1
|
Pilipović I, Stojić-Vukanić Z, Prijić I, Jasnić N, Djordjević J, Leposavić G. β-Adrenoceptor Blockade Moderates Neuroinflammation in Male and Female EAE Rats and Abrogates Sexual Dimorphisms in the Major Neuroinflammatory Pathways by Being More Efficient in Males. Cell Mol Neurobiol 2023; 43:1237-1265. [PMID: 35798933 PMCID: PMC11414456 DOI: 10.1007/s10571-022-01246-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 06/18/2022] [Indexed: 11/03/2022]
Abstract
Our previous studies showed more severe experimental autoimmune encephalomyelitis (EAE) in male compared with female adult rats, and moderating effect of propranolol-induced β-adrenoceptor blockade on EAE in females, the effect associated with transcriptional stimulation of Nrf2/HO-1 axis in spinal cord microglia. This study examined putative sexual dimorphism in propranolol action on EAE severity. Propranolol treatment beginning from the onset of clinical EAE mitigated EAE severity in rats of both sexes, but to a greater extent in males exhibiting higher noradrenaline levels and myeloid cell β2-adrenoceptor expression in spinal cord. This correlated with more prominent stimulatory effects of propranolol not only on CX3CL1/CX3CR1/Nrf2/HO-1 cascade, but also on Stat3/Socs3 signaling axis in spinal cord microglia/myeloid cells (mirrored in the decreased Stat3 and the increased Socs3 expression) from male rats compared with their female counterparts. Propranolol diminished the frequency of activated cells among microglia, increased their phagocyting/endocyting capacity, and shifted cytokine secretory profile of microglia/blood-borne myeloid cells towards an anti-inflammatory/neuroprotective phenotype. Additionally, it downregulated the expression of chemokines (CCL2, CCL19/21) driving T-cell/monocyte trafficking into spinal cord. Consequently, in propranolol-treated rats fewer activated CD4+ T cells and IL-17+ T cells, including CD4+IL17+ cells coexpressing IFN-γ/GM-CSF, were recovered from spinal cord of propranolol-treated rats compared with sex-matched saline-injected controls. All the effects of propranolol were more prominent in males. The study as a whole disclosed that sexual dimorphism in multiple molecular mechanisms implicated in EAE development may be responsible for greater severity of EAE in male rats and sexually dimorphic action of substances affecting them. Propranolol moderated EAE severity more effectively in male rats, exhibiting greater spinal cord noradrenaline (NA) levels and myeloid cell β2-adrenoceptor (β2-AR) expression than females. Propranolol affected CX3CR1/Nrf2/HO-1 and Stat3/Socs3 signaling axes in myeloid cells, favored their anti-inflammatory/neuroprotective phenotype and, consequently, reduced Th cell reactivation and differentiation into highly pathogenic IL-17/IFN-γ/GM-CSF-producing cells.
Collapse
Affiliation(s)
- Ivan Pilipović
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Zorica Stojić-Vukanić
- Department of Microbiology and Immunology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Ivana Prijić
- Immunology Research Centre "Branislav Janković", Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Serbia
| | - Nebojša Jasnić
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Jelena Djordjević
- Institute for Physiology and Biochemistry, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Gordana Leposavić
- Department of Pathobiology, Faculty of Pharmacy, University of Belgrade, 450 Vojvode Stepe, 11221, Belgrade, Serbia.
| |
Collapse
|
2
|
Dini I, Falanga D, Di Lorenzo R, Tito A, Carotenuto G, Zappelli C, Grumetto L, Sacchi A, Laneri S, Apone F. An Extract from Ficus carica Cell Cultures Works as an Anti-Stress Ingredient for the Skin. Antioxidants (Basel) 2021; 10:515. [PMID: 33806157 PMCID: PMC8064501 DOI: 10.3390/antiox10040515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 12/14/2022] Open
Abstract
Psychological stress activates catecholamine production, determines oxidation processes, and alters the lipid barrier functions in the skin. Scientific evidence associated with the detoxifying effect of fruits and vegetables, the growing awareness of the long-term issues related to the use of chemical-filled cosmetics, the aging of the population, and the increase in living standards are the factors responsible for the growth of food-derived ingredients in the cosmetics market. A Ficus carica cell suspension culture extract (FcHEx) was tested in vitro (on keratinocytes cells) and in vivo to evaluate its ability to manage the stress-hormone-induced damage in skin. The FcHEx reduced the epinephrine (-43% and -24% at the concentrations of 0.002% and 0.006%, respectively), interleukin 6 (-38% and -36% at the concentrations of 0.002% and 0.006%, respectively), lipid peroxide (-25%), and protein carbonylation (-50%) productions; FcHEx also induced ceramide synthesis (+150%) and ameliorated the lipid barrier performance. The in vivo experiments confirmed the in vitro test results. Transepidermal water loss (TEWL; -12.2%), sebum flow (-46.6% after two weeks and -73.8% after four weeks; on the forehead -56.4% after two weeks and -80.1% after four weeks), and skin lightness (+1.9% after two weeks and +2.7% after four weeks) defined the extract's effects on the skin barrier. The extract of the Ficus carica cell suspension cultures reduced the transepidermal water loss, the sebum production, the desquamation, and facial skin turning to a pale color from acute stress, suggesting its role as an ingredient to fight the signs of psychological stress in the skin.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.D.L.); (L.G.); (A.S.)
