptor, steroidogenic factor 1, regulates neuronal nitric oxide synthase gene expression in pituitary gonadotropes. Mol Endocrinol 2002; 16:2828-39. [PMID: 12456803 DOI: 10.1210/me.2001-0273] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroidogenic factor 1 (SF-1), an essential nuclear receptor, plays key roles in steroidogenic cell function within the adrenal cortex and gonads. It also contributes to reproductive function at all three levels of the hypothalamic-pituitary-gonadal axis. SF-1 regulates genes in the steroidogenic pathway, such as LHbeta, FSHbeta, and steroid hydroxylase. Abundant evidence suggests that nitric oxide (NO) has an important role in the control of reproduction due to its ability to control GnRH secretion from the hypothalamus and the preovulatory LH surge in pituitary gonadotropes. Recently, we cloned and characterized the promoter of mouse neuronal NO synthase (nNOS). nNOS is localized at all three levels of the hypothalamic-pituitary-gonadal axis to generate NO. We find that its major promoter resides at exon 2 in the pituitary gonadotrope alphaT3-1 cell line and that there is a nuclear hormone receptor binding site in this region, to which SF-1 can bind and regulate nNOS transcription. Mutation of the nuclear hormone receptor binding site dramatically decreases basal promoter activity and abolishes SF-1 responsiveness. A dominant negative of SF-1, in which the transactivation (AF-2) domain of SF-1 was deleted, inhibits nNOS exon 2 promoter activity. Dosage-sensitive reversal- adrenal hypoplasia congenita critical region on the X chromosome, gene 1 (DAX-1), which colocalizes and interferes with SF-1 actions in multiple cell lineages, negatively modulates SF-1 regulation of nNOS transcription. These findings demonstrate that mouse nNOS gene expression is regulated by the SF-1 gene family in pituitary gonadotropes. nNOS, a member of the cytochrome p450 gene family, could be one of the downstream effector genes, which mediates SF-1's reproductive function and developmental patterning.
Collapse
MESH Headings
- 3T3 Cells
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites
- Blotting, Western
- Cell Line
- Cells, Cultured
- DNA-Binding Proteins/chemistry
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/physiology
- Deoxyribonuclease EcoRI/metabolism
- Deoxyribonucleases, Type II Site-Specific/metabolism
- Exons
- Fushi Tarazu Transcription Factors
- Gene Expression Regulation, Enzymologic
- Gonadotropins/analysis
- Homeodomain Proteins
- Mice
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nitric Oxide Synthase/analysis
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type I
- Pituitary Gland/chemistry
- Pituitary Gland/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- RNA, Messenger/analysis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Regulatory Sequences, Nucleic Acid
- Reverse Transcriptase Polymerase Chain Reaction
- Steroidogenic Factor 1
- Transcription Factors/chemistry
- Transcription Factors/genetics
- Transcription Factors/physiology
- Transfection
Collapse
Affiliation(s)
- Xueying Wei
- Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine, 600 North Wolfe Street, Baltimore, MD 21287, USA
| | | | | | | | | |
Collapse
|
27
|
Garrel G, Lozach A, Bachir LK, Laverriere JN, Counis R. Pituitary adenylate cyclase-activating polypeptide stimulates nitric-oxide synthase type I expression and potentiates the cGMP response to gonadotropin-releasing hormone of rat pituitary gonadotrophs. J Biol Chem 2002; 277:46391-401. [PMID: 12244042 DOI: 10.1074/jbc.m203763200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric-oxide synthase type I (NOS I) is expressed primarily in gonadotrophs and in folliculo-stellate cells of the anterior pituitary. In gonadotrophs, the expression and the activity of NOS I are stimulated by gonadotropin-releasing hormone (GnRH) under both experimental and physiological conditions. In the present study, we show that pituitary adenylate cyclase-activating polypeptide (PACAP) is twice as potent as GnRH at increasing NOS I levels in cultured rat anterior pituitary cells. The action of PACAP is detectable after 4-6 h and maximal at 24 h, this effect is mimicked by 8-bromo-cAMP and cholera toxin and suppressed by H89 suggesting a mediation through the cAMP pathway. Surprisingly, NADPH diaphorase staining revealed that these changes occurred in gonadotrophs exclusively although PACAP and cAMP, in contrast to GnRH, have the potential to target several types of pituitary cells including folliculo-stellate cells. There was no measurable alteration in NOS I mRNA levels after cAMP or PACAP induction. PACAP also stimulated cGMP synthesis, which was maximal within 15 min and independent of cAMP, however, only part resulted from NOS I/soluble guanylate cyclase activation implying that in contrast to GnRH, PACAP has a dual mechanism in cGMP production. Interestingly, induction of NOS I by PACAP markedly enhanced the capacity of gonadotrophs to produce cGMP in response to GnRH. The fact that PACAP may act on gonadotrophs to alter NOS I levels, generate cGMP, and potentiate the cGMP response to GnRH, suggests that cGMP could play important cellular functions.
