1
|
Charli JL, Rodríguez-Rodríguez A, Hernández-Ortega K, Cote-Vélez A, Uribe RM, Jaimes-Hoy L, Joseph-Bravo P. The Thyrotropin-Releasing Hormone-Degrading Ectoenzyme, a Therapeutic Target? Front Pharmacol 2020; 11:640. [PMID: 32457627 PMCID: PMC7225337 DOI: 10.3389/fphar.2020.00640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/21/2020] [Indexed: 12/17/2022] Open
Abstract
Thyrotropin releasing hormone (TRH: Glp-His-Pro-NH2) is a peptide mainly produced by brain neurons. In mammals, hypophysiotropic TRH neurons of the paraventricular nucleus of the hypothalamus integrate metabolic information and drive the secretion of thyrotropin from the anterior pituitary, and thus the activity of the thyroid axis. Other hypothalamic or extrahypothalamic TRH neurons have less understood functions although pharmacological studies have shown that TRH has multiple central effects, such as promoting arousal, anorexia and anxiolysis, as well as controlling gastric, cardiac and respiratory autonomic functions. Two G-protein-coupled TRH receptors (TRH-R1 and TRH-R2) transduce TRH effects in some mammals although humans lack TRH-R2. TRH effects are of short duration, in part because the peptide is hydrolyzed in blood and extracellular space by a M1 family metallopeptidase, the TRH-degrading ectoenzyme (TRH-DE), also called pyroglutamyl peptidase II. TRH-DE is enriched in various brain regions but is also expressed in peripheral tissues including the anterior pituitary and the liver, which secretes a soluble form into blood. Among the M1 metallopeptidases, TRH-DE is the only member with a very narrow specificity; its best characterized biological substrate is TRH, making it a target for the specific manipulation of TRH activity. Two other substrates of TRH-DE, Glp-Phe-Pro-NH2 and Glp-Tyr-Pro-NH2, are also present in many tissues. Analogs of TRH resistant to hydrolysis by TRH-DE have prolonged central efficiency. Structure-activity studies allowed the identification of residues critical for activity and specificity. Research with specific inhibitors has confirmed that TRH-DE controls TRH actions. TRH-DE expression by β2-tanycytes of the median eminence of the hypothalamus allows the control of TRH flux into the hypothalamus-pituitary portal vessels and may regulate serum thyrotropin secretion. In this review we describe the critical evidences that suggest that modification of TRH-DE activity in tanycytes, and/or in other brain regions, may generate beneficial consequences in some central and metabolic disorders and identify potential drawbacks and missing information needed to test these hypotheses.
Collapse
Affiliation(s)
- Jean-Louis Charli
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México (UNAM), Cuernavaca, Mexico
| | | | | | | | | | | | | |
Collapse
|
2
|
Ávila-Mendoza J, Pérez-Rueda E, Urban-Sosa V, Carranza M, Martínez-Moreno CG, Luna M, Arámburo C. Characterization and distribution of GHRH, PACAP, TRH, SST and IGF1 mRNAs in the green iguana. Gen Comp Endocrinol 2018; 255:90-101. [PMID: 28974369 DOI: 10.1016/j.ygcen.2017.09.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/18/2017] [Accepted: 09/28/2017] [Indexed: 11/17/2022]
Abstract
The somatotropic axis (SA) regulates numerous aspects of vertebrate physiology such as development, growth, and metabolism and has influence on several tissues including neural, immune, reproductive and gastric tract. Growth hormone (GH) is a key component of SA, it is synthesized and released mainly by pituitary somatotrophs, although now it is known that virtually all tissues can express GH, which, in addition to its well-described endocrine roles, also has autocrine/paracrine/intracrine actions. In the pituitary, GH expression is regulated by several hypothalamic neuropeptides including GHRH, PACAP, TRH and SST. GH, in turn, regulates IGF1 synthesis in several target tissues, adding complexity to the system since GH effects can be exerted either directly or mediated by IGF1. In reptiles, little is known about the SA components and their functional interactions. The aim of this work was to characterize the mRNAs of the principal SA components in the green iguana and to develop the tools that allow the study of the structural and functional evolution of this system in reptiles. By employing RT-PCR and RACE, the cDNAs encoding for GHRH, PACAP, TRH, SST and IGF1 were amplified and sequenced. Results showed that these cDNAs coded for the corresponding protein precursors of 154, 170, 243, 113, and 131 amino acids, respectively. Of these, GHRH, PACAP, SST and IGF1 precursors exhibited a high structural conservation with respect to its counterparts in other vertebrates. On the other hand, iguana's TRH precursor showed 7 functional copies of mature TRH (pyr-QHP-NH2), as compared to 4 and 6 copies of TRH in avian and mammalian proTRH sequences, respectively. It was found that in addition to its primary production site (brain for GHRH, PACAP, TRH and SST, and liver for IGF1), they were also expressed in other peripheral tissues, i.e. testes and ovaries expressed all the studied mRNAs, whereas TRH and IGF1 mRNAs were observed ubiquitously in all tissues considered. These results show that the main SA components in reptiles of the Squamata Order maintain a good structural conservation among vertebrate phylogeny, and suggest important physiological interactions (endocrine, autocrine and/or paracrine) between them due to their wide peripheral tissue expression.