| | - Danila Falanga
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Napoli, Italy; (D.F.); (A.T.); (G.C.); (F.A.)
| | - Ritamaria Di Lorenzo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.D.L.); (L.G.); (A.S.)
| | - Annalisa Tito
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Napoli, Italy; (D.F.); (A.T.); (G.C.); (F.A.)
| | - Gennaro Carotenuto
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Napoli, Italy; (D.F.); (A.T.); (G.C.); (F.A.)
| | | | - Lucia Grumetto
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.D.L.); (L.G.); (A.S.)
| | - Antonia Sacchi
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.D.L.); (L.G.); (A.S.)
| | - Sonia Laneri
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy; (R.D.L.); (L.G.); (A.S.)
| | - Fabio Apone
- Arterra Bioscience SpA, Via Benedetto Brin 69, 80142 Napoli, Italy; (D.F.); (A.T.); (G.C.); (F.A.)
- Vitalab Srl, Via Benedetto Brin 69, 80142 Napoli, Italy;
| |
Collapse
|
3
|
Avgustinovich D, Kovner A, Kashina E, Shatskaya N, Vishnivetskaya G, Bondar N, Lvova M. The pathogenic potential of the combined action of chronic Opisthorchis felineus infection and repeated social defeat stress in C57BL/6 mice. Int J Parasitol 2020; 51:353-363. [PMID: 33378706 DOI: 10.1016/j.ijpara.2020.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/24/2022]
Abstract
Parasitic food-borne diseases and chronic social stress are frequent attributes of day-to-day human life. Therefore, our aim was to model the combined action of chronic Opisthorchis felineus infection and repeated social defeat stress in C57BL/6 mice. Histological examination of the liver revealed inflammation sites, pronounced periductal fibrosis, and cholangiofibrosis together with proliferation of bile ducts and hepatocyte dystrophy in the infected mice, especially in the stress-exposed ones. Simultaneously with liver pathology, we detected significant structural changes in the cerebral cortex. Immunohistochemical analysis of the hippocampus indicated the highest increase in numerical density of Iba 1-, IL-6-, iNOS-, and Arg1-positive cells in mice simultaneously subjected to the two adverse factors. The number of GFAP-positive cells rose during repeated social defeat stress, most strongly in the mice subjected to both infection and stress. Real-time PCR analysis showed that the expression of genes Aif1 and Il6 differed among the analysed brain regions (hippocampus, hypothalamus, and frontal cortex) and depended on the adverse factors applied. In addition, among the brain regions, there was no consistent increase or decrease in these parameters when the two adverse treatments were combined: (i) in the hippocampus, there was upregulation of Aif1 and no change in Il6 expression; (ii) in the hypothalamus, expression levels of Aif1 and Il6 were not different from controls; and (iii) in the frontal cortex, Aif1 expression did not change while Il6 expression increased. It can be concluded that a combination of two long-lasting adverse factors, O. felineus infection and repeated social defeat stress, worsens not only the hepatic but also brain state, as evidenced behaviorally by disturbances of the startle response in mice.
Collapse
Affiliation(s)
- Damira Avgustinovich
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia; Institute of Solid State Chemistry and Mechanochemistry, SB RAS, Novosibirsk, Russia.
| | - Anna Kovner
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Elena Kashina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia; AO Vector-Best, Novosibirsk, Russia
| | - Natalia Shatskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Galina Vishnivetskaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| | - Natalia Bondar
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia; Novosibirsk State University, Novosibirsk, Russia
| | - Maria Lvova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk, Russia
| |
Collapse
|
4
|
Remifentanil suppresses increase in interleukin-6 mRNA in the brain by inhibiting cyclic AMP synthesis. J Anesth 2018; 32:731-739. [PMID: 30167784 DOI: 10.1007/s00540-018-2548-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 08/23/2018] [Indexed: 01/06/2023]
Abstract
PURPOSE Neuronal inflammation is caused by systemic inflammation and induces cognitive dysfunction. IL-6 plays a crucial role in therapies for neuronal inflammation and cognitive dysfunction. Remifentanil, an ultra-short-acting opioid, controls inflammatory reactions in the periphery, but not in the brain. Therefore, the anti-inflammatory effects of remifentanil in neuronal tissue and the involvement of cAMP in these effects were investigated in the present study. METHODS Mice were divided into 4 groups: control, remifentanil, LPS, and LPS + remifentanil. Brain levels of pro-inflammatory cytokine mRNA, and serum levels of corticosterone, catecholamine and IL-6 were measured in the 4 groups. The co-localization of IL-6 and astrocytes in the mouse brain after the LPS injection was validated by immunostaining. LPS and/or remifentanil-induced changes in intracellular cAMP levels in cultured glial cells were measured, and the effects of cAMP on LPS-induced IL-6 mRNA expression levels were evaluated. RESULTS Remifentanil suppressed increase in IL-6 mRNA levels in the mouse brain, and also inhibited the responses of plasma IL-6, corticosterone, and noradrenaline in an inflammatory state. In the hypothalamus, IL-6 was localized in the median eminence, at which GFAP immunoreactivity was specifically detected. In cultured cells, remifentanil suppressed increase in IL-6 mRNA levels and intracellular cAMP levels after the administration of LPS, and this enhanced IL-6 mRNA expression in response to LPS. CONCLUSION Remifentanil suppressed increase in IL-6 mRNA levels in the brain in an inflammatory state, and this effect may be attributed to its direct action on neuronal cells through the inhibition of intracellular cAMP rather than corticosterone.
