1
|
Li W, Ye C, He M, Ko WKW, Cheng CHK, Chan YW, Wong AOL. Differential involvement of cAMP/PKA-, PLC/PKC- and Ca 2+/calmodulin-dependent pathways in GnRH-induced prolactin secretion and gene expression in grass carp pituitary cells. Front Endocrinol (Lausanne) 2024; 15:1399274. [PMID: 38894746 PMCID: PMC11183098 DOI: 10.3389/fendo.2024.1399274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/13/2024] [Indexed: 06/21/2024] Open
Abstract
Gonadotropin-releasing hormone (GnRH) is a key stimulator for gonadotropin secretion in the pituitary and its pivotal role in reproduction is well conserved in vertebrates. In fish models, GnRH can also induce prolactin (PRL) release, but little is known for the corresponding effect on PRL gene expression as well as the post-receptor signalling involved. Using grass carp as a model, the functional role of GnRH and its underlying signal transduction for PRL regulation were examined at the pituitary level. Using laser capture microdissection coupled with RT-PCR, GnRH receptor expression could be located in carp lactotrophs. In primary cell culture prepared from grass carp pituitaries, the native forms of GnRH, GnRH2 and GnRH3, as well as the GnRH agonist [D-Arg6, Pro9, NEt]-sGnRH were all effective in elevating PRL secretion, PRL mRNA level, PRL cell content and total production. In pituitary cells prepared from the rostral pars distalis, the region in the carp pituitary enriched with lactotrophs, GnRH not only increased cAMP synthesis with parallel CREB phosphorylation and nuclear translocation but also induced a rapid rise in cytosolic Ca2+ by Ca2+ influx via L-type voltage-sensitive Ca2+ channel (VSCC) with subsequent CaM expression and NFAT2 dephosphorylation. In carp pituitary cells prepared from whole pituitaries, GnRH-induced PRL secretion was reduced/negated by inhibiting cAMP/PKA, PLC/PKC and Ca2+/CaM/CaMK-II pathways but not the signalling events via IP3 and CaN/NFAT. The corresponding effect on PRL mRNA expression, however, was blocked by inhibiting cAMP/PKA/CREB/CBP and Ca2+/CaM/CaN/NFAT2 signalling but not PLC/IP3/PKC pathway. At the pituitary cell level, activation of cAMP/PKA pathway could also induce CaM expression and Ca2+ influx via VSCC with parallel rises in PRL release and gene expression in a Ca2+/CaM-dependent manner. These findings, as a whole, suggest that the cAMP/PKA-, PLC/PKC- and Ca2+/CaM-dependent cascades are differentially involved in GnRH-induced PRL secretion and PRL transcript expression in carp lactotrophs. During the process, a functional crosstalk between the cAMP/PKA- and Ca2+/CaM-dependent pathways may occur with PRL release linked with CaMK-II and PKC activation and PRL gene transcription caused by nuclear action of CREB/CBP and CaN/NFAT2 signalling.
Collapse
Affiliation(s)
- Wensheng Li
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Cheng Ye
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Mulan He
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Wendy K. W. Ko
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Christopher H. K. Cheng
- School of Biomedical Sciences, Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Ying Wai Chan
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Anderson O. L. Wong
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
2
|
Hassan HA, Essawi ML, Mekkawy MK, Mazen I. Novel mutations of the LHCGR gene in two families with 46,XY DSD causing Leydig cell hypoplasia I. Hormones (Athens) 2020; 19:573-579. [PMID: 32666356 DOI: 10.1007/s42000-020-00226-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/21/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE Leydig cell hypoplasia is a rare autosomal recessive 46,XY disorder of sexual development (DSD). It is caused by homozygous or compound heterozygous inactivating mutations in the human luteinizing hormone/chorionic gonadotropin hormone receptor (LHCGR) gene. In Leydig cell hypoplasia type I, patients are characterized by predominantly female external genitalia, which usually go unrecognized until the age of puberty. METHODS This study reports three patients descending from two unrelated families. We performed clinical, hormonal, histopathological, molecular, and bioinformatics studies for the studied cases. RESULTS All investigations suggested 46,XY DSD and Leydig cell hypoplasia. Molecular analysis showed two novel homozygous inactivating mutations (p.Glu148Ter and p.Leu104Pro) within the extracellular domain of the LHCGR gene. CONCLUSION Although the mutations of the LHCGR gene are distributed heterogeneously, without hotspot or recurrent mutations, about one fifth of the reported mutations worldwide have been detected in Arab patients. This is probably due to the high consanguinity rate in these populations, which increases the percentage of autosomal recessive disorders and the homozygous LHCGR gene mutations.