Collapse
Affiliation(s)
- José Ávila-Mendoza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Ernesto Pérez-Rueda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor. 62210, Mexico; Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Mérida, Yuc. 97302, Mexico
| | - Valeria Urban-Sosa
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Martha Carranza
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Carlos G Martínez-Moreno
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Maricela Luna
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico
| | - Carlos Arámburo
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Campus Juriquilla, Universidad Nacional Autónoma de México, Querétaro, Qro. 76230, Mexico.
| |
Collapse
|
3
|
Savino W, Mendes-da-Cruz DA, Lepletier A, Dardenne M. Hormonal control of T-cell development in health and disease. Nat Rev Endocrinol 2016; 12:77-89. [PMID: 26437623 DOI: 10.1038/nrendo.2015.168] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The physiology of the thymus, the primary lymphoid organ in which T cells are generated, is controlled by hormones. Data from animal models indicate that several peptide and nonpeptide hormones act pleiotropically within the thymus to modulate the proliferation, differentiation, migration and death by apoptosis of developing thymocytes. For example, growth hormone and prolactin can enhance thymocyte proliferation and migration, whereas glucocorticoids lead to the apoptosis of these developing cells. The thymus undergoes progressive age-dependent atrophy with a loss of cells being generated and exported, therefore, hormone-based therapies are being developed as an alternative strategy to rejuvenate the organ, as well as to augment thymocyte proliferation and the export of mature T cells to peripheral lymphoid organs. Some hormones (such as growth hormone and progonadoliberin-1) are also being used as therapeutic agents to treat immunodeficiency disorders associated with thymic atrophy, such as HIV infection. In this Review, we discuss the accumulating data that shows the thymus gland is under complex and multifaceted hormonal control that affects the process of T-cell development in health and disease.
Collapse
Affiliation(s)
- Wilson Savino
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Ailin Lepletier
- Laboratory of Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Avenue Brasil 4365, 21045-900, Manguinhos, Rio de Janeiro, Brazil
| | - Mireille Dardenne
- Hôpital Necker, CNRS UMR 8147, Université Paris Descartes, 75015 Paris, France
| |
Collapse
|
4
|
Quintanar JL, Guzmán-Soto I. Hypothalamic neurohormones and immune responses. Front Integr Neurosci 2013; 7:56. [PMID: 23964208 PMCID: PMC3741963 DOI: 10.3389/fnint.2013.00056] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 07/16/2013] [Indexed: 01/19/2023] Open
Abstract
The aim of this review is to provide a comprehensive examination of the current literature describing the neural-immune interactions, with emphasis on the most recent findings of the effects of neurohormones on immune system. Particularly, the role of hypothalamic hormones such as Thyrotropin-releasing hormone (TRH), Corticotropin-releasing hormone (CRH) and Gonadotropin-releasing hormone (GnRH). In the past few years, interest has been raised in extrapituitary actions of these neurohormones due to their receptors have been found in many non-pituitary tissues. Also, the receptors are present in immune cells, suggesting an autocrine or paracrine role within the immune system. In general, these neurohormones have been reported to exert immunomodulatory effects on cell proliferation, immune mediators release and cell function. The implications of these findings in understanding the network of hypothalamic neuropeptides and immune system are discussed.
