1
|
Desaulniers AT, Cederberg RA, Lents CA, White BR. Expression and Role of Gonadotropin-Releasing Hormone 2 and Its Receptor in Mammals. Front Endocrinol (Lausanne) 2017; 8:269. [PMID: 29312140 PMCID: PMC5732264 DOI: 10.3389/fendo.2017.00269] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
Gonadotropin-releasing hormone 1 (GnRH1) and its receptor (GnRHR1) drive mammalian reproduction via regulation of the gonadotropins. Yet, a second form of GnRH (GnRH2) and its receptor (GnRHR2) also exist in mammals. GnRH2 has been completely conserved throughout 500 million years of evolution, signifying high selection pressure and a critical biological role. However, the GnRH2 gene is absent (e.g., rat) or inactivated (e.g., cow and sheep) in some species but retained in others (e.g., human, horse, and pig). Likewise, many species (e.g., human, chimpanzee, cow, and sheep) retain the GnRHR2 gene but lack the appropriate coding sequence to produce a full-length protein due to gene coding errors; although production of GnRHR2 in humans remains controversial. Certain mammals lack the GnRHR2 gene (e.g., mouse) or most exons entirely (e.g., rat). In contrast, old world monkeys, musk shrews, and pigs maintain the coding sequence required to produce a functional GnRHR2. Like GnRHR1, GnRHR2 is a 7-transmembrane, G protein-coupled receptor that interacts with Gαq/11 to mediate cell signaling. However, GnRHR2 retains a cytoplasmic tail and is only 40% homologous to GnRHR1. A role for GnRH2 and its receptor in mammals has been elusive, likely because common laboratory models lack both the ligand and receptor. Uniquely, both GnRH2 and GnRHR2 are ubiquitously expressed; transcript levels are abundant in peripheral tissues and scarcely found in regions of the brain associated with gonadotropin secretion, suggesting a divergent role from GnRH1/GnRHR1. Indeed, GnRH2 and its receptor are not physiological modulators of gonadotropin secretion in mammals. Instead, GnRH2 and GnRHR2 coordinate the interaction between nutritional status and sexual behavior in the female brain. Within peripheral tissues, GnRH2 and its receptor are novel regulators of reproductive organs. GnRH2 and GnRHR2 directly stimulate steroidogenesis within the porcine testis. In the female, GnRH2 and its receptor may help mediate placental function, implantation, and ovarian steroidogenesis. Furthermore, both the GnRH2 and GnRHR2 genes are expressed in human reproductive tumors and represent emerging targets for cancer treatment. Thus, GnRH2 and GnRHR2 have diverse functions in mammals which remain largely unexplored.
Collapse
Affiliation(s)
- Amy T. Desaulniers
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Rebecca A. Cederberg
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Brett R. White
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
- *Correspondence: Brett R. White,
| |
Collapse
|
2
|
Huang W, Zhang J, Liao Z, Lv Z, Wu H, Zhu A, Wu C. Genomic structure and promoter functional analysis of GnRH3 gene in large yellow croaker (Larimichthys crocea). Gene 2015; 576:458-65. [PMID: 26519998 DOI: 10.1016/j.gene.2015.10.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/09/2015] [Accepted: 10/24/2015] [Indexed: 01/30/2023]
Abstract
Gonadotropin-releasing hormone III (GnRH3) is considered to be a key neurohormone in fish reproduction control. In the present study, the cDNA and genomic sequences of GnRH3 were cloned and characterized from large yellow croaker Larimichthys crocea. The cDNA encoded a protein of 99 amino acids with four functional motifs. The full-length genome sequence was composed of 3797 nucleotides, including four exons and three introns. Higher identities of amino acid sequences and conserved exon-intron organizations were found between LcGnRH3 and other GnRH3 genes. In addition, some special features of the sequences were detected in partial species. For example, two specific residues (V and A) were found in the family Sciaenidae, and the unique 75-72 bp type of the open reading frame 2 and 3 existed in the family Cyprinidae. Analysis of the 2576 bp promoter fragment of LcGnRH3 showed a number of transcription factor binding sites, such as AP1, CREB, GATA-1, HSF, FOXA2, and FOXL1. Promoter functional analysis using an EGFP reporter fusion in zebrafish larvae presented positive signals in the brain, including the olfactory region, the terminal nerve ganglion, the telencephalon, and the hypothalamus. The expression pattern was generally consistent with the endogenous GnRH3 GFP-expressing transgenic zebrafish lines, but the details were different. These results indicate that the structure and function of LcGnRH3 are generally similar to the other teleost GnRH3 genes, but there exist some distinctions among them.