Collapse
Affiliation(s)
- Heba Amin Hassan
- Medical Molecular Genetics Department, Division of Human Genetics and Genome Research, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12311, Egypt.
| | - M L Essawi
- Medical Molecular Genetics Department, Division of Human Genetics and Genome Research, National Research Centre, 33 El Buhouth St., Dokki, Cairo, 12311, Egypt
| | - M K Mekkawy
- Human Cytogenetics Department, Division of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| | - I Mazen
- Clinical Genetics Department, Division of Human Genetics and Genome Research, National Research Centre, Cairo, Egypt
| |
Collapse
|
3
|
Seyedabadi M, Ghahremani MH, Albert PR. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol Ther 2019; 200:148-178. [PMID: 31075355 DOI: 10.1016/j.pharmthera.2019.05.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 04/26/2019] [Indexed: 02/07/2023]
Abstract
G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Originally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein transducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral factors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated 'biased signaling'. In this regard, receptor sequence alignment and mutagenesis have helped to identify key receptor domains for receptor/transducer specificity. Furthermore, molecular structures of GPCRs bound to different ligands or transducers have provided detailed insights into mechanisms of coupling selectivity. However, receptor dimerization, compartmentalization, and trafficking, receptor-transducer-effector stoichiometry, and ligand residence and exposure times can each affect GPCR coupling. Extrinsic factors including cell type or assay conditions can also influence receptor signaling. Understanding these factors may lead to the development of improved biased ligands with the potential to enhance therapeutic benefit, while minimizing adverse effects. In this review, evidence for ligand-specific GPCR signaling toward different transducers or pathways is elaborated. Furthermore, molecular determinants of biased signaling toward these pathways and relevant examples of the potential clinical benefits and pitfalls of biased ligands are discussed.
Collapse
Affiliation(s)
- Mohammad Seyedabadi
- Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran; Education Development Center, Bushehr University of Medical Sciences, Iran
| | | | - Paul R Albert
- Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada.
| |
Collapse
|
4
|
Chang JP, Pemberton JG. Comparative aspects of GnRH-Stimulated signal transduction in the vertebrate pituitary - Contributions from teleost model systems. Mol Cell Endocrinol 2018; 463:142-167. [PMID: 28587765 DOI: 10.1016/j.mce.2017.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 02/07/2023]
Abstract
Gonadotropin-releasing hormone (GnRH) is a major regulator of reproduction through actions on pituitary gonadotropin release and synthesis. Although it is often thought that pituitary cells are exposed to only one GnRH, multiple GnRH forms are delivered to the pituitary of teleost fishes; interestingly this can include the cGnRH-II form usually thought to be non-hypophysiotropic. GnRHs can regulate other pituitary cell-types, both directly as well as indirectly, and multiple GnRH receptors (GnRHRs) may also be expressed in the pituitary, and even within a single pituitary cell-type. Literature on the differential actions of native GnRH isoforms in primary pituitary cells is largely derived from teleost fishes. This review will outline the diversity and complexity of GnRH-GnRHR signal transduction found within vertebrate gonadotropes as well as extra-gonadotropic sites with special emphasis on comparative studies from fish models. The implications that GnRHR transduction mechanisms are GnRH isoform-, function-, and cell-specific are also discussed.
Collapse
Affiliation(s)
- John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Joshua G Pemberton
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Forfar R, Lu ZL. Role of the transmembrane domain 4/extracellular loop 2 junction of the human gonadotropin-releasing hormone receptor in ligand binding and receptor conformational selection. J Biol Chem 2011; 286:34617-26. [PMID: 21832286 DOI: 10.1074/jbc.m111.240341] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent crystal structures of G protein-coupled receptors (GPCRs) show the remarkable structural diversity of extracellular loop 2 (ECL2), implying its potential role in ligand binding and ligand-induced receptor conformational selectivity. Here we have applied molecular modeling and mutagenesis studies to the TM4/ECL2 junction (residues Pro(174(4.59))-Met(180(4.66))) of the human gonadotropin-releasing hormone (GnRH) receptor, which uniquely has one functional type of receptor but two endogenous ligands in humans. We suggest that the above residues assume an α-helical extension of TM4 in which the side chains of Gln(174(4.60)) and Phe(178(4.64)) face toward the central ligand binding pocket to make H-bond and aromatic contacts with pGlu(1) and Trp(3) of both GnRH I and GnRH II, respectively. The interaction between the side chains of Phe(178(4.64)) of the receptor and Trp(3) of the GnRHs was supported by reciprocal mutations of the interacting residues. Interestingly, alanine mutations of Leu(175(4.61)), Ile(177(4.63)), and Met(180(4.66)) decreased mutant receptor affinity for GnRH I but, in contrast, increased affinity for GnRH II. This suggests that these residues make intramolecular or intermolecular contacts with residues of transmembrane (TM) domain 3, TM5, or the phospholipid bilayer, which couple the ligand structure to specific receptor conformational switches. The marked decrease in signaling efficacy of I177A and F178A also indicates that IIe(177(4.63)) and Phe(178(4.64)) are important in stabilizing receptor-active conformations. These findings suggest that the TM4/ECL2 junction is crucial for peptide ligand binding and, consequently, for ligand-induced receptor conformational selection.