Collapse
|
5
|
cAMP/PKA enhances interleukin-1β-induced interleukin-6 synthesis through STAT3 in glial cells. Cell Signal 2015; 28:19-24. [PMID: 26527061 DOI: 10.1016/j.cellsig.2015.10.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 10/21/2015] [Accepted: 10/21/2015] [Indexed: 01/19/2023]
Abstract
We previously reported that interleukin (IL)-1β induces IL-6 synthesis via activation of the IκB/NFκB pathway, p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and signal transducer and activator of transcription (STAT)3, but not p44/p42 MAP kinase in rat glioma cell line, C6 cells and that cAMP enhances the IL-6 synthesis. However, the details behind enhancement of IL-1β-induced IL-6 synthesis by cAMP remain to be elucidated. In the present study, we investigated the exact mechanism of cAMP underlying the amplification of IL-1β-induced IL-6 synthesis in C6 cells. 8-Bromo cAMP significantly enhanced IL-1β-induced STAT3 phosphorylation without affecting phosphorylation of IκB, p38 MAP kinase or SAPK/JNK. In addition, we found that forskolin, a direct activator of adenylyl cyclase, significantly enhanced IL-1β-induced STAT3 phosphorylation. Janus family of tyrosine kinase (JAK) inhibitor I markedly suppressed the amplification by 8-bromo cAMP of IL-1β-induced IL-6 release. IL-1β induced JAK2 phosphorylation, and FLLL32, a specific JAK2 inhibitor, significantly reduced IL-1β-stimulated IL-6 release. 4-Cyano-3-methylisoquinoline, an inhibitor of protein kinase A (PKA), significantly attenuated the enhancing effect of 8-bromo cAMP on IL-1β-induced STAT3 phosphorylation. 8-Bromo cAMP markedly induced JAK2 phosphorylation. PKA siRNA transfection reduced enhancement of IL-1β-induced IL-6 release by 8-bromo cAMP. In conclusion, our results strongly suggest that the adenylyl cyclase/cAMP/PKA pathway upregulates IL-1β-induced IL-6 synthesis through enhancement of the JAK2/STAT3 pathway in C6 glioma cells.
Collapse
|
6
|
Tanabe K, Matsushima-Nishiwaki R, Kozawa O, Iida H. Dexmedetomidine suppresses interleukin-1β-induced interleukin-6 synthesis in rat glial cells. Int J Mol Med 2014; 34:1032-8. [PMID: 25069417 DOI: 10.3892/ijmm.2014.1863] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 07/18/2014] [Indexed: 11/06/2022] Open
Abstract
Dexmedetomidine, an α2-adrenoceptor agonist, is used as a sedative medication for criticalyl ill patients and is known to exert neuroprotective effects by direct action on neurons and indirect action on neurons through astrocytes. Interleukin (IL)-6 plays a key role in neuroinflammation, which accompanies infection, traumatic brain injury, ischemia, neurodegenerative disorders, as both a pro-inflammatory cytokine and an anti-inflammatory cytokine. Dexmedetomidine suppresses immune function. However, the effects of dexmedetomidine on cytokine synthesis in the central nervous system (CNS) remain elusive. We previously reported that IL-1β stimulates IL-6 synthesis in the rat C6 glioma cell line through the phosphorylation of p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) and IκB. In the present study, we investigated the effects of dexmedetomidine on the IL-1β-induced IL-6 synthesis in C6 cells. Dexmedetomidine inhibited the IL-1β-stimulated IL-6 release and mRNA expression in C6 cells. 8-Bromo-adenosine-3',5'-cyclic monophosphate, but not 8-bromo-guanosine 3',5'-cyclic monophosphate, significantly enhanced the IL-1β-induced IL-6 release and mRNA expression. However, dexmedetomidine failed to affect cAMP accumulation in the cells treated with IL-1β or forskolin, an activator of adenylyl cyclase. Yohimbine, an α2-adrenoceptor antagonist, did not reverse the suppressive effects of dexmedetomidine on the IL-1β-induced IL-6 release. Dexmedetomidine did not affect the IL-1β-induced phosphorylation of p38 MAP kinase, SAPK/JNK, IκB, nuclear factor (NF)-κB or c-Jun. Our findings strongly suggest that dexmedetomidine inhibits the IL-1β-induced IL-6 synthesis independently of the adenylyl cyclase-cAMP pathway through α2-adrenoceptors in C6 glioma cells. It is possible that dexmedetomidine may affect the immune system in the CNS by regulating the production of IL-6.