Collapse
Affiliation(s)
- J Luis Quintanar
- Laboratory of Neurophysiology, Department of Physiology and Pharmacology, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes Aguascalientes, México
| | | |
Collapse
|
5
|
Jiang X, Wang Y, Chen Z, Cai Z, Zhang L, Zhou H, Xu N. Polymorphisms in porcine TRH and TRHR gene and associations with growth and fatness traits. Livest Sci 2012. [DOI: 10.1016/j.livsci.2011.10.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
6
|
Neuropeptides, growth factors, and cytokines: a cohort of informational molecules whose expression is up-regulated by the stress-associated slow transmitter PACAP in chromaffin cells. Cell Mol Neurobiol 2010; 30:1441-9. [PMID: 21107678 DOI: 10.1007/s10571-010-9620-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 10/14/2010] [Indexed: 12/20/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a co-transmitter with acetylcholine at the adrenomedullary synapse, mediating sustained hormone secretion and regulation of cellular plasticity in response to stress at the level of gene transcription. Here we have extended our investigation of PACAP-regulated neuroendocrine cell-specific genes from PC12 cells to PC12 cells expressing physiological levels of the PAC1hop receptor found on chromaffin cells in vivo. PACAP induces in these PC12_bPAC1hop cells an additional cohort of genes, compared to PC12 cells, enriched in informational molecules including cytokines, neuropeptides, and growth factors. Using two newly developed microarray platforms for expressed bovine transcripts, we further examined PACAP-induced genes in bovine chromaffin cells during a period of exposure (6 h) corresponding to a period of prolonged metabolic or psychogenic stress in vivo during which PACAP is released from the splanchnic nerve onto chromaffin cells. As in PC12_bPAC1hop cells, PACAP induced in bovine chromaffin cells a cohort of genes encoding secretory proteins, identified by tiling for cellular localization using Ingenuity Pathway Analysis, which were highly enriched in informational molecules (secreted proteins acting at extracellular receptors). These included cytokines, growth factors and hormones, as well as converting enzymes, or protease inhibitors modulating converting enzyme function. Several neuropeptide prohormone transcripts not previously shown to be PACAP-regulated in chromaffin cells, such as thyrotropin-releasing hormone, and tachykinin precursor 1, were identified. Identification of this cohort of informational molecule-encoding transcripts suggests a wider, more integrative role for PACAP as a co-transmitter specific to stress transduction in the adrenal medulla.
Collapse
|
7
|
Zhao Y, Hou WG, Zhu HP, Zhao J, Wang RA, Xu RJ, Zhang YQ. Expression of thyrotropin-releasing hormone receptors in rat testis and their role in isolated Leydig cells. Cell Tissue Res 2008; 334:283-94. [DOI: 10.1007/s00441-008-0680-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 07/30/2008] [Indexed: 10/21/2022]
|
8
|
Aoki Y, Masuda T, Iigo M, Yanagisawa T. Molecular cloning of prepro-thyrotropin-releasing hormone cDNA from medaka (Oryzias latipes). Gen Comp Endocrinol 2007; 150:364-70. [PMID: 17098236 DOI: 10.1016/j.ygcen.2006.09.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 11/18/2022]
Abstract
The cDNA encoding prepro-thyrotropin-releasing hormone (ppTRH) in a teleost, medaka (Oryzias latipes) was isolated and characterized. The medaka ppTRH cDNA codes for 270 amino acid residues including eight TRH progenitor sequences (-Lys/Arg-Arg-Gln-His-Pro-Gly-Lys/Arg-Arg-). In silico analyses of the medaka genome database predicted that the structure of the medaka ppTRH gene is similar to the ppTRH genes of the other vertebrate species studied to date; consisting of three exons and two introns. Identity of the medaka ppTRH with the other vertebrates is rather low except the sockeye salmon. A molecular phylogenic tree showed that the ppTRH sequences reflected the predicted pattern of species classification. RT-PCR analysis demonstrated ppTRH gene expression in the brain and retina. These results gave some insight into the molecular evolution of ppTRH and physiological functions of TRH in vertebrates.
Collapse
Affiliation(s)
- Yasuhiro Aoki
- Department of Biotechnology, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | | | | | | |
Collapse
|
9
|
Matre V, Høvring PI, Fjeldheim AK, Helgeland L, Orvain C, Andersson KB, Gautvik KM, Gabrielsen OS. The human neuroendocrine thyrotropin-releasing hormone receptor promoter is activated by the haematopoietic transcription factor c-Myb. Biochem J 2003; 372:851-9. [PMID: 12628004 PMCID: PMC1223435 DOI: 10.1042/bj20030057] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2003] [Revised: 03/03/2003] [Accepted: 03/10/2003] [Indexed: 01/14/2023]
Abstract
Thyrotropin-releasing hormone (TRH) receptor (TRHR) is a G-protein-coupled receptor playing a crucial role in the anterior pituitary where it controls the synthesis and secretion of thyroid-stimulating hormone and prolactin. Its widespread presence not only in the central nervous system, but also in peripheral tissues, including thymus, indicates other important, but unknown, functions. One hypothesis is that the neuropeptide TRH could play a role in the immune system. We report here that the human TRHR promoter contains 11 putative response elements for the haematopoietic transcription factor c-Myb and is highly Myb-responsive in transfection assays. Analysis of Myb binding to putative response elements revealed one preferred binding site in intron 1 of the receptor gene. Transfection studies of promoter deletions confirmed that this high-affinity element is necessary for efficient Myb-dependent transactivation of reporter plasmids in CV-1 cells. The Myb-dependent activation of the TRHR promoter was strongly suppressed by expression of a dominant negative Myb-Engrailed fusion. In line with these observations, reverse transcriptase PCR analysis of rat tissues showed that the TRHR gene is expressed both in thymocytes and bone marrow. Furthermore, specific, high-affinity TRH agonist binding to cell-surface receptors was demonstrated in thymocytes and a haematopoietic cell line. Our findings imply a novel functional link between the neuroendocrine and the immune systems at the level of promoter regulation.