Collapse
Affiliation(s)
- Rachel Forfar
- MRC Technology, Mill Hill, London NW7 1AD, United Kingdom
| | | |
Collapse
|
6
|
Thomas RM, Nechamen CA, Mazurkiewicz JE, Ulloa-Aguirre A, Dias JA. The adapter protein APPL1 links FSH receptor to inositol 1,4,5-trisphosphate production and is implicated in intracellular Ca(2+) mobilization. Endocrinology 2011; 152:1691-701. [PMID: 21285318 PMCID: PMC3060640 DOI: 10.1210/en.2010-1353] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
FSH binds to its receptor (FSHR) on target cells in the ovary and testis, to regulate oogenesis and spermatogenesis, respectively. The signaling cascades activated after ligand binding are extremely complex and have been shown to include protein kinase A, mitogen-activated protein kinase, phosphatidylinositol 3-kinase/protein kinase B, and inositol 1,4,5-trisphosphate-mediated calcium signaling pathways. The adapter protein APPL1 (Adapter protein containing Pleckstrin homology domain, Phosphotyrosine binding domain and Leucine zipper motif), which has been linked to an assortment of other signaling proteins, was previously identified as an interacting protein with FSHR. Thus, alanine substitution mutations in the first intracellular loop of FSHR were generated to determine which residues are essential for FSHR-APPL1 interaction. Three amino acids were essential; when any one of them was altered, APPL1 association with FSHR mutants was abrogated. Two of the mutants (L377A and F382A) that displayed poor cell-surface expression were not studied further. Substitution of FSHR-K376A did not affect FSH binding or agonist-stimulated cAMP production in either transiently transfected human embryonic kidney cells or virally transduced human granulosa cells (KGN). In the KGN line, as well as primary cultures of rat granulosa cells transduced with wild type or mutant receptor, FSH-mediated progesterone or estradiol production was not affected by the mutation. However, in human embryonic kidney cells inositol 1,4,5-trisphosphate production was curtailed and KGN cells transduced with FSHR-K376A evidenced reduced Ca(2+) mobilization from intracellular stores after FSH treatment.
Collapse
Affiliation(s)
- Richard M Thomas
- Wadsworth Center, New York State Department of Health, Albany, New York 12237, USA
| | | | | | | | | |
Collapse
|
7
|
González-Flores O, Gómora-Arrati P, Garcia-Juárez M, Gómez-Camarillo MA, Lima-Hernández FJ, Beyer C, Etgen AM. Nitric oxide and ERK/MAPK mediation of estrous behavior induced by GnRH, PGE2 and db-cAMP in rats. Physiol Behav 2009; 96:606-12. [PMID: 19162055 DOI: 10.1016/j.physbeh.2008.12.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2008] [Revised: 12/16/2008] [Accepted: 12/17/2008] [Indexed: 01/27/2023]
Abstract
We tested the hypothesis that GnRH, PGE2 and db-cAMP act via the nitric oxide (NO)-cGMP and MAPK pathways to facilitate estrous behavior (lordosis and proceptivity) in estradiol-primed female rats. Estradiol-primed rats received intracerebroventricular (icv) infusions of pharmacological antagonists of NO synthase (L-NAME), NO-dependent soluble guanylyl cyclase (ODQ), protein kinase G (KT5823), or the ERK1/2 inhibitor PD98059 15 min before icv administration of 50 ng of GnRH, 1 microg of PGE2 or 1 microg of db-cAMP. Icv infusions of GnRH, PGE2 and db-cAMP enhanced estrous behavior at 1 and 2 h after drug administration. Both L-NAME and ODQ blocked the estrous behavior induced by GnRH, PGE2 and db-cAMP at some of the times tested. The protein kinase G inhibitor KT5823 reduced PGE2 and db-cAMP facilitation of estrous behavior but did not affect the behavioral response to GnRH. In contrast, PD98059 blocked the estrous behavior induced by all three compounds. These data support the hypothesis that the NO-cGMP and ERK/MAPK pathways are involved in the lordosis and proceptive behaviors induced by GnRH, PGE2 and db-cAMP. However, cGMP mediation of GnRH-facilitated estrous behavior is independent of protein kinase G.
Collapse
Affiliation(s)
- Oscar González-Flores
- Centro de Investigación en Reproducción Animal, Universidad Autónoma de Tlaxcala-CINVESTAV, Apdo. Postal 62, Tlaxcala 90000, Mexico
| | | | | | | | | | | | | |
Collapse
|
8
|
Jardón-Valadez E, Ulloa-Aguirre A, Piñeiro A. Modeling and molecular dynamics simulation of the human gonadotropin-releasing hormone receptor in a lipid bilayer. J Phys Chem B 2008; 112:10704-13. [PMID: 18680336 DOI: 10.1021/jp800544x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In the present study, a model for the human gonadotropin-releasing hormone receptor embedded in an explicit lipid bilayer was developed. The final conformation was obtained by extensive molecular dynamics simulations of a homology model based on the bovine rhodopsin crystal structure. The analysis of the receptor structure allowed us to detect a number of specific contacts between different amino acid residues, as well as water- and lipid-mediated interactions. These interactions were stable in six additional independent 35 ns long simulations at 310 and 323 K, which used the refined model as the starting structure. All loops, particularly the extracellular loop 2 and the intracellular loop 3, exhibited high fluctuations, whereas the transmembrane helices were more static. Although other models of this receptor have been previously developed, none of them have been subjected to extensive molecular dynamics simulations, and no other three-dimensional structure is publicly available. Our results suggest that the presence of ions as well as explicit solvent and lipid molecules are critical for the structure of membrane protein models, and that molecular dynamics simulations are certainly useful for their refinement.