Collapse
Affiliation(s)
- Kumiko Tanabe
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | | | - Osamu Kozawa
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Hiroki Iida
- Department of Anesthesiology and Pain Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
7
|
Significance of the adrenal and sympathetic response to burn injury. TOTAL BURN CARE 2012. [DOI: 10.1016/b978-1-4377-2786-9.00024-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
8
|
Vallejo R, Tilley DM, Vogel L, Benyamin R. The Role of Glia and the Immune System in the Development and Maintenance of Neuropathic Pain. Pain Pract 2010; 10:167-84. [DOI: 10.1111/j.1533-2500.2010.00367.x] [Citation(s) in RCA: 227] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Boyanovsky BB, Li X, Shridas P, Sunkara M, Morris AJ, Webb NR. Bioactive products generated by group V sPLA(2) hydrolysis of LDL activate macrophages to secrete pro-inflammatory cytokines. Cytokine 2010; 50:50-7. [PMID: 20138782 DOI: 10.1016/j.cyto.2009.12.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 12/16/2009] [Accepted: 12/18/2009] [Indexed: 01/02/2023]
Abstract
OBJECTIVE Previous studies have established that hydrolysis of LDL by Group V secretory phospholipase A(2) (GV sPLA(2)) generates a modified particle capable of inducing macrophage foam cell formation. The aim of the present study was to determine whether GV sPLA(2)-hydrolyzed LDL (GV-LDL) produces pro-atherogenic effects in macrophages independent of cholesterol accumulation. METHODS AND RESULTS J-774 cells incubated with GV-LDL produced more TNF-alpha and IL-6 compared to cells incubated with control-LDL. Indirect immunofluorescence showed that GV-LDL but not control-LDL induced nuclear translocation of NFkappaB. Inhibitors of NFkappaB activation, effectively blocked cytokine production induced by GV-LDL. Control-LDL and GV-LDL were separated from albumin present in reaction mixtures by ultracentrifugation. The albumin fraction derived from GV-LDL contained 80% of the FFA generated and was more potent than the re-isolated GV-LDL in inducing pro-inflammatory cytokine secretion. Linoleic acid (18:2) and oleic acid (18:1) were the most abundant FFAs generated, whereas newly formed lyso-PCs contained 14:0 (myristic), 16:1 (palmitic), and 18:2 fatty acyl groups. Experiments with synthetic FFA showed that 18:1 induced J-774 cells to secrete TNF-alpha and IL-6. CONCLUSIONS These results indicate that in addition to promoting atherosclerotic lipid accumulation in macrophages, GV sPLA(2) hydrolysis of LDL leads to activation of NFkappaB, a key regulator of inflammation.
Collapse
Affiliation(s)
- Boris B Boyanovsky
- Department of Internal Medicine Endocrinology Division, University of Kentucky, Lexington, 40536, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Sheikh AM, Nagai A, Ryu JK, McLarnon JG, Kim SU, Masuda J. Lysophosphatidylcholine induces glial cell activation: role of rho kinase. Glia 2009; 57:898-907. [PMID: 19115379 DOI: 10.1002/glia.20815] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Lysophosphatidylcholine (LPC), a major phospholipid component of atherogenic oxidized LDL, is implicated in atherosclerosis and, recently, in neurodegenerative diseases. We investigated the immunomodulatory functions of LPC in the central nervous system (CNS) using both an in vivo rat model, and in vitro culture systems of human primary astrocytes and a microglia cell line, HMO6. Compared with PBS injection, 20 nmol LPC-injection into the rat striatum increased astrocyte and microglial accumulation and elevated iNOS expression; concomitantly a time-dependent decrease in number of neurons was exhibited. In vitro studies on astrocytes and HMO6 cells showed that LPC increased the gene expression of proinflammatory factors IL-1beta, COX-2, and GM-CSF. LPC also induced chemotactic responses in HMO6 cells. Inhibition of rho kinase by fasudil, Y27632, or expressing a dominant negative form of rho kinase inhibited the LPC-induced IL-1beta mRNA expression in both astrocytes and HMO6. Moreover, intraperitoneal fasudil injection inhibited the LPC-induced microglial accumulation and iNOS expression and also was effective in protecting against neuronal loss. Silencing G2A, a specific receptor for LPC, inhibited proinflammatory gene expression and HMO6 migration. Overall, our results indicate that LPC induced considerable neuroinflammatory reactivity in glia mediated by rho kinase-dependent pathways with inhibition of these pathways conferring significant extents of neuroprotection.