Collapse
Affiliation(s)
- Ghislaine Garrel
- Signalisation cellulaire, Régulation de gènes et Physiologie de l'Axe gonadotrope, UMR CNRS 7079, Physiologie et Physiopathologie, Université Pierre et Marie Curie, 75252 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
28
|
Kostic TS, Tomić M, Andric SA, Stojilkovic SS. Calcium-independent and cAMP-dependent modulation of soluble guanylyl cyclase activity by G protein-coupled receptors in pituitary cells. J Biol Chem 2002; 277:16412-8. [PMID: 11867632 DOI: 10.1074/jbc.m112439200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well established that G protein-coupled receptors stimulate nitric oxide-sensitive soluble guanylyl cyclase by increasing intracellular Ca(2+) and activating Ca(2+)-dependent nitric-oxide synthases. In pituitary cells receptors that stimulated adenylyl cyclase, growth hormone-releasing hormone, corticotropin-releasing factor, and thyrotropin-releasing hormone also stimulated calcium signaling and increased cGMP levels, whereas receptors that inhibited adenylyl cyclase, endothelin-A, and dopamine-2 also inhibited spontaneous calcium transients and decreased cGMP levels. However, receptor-controlled up- and down-regulation of cyclic nucleotide accumulation was not blocked by abolition of Ca(2+) signaling, suggesting that cAMP production affects cGMP accumulation. Agonist-induced cGMP accumulation was observed in cells incubated in the presence of various phosphodiesterase and soluble guanylyl cyclase inhibitors, confirming that G(s)-coupled receptors stimulated de novo cGMP production. Furthermore, cholera toxin (an activator of G(s)), forskolin (an activator of adenylyl cyclase), and 8-Br-cAMP (a permeable cAMP analog) mimicked the stimulatory action of G(s)-coupled receptors on cGMP production. Basal, agonist-, cholera toxin-, and forskolin-stimulated cGMP production, but not cAMP production, was significantly reduced in cells treated with H89, a protein kinase A inhibitor. These results indicate that coupling seven plasma membrane-domain receptors to an adenylyl cyclase signaling pathway provides an additional calcium-independent and cAMP-dependent mechanism for modulating soluble guanylyl cyclase activity in pituitary cells.
Collapse
Affiliation(s)
- Tatjana S Kostic
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892-4510, USA
| | | | | | | |
Collapse
|
29
|
Kostic TS, Andric SA, Stojilkovic SS. Spontaneous and receptor-controlled soluble guanylyl cyclase activity in anterior pituitary cells. Mol Endocrinol 2001; 15:1010-22. [PMID: 11376118 DOI: 10.1210/mend.15.6.0648] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nitric oxide (NO)-dependent soluble guanylyl cyclase (sGC) is operative in mammalian cells, but its presence and the role in cGMP production in pituitary cells have been incompletely characterized. Here we show that sGC is expressed in pituitary tissue and dispersed cells, enriched lactotrophs and somatotrophs, and GH(3) immortalized cells, and that this enzyme is exclusively responsible for cGMP production in unstimulated cells. Basal sGC activity was partially dependent on voltage-gated calcium influx, and both calcium-sensitive NO synthases (NOS), neuronal and endothelial, were expressed in pituitary tissue and mixed cells, enriched lactotrophs and somatotrophs, and GH(3) cells. Calcium-independent inducible NOS was transiently expressed in cultured lactotrophs and somatotrophs after the dispersion of cells, but not in GH(3) cells and pituitary tissue. This enzyme participated in the control of basal sGC activity in cultured pituitary cells. The overexpression of inducible NOS by lipopolysaccharide + interferon-gamma further increased NO and cGMP levels, and the majority of de novo produced cGMP was rapidly released. Addition of an NO donor to perifused pituitary cells also led to a rapid cGMP release. Calcium-mobilizing agonists TRH and GnRH slightly increased basal cGMP production, but only when added in high concentrations. In contrast, adenylyl cyclase agonists GHRH and CRF induced a robust increase in cGMP production, with EC(50)s in the physiological concentration range. As in cells overexpressing inducible NOS, the stimulatory action of GHRH and CRF was preserved in cells bathed in calcium-deficient medium, but was not associated with a measurable increase in NO production. These results indicate that sGC is present in secretory anterior pituitary cells and is regulated in an NO-dependent manner through constitutively expressed neuronal and endothelial NOS and transiently expressed inducible NOS, as well as independently of NO by adenylyl cyclase coupled-receptors.