Collapse
Affiliation(s)
- Eduardo Jardón-Valadez
- Research Unit in Reproductive Medicine, Hospital de Ginecobstetricia Luis Castelazo Ayala, Instituto Mexicano del Seguro Social, Mexico D.F. 01090, Mexico
| | | | | |
Collapse
|
9
|
Ford CP, Wong KV, Lu VB, Posse de Chaves E, Smith PA. Differential neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron. J Neurophysiol 2008; 99:1319-32. [PMID: 18216230 DOI: 10.1152/jn.00966.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Adult neuronal phenotype is maintained, at least in part, by the sensitivity of individual neurons to a specific selection of neurotrophic factors and the availability of such factors in the neurons' environment. Nerve growth factor (NGF) increases the functional expression of Na(+) channel currents (I(Na)) and both N- and L-type Ca(2+) currents (I(Ca,N) and I(Ca,L)) in adult bullfrog sympathetic ganglion (BFSG) B-neurons. The effects of NGF on I(Ca) involve the mitogen-activated protein kinase (MAPK) pathway. Prolonged exposure to the ganglionic neurotransmitter luteinizing hormone releasing hormone (LHRH) also increases I(Ca,N) but the transduction mechanism remains to be elucidated as does the transduction mechanism for NGF regulation of Na(+) channels. We therefore exposed cultured BFSG B-neurons to chicken II LHRH (0.45 microM; 6-9 days) or to NGF (200 ng/ml; 9-10 days) and used whole cell recording, immunoblot analysis, and ras or rap-1 pulldown assays to study effects of various inhibitors and activators of transduction pathways. We found that 1) LHRH signals via ras-MAPK to increase I(Ca,N), 2) this effect is mediated via protein kinase C-beta (PKC-beta-IotaIota), 3) protein kinase A (PKA) is necessary but not sufficient to effect transduction, 4) NGF signals via phosphatidylinositol 3-kinase (PI3K) to increase I(Na), and 5) long-term exposure to LHRH fails to affect I(Na). Thus downstream signaling from LHRH has access to the ras-MAPK pathway but not to the PI3K pathway. This allows for differential retrograde and anterograde neurotrophic regulation of sodium and calcium channels in an adult sympathetic neuron.
Collapse
Affiliation(s)
- Christopher P Ford
- Centre for Neuroscience and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | |
Collapse
|
10
|
Stewart AJ, Sellar R, Wilson DJ, Millar RP, Lu ZL. Identification of a novel ligand binding residue Arg38(1.35) in the human gonadotropin-releasing hormone receptor. Mol Pharmacol 2008; 73:75-81. [PMID: 17942747 DOI: 10.1124/mol.107.040816] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Delineation of peptide ligand binding sites is of fundamental importance in rational drug design and in understanding ligand-induced receptor activation. Molecular modeling and ligand docking to previously experimentally identified binding sites revealed a putative novel interaction between the C terminus of gonadotropin-releasing hormone (GnRH) and Arg(38(1.35)), located at the extracellular end of transmembrane domain 1 of the human GnRH receptor. Mutation of Arg(38(1.35)) to alanine resulted in 989- and 1268-fold reduction in affinity for GnRH I and GnRH II, respectively, the two endogenous ligands. Conservative mutation of Arg(38(1.35)) to lysine had less effect, giving reduced affinities of GnRH I and GnRH II by 24- and 54-fold, respectively. To test whether Arg(38(1.35)) interacts with the C-terminal Gly(10)-NH(2) of GnRH, binding of GnRH analogs with substitution of the C-terminal glycinamide with ethylamide ([Pro(9)-NHEt]GnRH) was studied with wild-type and Arg(38(1.35)) mutant receptors. Mutation of Arg(38(1.35)) to lysine or alanine had much smaller effect on receptor affinity for [Pro(9)-NHEt]GnRH analogs and no effect on binding affinity of peptide antagonist cetrorelix. In parallel with the decreased affinity, the mutants also gave a decreased potency to GnRH-elicited inositol phosphate (IP) responses. The mutant receptors had effects on [Pro(9)-NHEt]GnRH-elicited IP responses similar to that of the parent GnRHs. These findings indicate that Arg(38(1.35)) of the GnRH receptor is essential for high-affinity binding of GnRH agonists and stabilizing the receptor active conformation. The mutagenesis results support the prediction of molecular modeling that Arg(38(1.35)) interacts with the C-terminal glycinamide and probably forms hydrogen bonds with the backbone carbonyl of Pro(9) and Gly(10)-NH(2).
Collapse
Affiliation(s)
- Alan J Stewart
- MRC Human Reproductive Sciences Unit, Centre for Reproductive Biology, The Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, United Kingdom
| | | | | | | | | |
Collapse
|
11
|
Jeong KH, Chin WW, Kaiser UB. Essential role of the homeodomain for pituitary homeobox 1 activation of mouse gonadotropin-releasing hormone receptor gene expression through interactions with c-Jun and DNA. Mol Cell Biol 2004; 24:6127-39. [PMID: 15226417 PMCID: PMC434250 DOI: 10.1128/mcb.24.14.6127-6139.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 10/21/2003] [Accepted: 02/23/2004] [Indexed: 11/20/2022] Open
Abstract
The gonadotropin-releasing hormone receptor (GnRHR) is expressed primarily in the gonadotropes of the anterior pituitary. Pituitary homeobox 1 (Pitx-1) has been shown to activate pituitary-specific gene expression by direct DNA binding and/or protein-protein interaction with other transcription factors. We hypothesized that Pitx-1 might also dictate tissue-specific expression of the mouse GnRHR (mGnRHR) gene in a similar manner. Pitx-1 activated the mGnRHR gene promoter, and transactivation was localized to sequences between -308 and -264. Pitx-1 bound to this region only with low affinity. This region includes an activating protein 1 (AP-1) site, which was previously shown to be important for mGnRHR gene expression. Further characterization indicated that an intact AP-1 site was required for full Pitx-1 responsiveness. Furthermore, Pitx-1 and AP-1 were synergistic in the activation of the mGnRHR gene promoter. A Pitx-1 homeodomain (HD) point mutation, which eliminated DNA binding ability, caused only a partial reduction of transactivation, whereas deletion of the HD completely prevented transactivation. Pitx-1 interacted directly with c-Jun, and the HD was sufficient for this interaction. While the point mutation in the Pitx-1 HD did not affect interaction with c-Jun, deletion of the HD eliminated the interaction. Taken together, our studies indicate that Pitx-1 can direct transactivation of the mGnRHR gene, in part by DNA binding and in part by an action of Pitx-1 as a cofactor for AP-1, augmenting AP-1 activity through a novel protein-protein interaction between c-Jun and the HD of Pitx-1.