Collapse
Affiliation(s)
- Abdullah Md Sheikh
- Department of Laboratory Medicine, Shimane University School of Medicine, 89-1 Enya-cho, Izumo, Japan
| | | | | | | | | | | |
Collapse
|
11
|
Huang HC, Huang CY, Lin-Shiau SY, Lin JK. Ursolic acid inhibits IL-1beta or TNF-alpha-induced C6 glioma invasion through suppressing the association ZIP/p62 with PKC-zeta and downregulating the MMP-9 expression. Mol Carcinog 2009; 48:517-31. [PMID: 18973186 DOI: 10.1002/mc.20490] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Ursolic acid (UA), a constant constituent of Rosmarinus officinalis extracts, is a triterpenoid compound which has been shown to have antioxidant and anticarcinogenic properties. In the present study, we found that UA was able to reduce interleukin-1 beta (IL-1beta) or tumor necrosis-alpha (TNF-alpha)-induced rat C6 glioma cell invasion, which was examined by a reconstituted basement membrane in a set of transwell chambers. However, the inhibitory effect of UA did not influence cell proliferation or cause cell cytotoxity. The results analyzed by zymography assay and Western blotting revealed that the activity and expression of matrix metalloproteinase-9 (MMP-9) was eliminated by UA in a dose-dependent manner. Because MMP-9 is the target gene of the transcription factor nuclear factor-kappaB (NF-kappaB), we further investigated the effect of UA on the activity of NF-kappaB. As expected, UA upregulated the levels of IkappaBalpha (IkappaBalpha) and attenuated the nuclear translocation of p65. Furthermore, UA suppressed the IL-1beta or TNF-alpha-induced activation of protein kinase C-zeta (PKC-zeta). Our data showed UA potently inhibited the association of ZIP/p62 and PKC-zeta. Taken together, we demonstrated that UA could efficiently inhibit the interaction of ZIP/p62 and PKC-zeta. It also further suppressed the activation of NF-kappaB and downregulation of the MMP-9 protein, which in turn contributed to its inhibitory effects on IL-1beta or TNF-alpha-induced C6 glioma cell invasion. These results all showcase the potential UA has in the chemoprevention and treatment of cancer metastasis and invasion.
Collapse
Affiliation(s)
- Hsiu-Chen Huang
- Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
12
|
Involvement of Rho-kinase in tumor necrosis factor-alpha-induced interleukin-6 release from C6 glioma cells. Neurochem Int 2009; 55:438-45. [PMID: 19427347 DOI: 10.1016/j.neuint.2009.04.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 04/10/2009] [Accepted: 04/23/2009] [Indexed: 11/20/2022]
Abstract
Tumor necrosis factor (TNF)-alpha stimulated interleukin (IL)-6 release and induced the phosphorylation of myosin phosphatase targeting subunit (MYPT)-1, a Rho-kinase substrate. The IL-6 release was significantly suppressed by Y-27632 and fasudil, Rho-kinase inhibitors. Although IkappaB inhibitor suppressed the TNF-alpha-induced IL-6 release, the Rho-kinase inhibitors did not affect the TNF-alpha-induced IkappaB phosphorylation. TNF-alpha induced the phosphorylation of p38 mitogen-activated protein (MAP) kinase, stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK), and p44/p42 MAP kinase. The TNF-alpha-induced IL-6 release was suppressed by SB203580, a p38 MAPK inhibitor, or SP600125, a SAPK/JNK inhibitor, but not by PD98059, a MAP kinase/extracellular signal-regulated kinase kinase inhibitor. The Rho-kinase inhibitors attenuated the TNF-alpha-induced phosphorylation of both p38 MAP kinase and SAPK/JNK. Rho-kinase, which has been used for the clinical treatment of cerebral vasospasms, may be involved in other central nervous system (CNS) disorders such as traumatic injury, stroke, neurodegenerative disease and neuropathic pain. TNF-alpha, a proinflammatory cytokine that affects the CNS through cytokines, such as IL-6, release from neurons, astrocytes and microglia. Therefore, we investigated the involvement of Rho-kinase in the TNF-alpha-induced IL-6 release from rat C6 glioma cells. These results strongly suggest that Rho-kinase regulates the TNF-alpha-induced IL-6 release at a point upstream from p38 MAPK and SAPK/JNK in C6 glioma cells. Therefore, Rho-kinase inhibitor may be considered to be a new clinical candidate for the treatment of CNS disorders in addition to cerebral vasospasms.