Collapse
Affiliation(s)
- Vilborg Matre
- Department of Biochemistry, University of Oslo, P.O. Box 1041 Blindern, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Arechaga G, Prieto I, Segarra AB, Alba F, Ruiz-Larrea MB, Ruiz-Sanz JI, de Gasparo M, Ramirez M. Dietary fatty acid composition affects aminopeptidase activities in the testes of mice. INTERNATIONAL JOURNAL OF ANDROLOGY 2002; 25:113-8. [PMID: 11903661 DOI: 10.1046/j.1365-2605.2002.0334a.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The autocrine/paracrine control mechanisms of local factors, such as the renin-angiotensin system and the thyrotropin-releasing hormone (TRH), seem to play a relevant role in testicular physiology. It has been proposed that dietary fat composition influences male reproductive function modifying the cholesterol-phospholipid composition of testicular plasma membranes. Modifications in the composition and physical properties of the membranes may lead to alterations in the activities of membrane-bound (M-B) enzymes. We have previously demonstrated that cholesterol and steroid hormones affect aminopeptidase (AP) activities. Dietary fatty acids with different degrees of saturation modified AP activities in the serum of mice and an olive oil supplemented diet influenced the AP activities in the testes of mice. We hypothesized that the modification of dietary fat composition may affect angiotensin- [glutamyl-AP (GluAP), aspartyl-AP (AspAP)] and TRH- [pyroglutamyl-AP (pGluAP)] degrading activities in the testis. In this study, we investigated the effect of diets supplemented with sunflower oil (SFO), fish oil (FO), olive oil (OO), lard (L) or coconut oil (CO) on soluble (Sol) and M-B GluAP, AspAP and pGluAP in mice testis, using arylamides as substrates. Sol GluAP activity did not show differences among groups. However, Sol AspAP and Sol pGluAP progressively decreased with the degree of saturation of the fatty acid used in the diet. In contrast, M-B GluAP progressively increased with the degree of saturation of the fatty acid used in the diet. For M-B AspAP activity, mice fed diets containing FO showed significantly higher levels than those fed diets containing SFO, OO and L but not those containing CO. For M-B pGluAP activity, the highest levels were observed for mice fed diets containing FO and OO. The present data suggest that the type of fat used in the diet may influence the autocrine/paracrine functions of locally synthesized angiotensin peptides and TRH in the testis, and consequently may be important in male reproductive functions.
Collapse
|
11
|
Abstract
The thymus gland is a central lymphoid organ in which bone marrow-derived T cell precursors undergo differentiation, eventually leading to migration of positively selected thymocytes to the peripheral lymphoid organs. This differentiation occurs along with cell migration in the context of the thymic microenvironment, formed of epithelial cells, macrophages, dendritic cells, fibroblasts, and extracellular matrix components. Various interactions occurring between microenvironmental cells and differentiating thymocytes are under neuroendocrine control. In this review, we summarize data showing that thymus physiology is pleiotropically influenced by hormones and neuropeptides. These molecules modulate the expression of major histocompatibility complex gene products by microenvironmental cells and the extracellular matrix-mediated interactions, leading to enhanced thymocyte adhesion to thymic epithelial cells. Cytokine production and thymic endocrine function (herein exemplified by thymulin production) are also hormonally controlled, and, interestingly in this latter case, a bidirectional circuitry seems to exist since thymic-derived peptides also modulate hormonal production. In addition to their role in thymic cell proliferation and apoptosis, hormones and neuropeptides also modulate intrathymic T cell differentiation, influencing the generation of the T cell repertoire. Finally, neuroendocrine control of the thymus appears extremely complex, with possible influence of biological circuitry involving the intrathymic production of a variety of hormones and neuropeptides and the expression of their respective receptors by thymic cells.
Collapse
Affiliation(s)
- W Savino
- Department of Immunology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| | | |
Collapse
|