Collapse
Affiliation(s)
- Kyeong-Hoon Jeong
- Division of Endocrinology, Diabetes, and Hypertension, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | |
Collapse
|
12
|
Abstract
GnRH and its analogs are used extensively for the treatment of hormone-dependent diseases and assisted reproductive techniques. They also have potential as novel contraceptives in men and women. A thorough delineation of the molecular mechanisms involved in ligand binding, receptor activation, and intracellular signal transduction is kernel to understanding disease processes and the development of specific interventions. Twenty-three structural variants of GnRH have been identified in protochordates and vertebrates. In many vertebrates, three GnRHs and three cognate receptors have been identified with distinct distributions and functions. In man, the hypothalamic GnRH regulates gonadotropin secretion through the pituitary GnRH type I receptor via activation of G(q). In-depth studies have identified amino acid residues in both the ligand and receptor involved in binding, receptor activation, and translation into intracellular signal transduction. Although the predominant coupling of the type I GnRH receptor in the gonadotrope is through productive G(q) stimulation, signal transduction can occur via other G proteins and potentially by G protein-independent means. The eventual selection of intracellular signaling may be specifically directed by variations in ligand structure. A second form of GnRH, GnRH II, conserved in all higher vertebrates, including man, is present in extrahypothalamic brain and many reproductive tissues. Its cognate receptor has been cloned from various vertebrate species, including New and Old World primates. The human gene homolog of this receptor, however, has a frame-shift and stop codon, and it appears that GnRH II signaling occurs through the type I GnRH receptor. There has been considerable plasticity in the use of different GnRHs, receptors, and signaling pathways for diverse functions. Delineation of the structural elements in GnRH and the receptor, which facilitate differential signaling, will contribute to the development of novel interventive GnRH analogs.
Collapse
Affiliation(s)
- Robert P Millar
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, United Kingdom.
| | | | | | | | | | | |
Collapse
|
13
|
Liu F, Usui I, Evans LG, Austin DA, Mellon PL, Olefsky JM, Webster NJG. Involvement of both G(q/11) and G(s) proteins in gonadotropin-releasing hormone receptor-mediated signaling in L beta T2 cells. J Biol Chem 2002; 277:32099-108. [PMID: 12050161 PMCID: PMC2930616 DOI: 10.1074/jbc.m203639200] [Citation(s) in RCA: 143] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The hypothalamic hormone gonadotropin-releasing hormone (GnRH) stimulates the synthesis and release of the pituitary gonadotropins. GnRH acts through a plasma membrane receptor that is a member of the G protein-coupled receptor (GPCR) family. These receptors interact with heterotrimeric G proteins to initiate downstream signaling. In this study, we have investigated which G proteins are involved in GnRH receptor-mediated signaling in L beta T2 pituitary gonadotrope cells. We have shown previously that GnRH activates ERK and induces the c-fos and LH beta genes in these cells. Signaling via the G(i) subfamily of G proteins was excluded, as neither ERK activation nor c-Fos and LH beta induction was impaired by treatment with pertussis toxin or a cell-permeable peptide that sequesters G beta gamma-subunits. GnRH signaling was partially mimicked by adenoviral expression of a constitutively active mutant of G alpha(q) (Q209L) and was blocked by a cell-permeable peptide that uncouples G alpha(q) from GPCRs. Furthermore, chronic activation of G alpha(q) signaling induced a state of GnRH resistance. A cell-permeable peptide that uncouples G alpha(s) from receptors was also able to inhibit ERK, c-Fos, and LH beta, indicating that both G(q/11) and G(s) proteins are involved in signaling. Consistent with this, GnRH caused GTP loading on G(s) and G(q/11) and increased intracellular cAMP. Artificial elevation of cAMP with forskolin activated ERK and caused a partial induction of c-Fos. Finally, treatment of G alpha(q) (Q209L)-infected cells with forskolin enhanced the induction of c-Fos showing that the two pathways are independent and additive. Taken together, these results indicate that the GnRH receptor activates both G(q) and G(s) signaling to regulate gene expression in L beta T2 cells.