Collapse
|
13
|
Prandota J. Mollaret meningitis may be caused by reactivation of latent cerebral toxoplasmosis. Int J Neurosci 2009; 119:1655-1692. [PMID: 19922380 DOI: 10.1080/00207450802480044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mollaret meningitis (MM) occurs mainly in females and is characterized by recurrent episodes of headache, transient neurological abnormalities, and the cerebrospinal fluid containing mononuclear cells. HSV-2 was usually identified as the causative agent. Recently, we found that recurrent headaches in non-HIV-infected subjects were due to acquired cerebral toxoplasmosis (CT). The aim of the study was therefore to focus on molecular pathomechanisms that may lead to reactivation of latent CT and manifest as MM. Literature data cited in this work were selected to illustrate that various factors may affect latent CNS Toxoplasma gondii infection/inflammation intensity and/or host defense mechanisms, i.e., the production of NO, cytokines, tryptophan degradation by indoleamine 2,3-dioxygenase, mechanisms mediated by an IFN-gamma responsive gene family, limiting the availability of intracellular iron to T. gondii, and production of reactive oxygen/nitrogen species, finally inducing choroid plexitis and/or vasculitis. Examples of triggers revealing MM and accompanying disturbances of IFN-gamma-mediated immune responses that control HSV-2 and T. gondii include: female predominance (female mice are more susceptible to T. gondii infection than males); HSV-2 infection (increased IFN-gamma, IL-12); metaraminol (increased plasma catecholamine levels, changes in cytokine expression favoring T(H)2 cells responses); probably cholesterol contained in debris from ruptured epidermoid cysts (decreased NO; increased TNF-alpha, IL-6, IL-8). These irregularities induced by the triggers may be responsible for reactivation of latent CT and development of MM. Thus, subjects with MM should have test(s) for T. gondii infection performed obligatorily.
Collapse
Affiliation(s)
- Joseph Prandota
- Pediatrics & Clinical Pharmacology, Department of Social Pediatrics, Faculty of Public Health, University Medical School, Wroclaw, Poland.
| |
Collapse
|
14
|
Roach JD, Aguinaldo GT, Jonnalagadda K, Hughes FM, Spangelo BL. Gamma-aminobutyric acid inhibits synergistic interleukin-6 release but not transcriptional activation in astrocytoma cells. Neuroimmunomodulation 2008; 15:117-24. [PMID: 18679050 PMCID: PMC2859952 DOI: 10.1159/000148194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 03/19/2008] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE A decline in the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) may enhance cytokine release in Alzheimer's disease (AD) resulting in neuroinflammation. We investigated the GABA-mediated suppression of the synergistic release of interleukin (IL)-6 due to interleukin 1-beta (IL-1 beta) and tumor necrosis factor-alpha (TNF-alpha). METHODS Rat C6 astrocytoma cells were treated with IL-1 beta and TNF-alpha in the absence and presence of GABA. Activation of p38, degradation of I kappaB-alpha and total cellular IL-6 were determined by Western blot analysis. IL-6 release and gene expression were measured by ELISA and RT-PCR, respectively. RESULTS Although p38 and nuclear factor (NF)-kappaB are essential for the synergistic release of IL-6, GABA did not affect either p38 phosphorylation or I kappaB-alpha degradation. Additionally, GABA suppressed IL-6 release but did not alter cytokine-driven synergistic increases in IL-6 gene expression. Western blot analysis revealed that co-treatments with IL-1 beta and TNF-alpha resulted in an increase in intracellular IL-6 that was prevented by GABA. CONCLUSION GABA-induced inhibition of IL-6 release appears to coincide with a reduction in cellular IL-6. The GABA-induced suppression of IL-6 release may include inhibition of IL-6 gene translation.