Collapse
Affiliation(s)
- T S Kostic
- Endocrinology and Reproduction Research Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-4510, USA
| | | | | |
Collapse
|
30
|
Gobbetti A, Zerani M. In vitro nitric oxide effects on basal and gonadotropin-releasing hormone-induced gonadotropin secretion by pituitary gland of male crested newt (Triturus carnifex) during the annual reproductive cycle. Biol Reprod 1999; 60:1217-23. [PMID: 10208987 DOI: 10.1095/biolreprod60.5.1217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The objective of this study was to test the possible nitric oxide (NO) involvement in pituitary gonadotropin secretion in the male crested newt, Triturus carnifex. Pituitaries were incubated in vitro with medium alone, GnRH, NO donor (NOd, sodium nitroprusside), NO synthase inhibitor (NOSi, Nomega-nitro-L-arginine methyl ester), cGMP analogue (cGMPa, 8-bromo-cGMP), soluble guanylate cyclase inhibitor (sGCi, cystamine), GnRH plus NOSi, GnRH plus sGCi, and NOd plus sGCi during the annual reproductive cycle: pre-reproduction, reproduction (noncourtship and courtship), and the refractory, recovery, and estivation periods. To determine pituitary gonadotropin secretion indirectly, newt testes were superfused in vitro with preincubated pituitaries, and androgen release was determined. NO synthase (NOS) activity and cGMP levels were assessed in the preincubated pituitaries. Medium alone- and GnRH-preincubated pituitary increased androgen secretion during pre-reproduction, noncourtship, courtship, and recovery; the GnRH-induced increase was higher than the medium alone-induced increase during pre-reproduction, noncourtship, and recovery. NOd and cGMPa increased androgens in all reproductive phases considered except courtship; the NOd- and cGMP-induced increase was higher than the medium alone-induced increase during pre-reproduction, noncourtship, and recovery. NOS activity was highest during courtship and lowest during the refractory and estivation periods. GnRH increased NOS activity during pre-reproduction, noncourtship, and recovery. Cyclic GMP levels were highest during courtship and lowest during the refractory period and estivation. GnRH increased cGMP levels during pre-reproduction, noncourtship, and recovery, while NOd did so during all reproductive phases considered. These results suggest that basal and GnRH-induced gonadotropin secretion are up-regulated by NO in the pituitary gland of the male Triturus carnifex.
Collapse
Affiliation(s)
- A Gobbetti
- Department of Molecular, Cellular, and Animal Biology, University of Camerino, 62032 Camerino, Italy.
| | | |
Collapse
|
31
|
Abstract
There are several lines of evidence that point to peptides participating in the regulation of LH and/or FSH levels by action at the pituitary. This evidence includes altered secretion of gonadotropins from the anterior pituitary cells or tissue in vitro when exposed to the peptide. Additionally, modification of GnRH-stimulated LH/FSH secretion has been observed. Furthermore, there is potential for a separately modulated interaction with the primed response. Another potential of action is by interaction among non-GnRH peptides on gonadotropin-regulating processes, although there are no good data available on this aspect. Other observations, consistent with a pituitary role for the peptides in modulation of LH, include detection of the peptides in portal blood, detection of high-affinity receptors or receptor mRNA in the pituitary, and detection of intrapituitary peptide or peptide mRNA in the pituitary. The modulation by steroids of both concentrations and type of activities provides a further level of physiological refinement. There is, however, some confusion regarding the involvement of these peptides in gonadotropin control. The reasons can be seen by considering aspects of investigations. There are experimental variations such as 1) species studied, e.g., NPY has been reported to have an effect on LH secretion from rat cells (168) but not on sheep anterior pituitary tissue (64), and substance P inhibits GnRH-stimulated release from rat cells (182) but potentiates the response in prepubertal porcine cells (92); 2) the steroidal conditions under which the study is performed, e.g., NPY has opposite effects in certain endocrine environments, augmenting GnRH-stimulated LH release in proestrus-like conditions (168), and inhibiting in metestrus-like environment (66); 3) the type of cell preparation, e.g., responsiveness to substance P might depend on whether cells in overnight culture were in separated or clustered state (91); 4) the time course considered, e.g., oxytocin that might induce marked LH release from pituitary cells after a longer length of incubation than GnRH requires (68); 5) length of exposure to peptide, e.g., endothelin that augmented or inhibited GnRH-stimulated LH release (50); 6) In addition, it is possible that the traditional endpoint selected in such studies, namely, observation of gonadotropin secretion, is not necessarily the most important for these peptides (56, 81, 117). Unfortunately, at this stage a definitive answer to the question "What do the peptides actually do?" cannot be provided and we remain tantalized by the glimpses of potential roles. Perhaps in a few years an updated review will be able to include a more complete answer. It is necessary for the full understanding of LH control that not only the properties of the peptides in isolation be characterized but also their interactions.
Collapse
Affiliation(s)
- J J Evans
- University Department of Obstetrics and Gynaecology, Christchurch School of Medicine, New Zealand.
| |
Collapse
|