Collapse
Affiliation(s)
- Fujun Liu
- Department of Medicine, University of California, San Diego, California 92093
| | - Isao Usui
- Department of Medicine, University of California, San Diego, California 92093
| | - Lui Guojing Evans
- Medical Research Service and San Diego Veterans Healthcare System, San Diego, California 92161
| | - Darrell A. Austin
- Medical Research Service and San Diego Veterans Healthcare System, San Diego, California 92161
| | - Pamela L. Mellon
- Department of Reproductive Medicine, University of California, San Diego, California 92093
- UCSD Cancer Center, University of California, San Diego, California 92093
| | - Jerrold M. Olefsky
- Department of Medicine, University of California, San Diego, California 92093
| | - Nicholas J. G. Webster
- Department of Medicine, University of California, San Diego, California 92093
- UCSD Cancer Center, University of California, San Diego, California 92093
- Medical Research Service and San Diego Veterans Healthcare System, San Diego, California 92161
- To whom correspondence should be addressed: Dept. of Medicine 0673, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093-0673.
| |
Collapse
|
14
|
Cheng KW, Leung PCK. The expression, regulation and signal transduction pathways of the mammalian gonadotropin-releasing hormone receptor. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y00-096] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal mammalian sexual maturation and reproductive functions require the integration and precise coordination of hormones at the hypothalamic, pituitary, and gonadal levels. Hypothalamic gonadotropin-releasing hormone (GnRH) is a key regulator in this system; after binding to its receptor (GnRHR), it stimulates de novo synthesis and release of gonadotropins in anterior pituitary gonadotropes. Since the isolation of the GnRHR cDNA, the expression of GnRHR mRNA has been detected not only in the pituitary, but also in extrapituitary tissues, including the ovary and placenta. It has been shown that change in GnRHR mRNA is one of the mechanisms for regulating the expression of the GnRHR. To help understand the molecular mechanism(s) involved in transcriptional regulation of the GnRHR gene, the 5' flanking region of the GnRHR gene has recently been isolated. Initial characterization studies have identified several DNA regions in the GnRHR 5' flanking region which are responsible for both basal expression and GnRH-mediated homologous regulation of this gene in pituitary cells. The mammalian GnRHR lacks a C-terminus and possesses a relatively short third intracellular loop; both features are important in desensitization of many others G-protein coupled receptors (GPCRs), Homologous desensitization of GnRHR has been shown to be regulated by various serine-threonine protein kinases including protein kinase A (PKA) and protein kinase C (PKC), as well as by G-protein coupled receptor kinases (GRKs). Furthermore, GnRHR was demonstrated to couple with multiple G proteins (Gq/11, Gs, and Gi), and to activate cascades that involved the PKC, PKA, and mitogen-activator protein kinases. These results suggest the diversity of GnRHR-G protein coupling and signal transduction systems. The identification of second form of GnRH (GnRH-II) in mammals adds to the complexity of the GnRH-GnRHR system. This review summaries our recent progress in understanding the regulation of GnRHR gene expression and the GnRHR signal transduction pathways.Key words: gonadotropin-releasing hormone receptor, transcriptional regulation, desensitization, signal transduction.
Collapse
|
15
|
Grosse R, Schmid A, Schöneberg T, Herrlich A, Muhn P, Schultz G, Gudermann T. Gonadotropin-releasing hormone receptor initiates multiple signaling pathways by exclusively coupling to G(q/11) proteins. J Biol Chem 2000; 275:9193-200. [PMID: 10734055 DOI: 10.1074/jbc.275.13.9193] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The agonist-bound gonadotropin-releasing hormone (GnRH) receptor engages several distinct signaling cascades, and it has recently been proposed that coupling of a single type of receptor to multiple G proteins (G(q), G(s), and G(i)) is responsible for this behavior. GnRH-dependent signaling was studied in gonadotropic alphaT3-1 cells endogenously expressing the murine receptor and in CHO-K1 (CHO#3) and COS-7 cells transfected with the human GnRH receptor cDNA. In all cell systems studied, GnRH-induced phospholipase C activation and Ca(2+) mobilization was pertussis toxin-insensitive, as was GnRH-mediated extracellular signal-regulated kinase activation. Whereas the G(i)-coupled m2 muscarinic receptor interacted with a chimeric G(s) protein (G(s)i5) containing the C-terminal five amino acids of Galpha(i2), the human GnRH receptor was unable to activate the G protein chimera. GnRH challenge of alphaT3-1, CHO#3 and of GnRH receptor-expressing COS-7 cells did not result in agonist-dependent cAMP formation. GnRH challenge of CHO#3 cells expressing a cAMP-responsive element-driven firefly luciferase did not result in increased reporter gene expression. However, coexpression of the human GnRH receptor and adenylyl cyclase I in COS-7 cells led to clearly discernible GnRH-dependent cAMP formation subsequent to GnRH-elicited rises in [Ca(2+)](i). In alphaT3-1 and CHO#3 cell membranes, addition of [alpha-(32)P]GTP azidoanilide resulted in GnRH receptor-dependent labeling of Galpha(q/11) but not of Galpha(i), Galpha(s) or Galpha(12/13) proteins. Thus, the murine and human GnRH receptors exclusively couple to G proteins of the G(q/11) family. Multiple GnRH-dependent signaling pathways are therefore initiated downstream of the receptor/G protein interface and are not indicative of a multiple G protein coupling potential of the GnRH receptor.