Collapse
Affiliation(s)
- Joseph D. Roach
- Department of Chemistry, University of Nevada Las Vegas, Las Vegas, Nevada, 89154
| | - Grant T. Aguinaldo
- Department of Chemistry, University of Nevada Las Vegas, Las Vegas, Nevada, 89154
| | - Kaumudi Jonnalagadda
- Department of Biology University of North Carolina Charlotte, Charlotte, North Carolina, 28223
| | - Francis M. Hughes
- Department of Biology University of North Carolina Charlotte, Charlotte, North Carolina, 28223
| | - Bryan L. Spangelo
- Department of Chemistry, University of Nevada Las Vegas, Las Vegas, Nevada, 89154
- To whom correspondence and reprint requests should be addressed at: Department of Chemistry, University of Nevada Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4003, 702.895.3797 telephone; 702.895.3171 telefax,
| |
Collapse
|
15
|
Jones SB, Muthu K, Shankar R, Gamelli RL. Significance of the adrenal and sympathetic response to burn injury. TOTAL BURN CARE 2007:343-360. [DOI: 10.1016/b978-1-4160-3274-8.50028-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
16
|
Ducreux S, Zorzato F, Müller C, Sewry C, Muntoni F, Quinlivan R, Restagno G, Girard T, Treves S. Effect of Ryanodine Receptor Mutations on Interleukin-6 Release and Intracellular Calcium Homeostasis in Human Myotubes from Malignant Hyperthermia-susceptible Individuals and Patients Affected by Central Core Disease. J Biol Chem 2004; 279:43838-46. [PMID: 15299003 DOI: 10.1074/jbc.m403612200] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study we report for the first time the functional properties of human myotubes isolated from patients harboring the native RYR1 I4898T and R4893W mutations linked to central core disease. We examined two aspects of myotube physiology, namely excitation-contraction and excitation-secretion coupling. Our results show that upon activation of the ryanodine receptor (RYR), myotubes release interleukin-6 (IL-6); this was dependent on de novo protein synthesis and could be blocked by dantrolene and cyclosporine. Myotubes from the two patients affected by central core disease showed a 4-fold increase in the release of the inflammatory cytokine IL-6, compared with cells derived from control or malignant hyperthermia susceptible individuals. All tested myotubes released calcium from intracellular stores upon stimulation via surface membrane depolarization or direct RYR activation by 4-chloro-m-cresol. The functional impact on calcium release of RYR1 mutations linked to central core disease or malignant hyperthermia is different: human myotubes carrying the malignant hyperthermia-linked RYR1 mutation V2168M had a shift in their sensitivity to the RYR agonist 4-chloro-m-cresol to lower concentrations, whereas human myotubes harboring C-terminal mutations linked to central core disease exhibited reduced [Ca2+]i increase in response to 4-chloro-m-cresol, caffeine, and KCl. Taken together, these results suggest that abnormal release of calcium via mutated RYR enhances the production of the inflammatory cytokine IL-6, which may in turn affect signaling pathways responsible for the trophic status of muscle fibers.
Collapse
Affiliation(s)
- Sylvie Ducreux
- Department of Anaesthesia, Kantonsspital Basel, 4031, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hisaoka K, Nishida A, Takebayashi M, Koda T, Yamawaki S, Nakata Y. Serotonin increases glial cell line-derived neurotrophic factor release in rat C6 glioblastoma cells. Brain Res 2004; 1002:167-70. [PMID: 14988048 DOI: 10.1016/j.brainres.2004.01.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2004] [Indexed: 10/26/2022]
Abstract
Antidepressants, which increase monoamine levels, induce glial cell line-derived neurotrophic factor (GDNF) release in C6 cells. Thus, we examined whether monoamines affect on GDNF release in C6 cells. We found that serotonin (5-HT) specifically increased GDNF mRNA expression and GDNF release in a dose- and time-dependent manner. The 5-HT-induced GDNF release was mediated through the MEK/mitogen-activated protein kinase (MAPK) pathway and, at least, 5-HT(2A) receptors. The action of 5-HT on GDNF release may provide important insights into the mechanism of antidepressants.
Collapse
Affiliation(s)
- Kazue Hisaoka
- Department of Psychiatry and Neuroscience, Institute of Clinical Research, National Kure Medical Center, 3-1 Aoyama, Kure 737-0023, Japan.
| | | | | | | | | | | |
Collapse
|
18
|
Balschun D, Randolf A, Pitossi F, Schneider H, Del Rey A, Besedovsky HO. Hippocampal interleukin-1 beta gene expression during long-term potentiation decays with age. Ann N Y Acad Sci 2003; 992:1-8. [PMID: 12794041 DOI: 10.1111/j.1749-6632.2003.tb03132.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Detlef Balschun
- Leibniz Institute for Neurobiology, 39 118 Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Abstract
Cytokines (e.g. various interleukins and subfamily members, tumor necrosis factors, interferons, chemokines and growth factors) act in the brain as immunoregulators and neuromodulators. Over a decade ago, the integrative article 'Immunoregulators in the Nervous System' (Neurosci Biobehav Rev 1991; 15: 185-215) provided a comprehensive framework of pivotal issues on cytokines and the nervous system that recently have been extensively studied. Cytokine profiles in the brain, including cytokine generation and action, have been studied in multiple models associated with neuropathophysiological conditions. These include: (1) acute conditions and disorders such as stroke (cerebral ischemia or infarction and intracranial hemorrhage), traumatic brain injury, spinal cord injury and acute neuropathies; (2) chronic neurodegenerative disorders and chronic conditions, including Alzheimer's disease, Parkinson's disease, neuropathic pain, epilepsy and chronic neuropathies; (3) brain infections, including bacterial meningitis and encephalitis; (4) brain tumors; (5) neuroimmunological disorders per se, such as multiple sclerosis; (5) psychiatric disorders, including schizophrenia and depression; (6) neurological and neuropsychiatric manifestations associated with non- central nervous system (CNS) disorders such as peripheral cancer, liver, kidney and metabolic compromise, and peripheral infectious and inflammatory conditions; and (7) cytokine immunotherapy, which can be accompanied by neuropsychiatric manifestations when administered either via peripheral or brain routes. Cytokine profiles have also been studied in multiple animal models challenged with inflammatory, infectious, chemical, malignant and stressor insults. Essentially data show that cytokines play a pivotal role in multiple neuropathophysiological processes associated with different types of disorders and insults. Cytokine expression and action in the brain shows a different profile across conditions, but some similarities exist. Under a defined temporal sequence, cytokine involvement in neuroprotection or the induction of a deleterious pathophysiological cascade and in resolution/healing is proposed depending on the type of cytokine. In the brain, functional interactions among cytokines, balance between pro-inflammatory and anti-inflammatory cytokines and functional interactions with neurotransmitters and neuropeptides play a pivotal role in the overall cytokine profile, pattern of neuropathophysiological cascades, and quality and magnitude of neuropsychiatric manifestations. In this brief review various selected cytokine-related issues with relevance to the brain are discussed.