Collapse
Affiliation(s)
- R Grosse
- Institut für Pharmakologie, Freie Universität Berlin, Thielallee 69-73, D-14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
16
|
Chung HO, Yang Q, Catt KJ, Arora KK. Expression and function of the gonadotropin-releasing hormone receptor are dependent on a conserved apolar amino acid in the third intracellular loop. J Biol Chem 1999; 274:35756-62. [PMID: 10585457 DOI: 10.1074/jbc.274.50.35756] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The coupling of agonist-activated heptahelical receptors to their cognate G proteins is often dependent on the amino-terminal region of the third intracellular loop. Like many G protein-coupled receptors, the gonadotropin-releasing hormone (GnRH) receptor contains an apolar amino acid in this region at a constant distance from conserved Pro and Tyr/Asn residues in the fifth transmembrane domain (TM V). An analysis of the role of this conserved residue (Leu(237)) in GnRH receptor function revealed that the binding affinities of the L237I and L237V mutant receptors were unchanged, but their abilities to mediate GnRH-induced inositol phosphate signaling, G protein coupling, and agonist-induced internalization were significantly impaired. Receptor expression at the cell surface was reduced by replacement of Leu(237) with Val, and abolished by replacement with Ala, Arg, or Asp residues. These results are consistent with molecular modeling of the TM V and VI regions of the GnRH receptor, which predicts that Leu(237) is caged by several apolar amino acids (Ile(233), Ile(234), and Val(240) in TM V, and Leu(262), Leu(265), and Val(269) in TM VI) to form a tight hydrophobic cluster. These findings indicate that the conserved apolar residue (Leu(237)) in the third intracellular loop is an important determinant of GnRH receptor expression and activation, and possibly that of other G protein-coupled receptors.
Collapse
Affiliation(s)
- H O Chung
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
17
|
Han XB, Conn PM. The role of protein kinases A and C pathways in the regulation of mitogen-activated protein kinase activation in response to gonadotropin-releasing hormone receptor activation. Endocrinology 1999; 140:2241-51. [PMID: 10218977 DOI: 10.1210/endo.140.5.6707] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
There is convincing evidence that mitogen-activated protein kinase (MAPK) activation is coupled to both receptor tyrosine kinase and G protein-coupled receptors. The presence of the epidermal growth factor (EGF) receptor and the GnRH receptor on the surface of GGH(3)1' cells makes this cell line a good model for the assessment of MAPK activation by receptor tyrosine kinases and G protein-coupled receptors. In this study, to assess the activated and total (i.e. activated plus inactivated) MAPK, the phosphorylation state of p44 and p42 MAPKs was examined using antisera that distinguish phospho-p44/42 MAPK (Thr202/Tyr204) from p44/42 MAPK (phosphorylation state independent). The data show that both EGF (200 ng/ml) and Buserelin (a GnRH agonist; 10 ng/ml) provoke rapid activation of MAPK (within 5 and 15 min, respectively) after binding to their receptors. The role of protein kinase A (PKA) and protein kinase C (PKC) signal transduction pathways in mediating MAPK activation was also assessed. Both phorbol ester (phorbol 12-myristate 13-acetate; 10 ng/ml) and (Bu)2cAMP (1 mM) trigger the phosphorylation of MAPK, suggesting potential roles for PKC and PKA signaling events in MAPK activation in GGH(3)1' cells. Treatment of PKC-depleted cells with Buserelin activated MAPK, suggesting involvement of PKC-independent signal transduction pathways in MAPK activation in response to GnRH. Similarly, treatment of PKC-depleted cells with forskolin (50 microM) or cholera toxin (100 ng/ml) stimulated MAPK activation, whereas pertussis toxin (100 ng/ml) had no measurable effect. To further assess the role of PKA in response to EGF and Buserelin, cells were treated with EGF (200 ng/ml) for 3 min or with Buserelin (10 ng/ml) for 10 min after pretreatment with 3-isobutyl-1-methylxanthine (0.5 mM), forskolin (50 microM), or (Bu)2cAMP (1 mM) for 15 min. The results show that MAPK can be activated in a PKA-dependent manner in GGH(3)1' cells. Consistent with previous reports, the current data support the view that MAPK activation can be achieved via both PKC- and PKA-dependent signaling pathways triggered by the GnRH receptor that couples to G(q/11) and Gs alpha-subunit proteins. In contrast, G(i/o)alpha does not appear to participate in MAPK activation in GGH(3)1' cells.
Collapse
Affiliation(s)
- X B Han
- Oregon Regional Primate Research Center, Oregon Health Sciences University, Beaverton 97006, USA
| | | |
Collapse
|
18
|
Gilchrist A, Bünemann M, Li A, Hosey MM, Hamm HE. A dominant-negative strategy for studying roles of G proteins in vivo. J Biol Chem 1999; 274:6610-6. [PMID: 10037756 DOI: 10.1074/jbc.274.10.6610] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
G proteins play a critical role in transducing a large variety of signals into intracellular responses. Increasingly, there is evidence that G proteins may play other roles as well. Dominant-negative constructs of the alpha subunit of G proteins would be useful in studying the roles of G proteins in a variety of processes, but the currently available dominant-negative constructs, which target Mg2+-binding sites, are rather leaky. A variety of studies have implicated the carboxyl terminus of G protein alpha subunits in both mediating receptor-G protein interaction and in receptor selectivity. Thus we have made minigene plasmid constructs that encode oligonucleotide sequences corresponding to the carboxyl-terminal undecapeptide of Galphai, Galphaq, or Galphas. To determine whether overexpression of the carboxyl-terminal peptide would block cellular responses, we used as a test system the activation of the M2 muscarinic receptor activated K+ channels in HEK 293 cells. The minigenes were transiently transfected along with G protein-regulated inwardly rectifying K+ channels (GIRK) into HEK 293 cells that stably express the M2 muscarinic receptor. The presence of the Galphai carboxyl-terminal peptide results in specific inhibition of GIRK activity in response to agonist stimulation of the M2 muscarinic receptor. The Galphai minigene construct completely blocks agonist-mediated M2 mAChR K+ channel response whereas the control minigene constructs (empty vector, pcDNA3.1, and the Galpha carboxyl peptide in random order, pcDNA-GalphaiR) had no effect on agonist-mediated M2 muscarinic receptor GIRK response. The inhibitory effects of the Galphai minigene construct were specific because overexpression of peptides corresponding to the carboxyl terminus of Galphaq or Galphas had no effect on M2 muscarinic receptor stimulation of the K+ channel.