Collapse
Affiliation(s)
- Carlos R Plata-Salaman
- 1Johnson & Johnson Pharmaceutical Research and Development, Spring House, Pennsylvania, USA
| |
Collapse
|
20
|
Spangelo BL, Farrimond DD, Pompilius M, Bowman KL. Interleukin-1 beta and thymic peptide regulation of pituitary and glial cell cytokine expression and cellular proliferation. Ann N Y Acad Sci 2001; 917:597-607. [PMID: 11268388 DOI: 10.1111/j.1749-6632.2000.tb05425.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Interleukin-6 (IL-6) is a B-cell differentiating and T-cell activating cytokine that is expressed in T cells, neutrophils, monocytes, macrophages, and mast cells. Because IL-6 is also synthesized and released by anterior pituitary cells and IL-6 stimulates pituitary hormone release, this cytokine may serve a paracrine or autocrine role within the pituitary. Interleukin-1 beta (IL-1 beta) stimulates IL-6 release from anterior pituitary cells through a mechanism that involves lysophosphatidylcholine (LPC 18:0) generation and protein kinase C activation. In the rat C6 glioma cell line, IL-1 beta synergistically stimulates IL-6 release in the presence of increased intracellular cAMP concentrations. The catecholamines and serotonin also synergistically stimulate IL-6 release in the presence of IL-1 beta. LPC 18:0 synergistically increases IL-6 release in the presence of norepinephrine, and IL-1 beta transiently increases LPC 18:0 formation in C6 cells. Therefore, IL-1 beta induction of LPC 18:0 may lead to increases in IL-6 production via activation of a kinase cascade. The bovine thymic preparation, thymosin fraction 5 (TF5), also stimulates IL-6 release from C6 glioma cells in a protein kinase C-dependent manner. Of interest, TF5 inhibits the proliferation of C6 cells, pituitary adenoma MMQ cells, and promyelocytic HL-60 cells. We suggest that a thymic hormone immune surveillance mechanism may suppress neuroendocrine and hematopoietic tumor formation. Thus, IL-1 beta and certain thymic peptides act to increase IL-6 expression in neuroendocrine cells. The enhanced production of neuroendocrine cytokines may affect hormone secretion, neurotransmission, and the development of certain neurodegenerative disorders (e.g., Alzheimer's disease). The isolation of the active component of TF5 that inhibits neuroendocrine and hematopoietic tumor cell proliferation will provide a potential therapeutic strategy for the treatment of these tumors.
Collapse
Affiliation(s)
- B L Spangelo
- Department of Chemistry, University of Nevada, Las Vegas, 4505 Maryland Parkway, Las Vegas, NV 89154-4003, USA.
| | | | | | | |
Collapse
|
21
|
|
22
|
Mulla A, Buckingham JC. Regulation of the hypothalamo-pituitary-adrenal axis by cytokines. BAILLIERE'S BEST PRACTICE & RESEARCH. CLINICAL ENDOCRINOLOGY & METABOLISM 1999; 13:503-21. [PMID: 10903811 DOI: 10.1053/beem.1999.0041] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Many of the pro-inflammatory cytokines which are released in response to immune/inflammatory insults exert marked stimulatory influences on the hypothalamo-pituitary-adrenocortical (HPA) axis; they thus provoke the release of glucocorticoids which, in turn, temper the ensuing immune-inflammatory response and thereby complete a homeostatic neuroendocrine-immune regulatory loop. This article reviews the putative mechanisms by which cytokines, released acutely in response to such insults, activate the HPA axis, placing particular emphasis on the actions and interactions of tumour necrosis factor-alpha (TNF-alpha), interleukin-1 (IL-1) and interleukin-6 (IL-6) and on the counter-regulatory mechanisms that are in place.
Collapse
Affiliation(s)
- A Mulla
- Department of Neuroendocrinology, Imperial College School of Medicine, Charing Cross Hospital, London, UK
| | | |
Collapse
|