Collapse
Affiliation(s)
- A Gilchrist
- Institute for Neuroscience, Northwestern University, Chicago, Illinois 60611, USA
| | | | | | | | | |
Collapse
|
19
|
Roberson MS, Zhang T, Li HL, Mulvaney JM. Activation of the p38 mitogen-activated protein kinase pathway by gonadotropin-releasing hormone. Endocrinology 1999; 140:1310-8. [PMID: 10067858 DOI: 10.1210/endo.140.3.6579] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Previous studies have shown that interaction of GnRH with its serpentine, G protein-coupled receptor results in activation of the extracellular signal regulated protein kinase (ERK) and the Jun N-terminal protein kinase (JNK) pathways in pituitary gonadotropes. In the present study, we examined GnRH-stimulated activation of an additional member of the mitogen-activated protein kinase (MAPK) superfamily, p38 MAPK GnRH treatment of alphaT3-1 cells resulted in tyrosine phosphorylation of several intracellular proteins. Separation of phosphorylated proteins by ion exchange chromatography suggested that GnRH receptor stimulation can activate the p38 MAPK pathway. Immunoprecipitation studies using a phospho-tyrosine antibody resulted in increased amounts of immunoprecipitable p38 MAPK from alphaT3-1 cells treated with GnRH. Immunoblot analysis of whole cell lysates using a phospho-specific antibody directed against dual phosphorylated p38 kinase revealed that GnRH-induced phosphorylation of p38 kinase was dose and time dependent and was correlated with increased p38 kinase activity in vitro. Activation of p38 kinase was blocked by chronic phorbol ester treatment, which depletes protein kinase C isozymes alpha and epsilon. Overexpression of p38 MAPK and an activated form of MAPK kinase 6 resulted in activation of c-jun and c-fos reporter genes, but did not alter the expression of the glycoprotein hormone alpha-subunit reporter. Inhibition of p38 activity with SB203580 resulted in attenuation of GnRH-induced c-fos reporter gene expression, but was not sufficient to reduce GnRH-induced c-jun or glycoprotein hormone alpha-subunit promoter activity. These studies provide evidence that the GnRH signaling pathway in alphaT3-1 cells includes protein kinase C-dependent activation of the p38 MAPK pathway. GnRH integration of c-fos promoter activity may include regulation by p38 MAPK.
Collapse
Affiliation(s)
- M S Roberson
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | |
Collapse
|
20
|
Lin X, Janovick JA, Conn PM. Mutations at the consensus phosphorylation sites in the third intracellular loop of the rat gonadotropin-releasing hormone receptor: effects on receptor ligand binding and signal transduction. Biol Reprod 1998; 59:1470-6. [PMID: 9828194 DOI: 10.1095/biolreprod59.6.1470] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In this study, site-directed mutagenesis of potential phosphorylation sites (Thr238, Ser253, and Thr264) for protein kinase C and C-terminal portion (Ala260-Leu265) of the third intracellular loop of the rat GnRH receptor (rGnRHR) was performed to assess the significance of these regions in the function of the GnRHR. Mutation at one or all of the three potential phosphorylation sites had differential effects on receptor ligand binding. Mutation of Ser253 or Thr264 to Ala did not significantly affect the receptor-binding affinity but decreased the number of measurable binding sites. Mutation of Thr238 to Ala or triple mutation of Thr238, Ser253, and Thr264 impaired or abolished receptor-binding affinity. Mutations of the potential phosphorylation sites affected receptor-mediated inositol phospholipid (IP) production and correlated with alterations in receptor binding after mutation, but they did not significantly affect receptor-mediated cAMP production or cAMP-mediated prolactin release. In addition, mutation of Ser253 or Thr264 to Ala did not affect the GnRH-provoked desensitization in terms of GnRH agonist-stimulated IP production. Deletion of the C-terminal portion (Ala260-Leu265) of the third intracellular loop of the rGnRHR, including a potential phosphorylation site (Thr264), abolished the receptor-binding affinity and receptor-mediated signal transduction. Replacement of the deleted C-terminal portion with a C-terminal portion (Ala-Ala-Arg-Thr-Leu-Ser) of the third intracellular loop of the Gq/11-coupled rat M1 muscarinic acetylcholine receptor did not restore receptor function. These results suggest that the potential phosphorylation sites or the region around the phosphorylation site of the third intracellular loop of the GnRHR is important for the structural integrity and expression of the receptor but that phosphorylation at these sites is not required for desensitization.
Collapse
Affiliation(s)
- X Lin
- Oregon Regional Primate Research Center, Beaverton, Oregon 97006, USA
| | | | | |
Collapse
|