Collapse
Affiliation(s)
- Wei Huang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Jianshe Zhang
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhi Liao
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Zhenming Lv
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Huifei Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Aiyi Zhu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, PR China
| |
Collapse
|
3
|
Seldeen KL, McDonald CB, Deegan BJ, Bhat V, Farooq A. DNA plasticity is a key determinant of the energetics of binding of Jun-Fos heterodimeric transcription factor to genetic variants of TGACGTCA motif. Biochemistry 2010; 48:12213-22. [PMID: 19921846 DOI: 10.1021/bi901392k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The Jun-Fos heterodimeric transcription factor is a target of a diverse array of signaling cascades that initiate at the cell surface and converge in the nucleus and ultimately result in the expression of genes involved in a multitude of cellular processes central to health and disease. Here, using isothermal titration calorimetry in conjunction with circular dichroism, we report the effect of introducing single nucleotide variations within the TGACGTCA canonical motif on the binding of bZIP domains of Jun-Fos heterodimer to DNA. Our data reveal that the Jun-Fos heterodimer exhibits differential energetics in binding to such genetic variants in the physiologically relevant micromolar to submicromolar range with the TGACGTCA canonical motif affording the highest affinity. Although binding energetics are largely favored by enthalpic forces and accompanied by entropic penalty, neither the favorable enthalpy nor the unfavorable entropy correlates with the overall free energy of binding in agreement with the enthalpy-entropy compensation phenomenon widely observed in biological systems. However, a number of variants including the TGACGTCA canonical motif bind to the Jun-Fos heterodimer with high affinity through having overcome such enthalpy-entropy compensation barrier, arguing strongly that better understanding of the underlying invisible forces driving macromolecular interactions may be the key to future drug design. Our data also suggest that the Jun-Fos heterodimer has a preference for binding to TGACGTCA variants with higher AT content, implying that the DNA plasticity may be an important determinant of protein-DNA interactions. This notion is further corroborated by the observation that the introduction of genetic variations within the TGACGTCA motif allows it to sample a much greater conformational space. Taken together, these new findings further our understanding of the role of DNA sequence and conformation on protein-DNA interactions in thermodynamic terms.
Collapse
Affiliation(s)
- Kenneth L Seldeen
- Department of Biochemistry and Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, Florida 33136, USA
| | | | | | | | | |
Collapse
|
4
|
Poon SL, Hammond GT, Leung PCK. Epidermal growth factor-induced GnRH-II synthesis contributes to ovarian cancer cell invasion. Mol Endocrinol 2009; 23:1646-56. [PMID: 19608641 DOI: 10.1210/me.2009-0147] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
GnRH-II modulates ovarian cancer cells invasion and is expressed in normal ovary and ovarian epithelial cancer cells; however, the upstream regulator(s) of GnRH-II expression in these cells remains unclear. We now demonstrate that epidermal growth factor (EGF) increases GnRH-II mRNA levels in several human ovarian carcinoma cell lines and up-regulates GnRH-II promoter activity in OVCAR-3 cells in a dose-dependent manner, whereas an EGF receptor inhibitor (AG148) abolishes EGF-induced increases in GnRH-II promoter activity and GnRH-II mRNA levels. EGF increases the phosphorylation of cAMP-responsive element-binding protein (p-CREB) and its association with the coregulator, CCAAT/enhancer binding protein beta, whereas blocking the EGF-induced ERK1/2 phosphorylation with MAPK inhibitors (PD98059/U0126) markedly reduced these effects. Moreover, depletion of CREB using small interfering RNA attenuated EGF-induced GnRH-II promoter activity. Chromatin immunoprecipitation assays demonstrated that EGF induces p-CREB binding to a cAMP responsive-element within the GnRH-II promoter, likely in association with CCAAT/enhancer binding protein beta, and mutagenesis of this cAMP responsive-element prevented EGF-induced GnRH-II promoter activity in OVCAR-3 cells. Importantly, GnRH-II acts additively with EGF to promote invasion of OVCAR-3 and CaOV-3 cells, but not SKOV-3 cells that express low levels of GnRH receptor (GnRHR). Treatment with GnRHR small interfering RNA also partially inhibited the EGF-induced invasion of OVCAR-3 and CaOV-3 cells. Furthermore, EGF treatment transiently increases GnRHR levels in OVCAR-3 and CaOV-3, which likely accentuates the effects of increase GnRH-II production on cell invasion. These results provide evidence that EGF is an upstream regulator of the autocrine actions of GnRH-II on the invasive properties of ovarian cancer cells.
Collapse
Affiliation(s)
- Song Ling Poon
- Department of Obstetrics and Gynaecology, Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5
| | | | | |
Collapse
|
5
|
Montagnani Marelli M, Moretti RM, Mai S, Januszkiewicz-Caulier J, Motta M, Limonta P. Type I gonadotropin-releasing hormone receptor mediates the antiproliferative effects of GnRH-II on prostate cancer cells. J Clin Endocrinol Metab 2009; 94:1761-7. [PMID: 19190109 DOI: 10.1210/jc.2008-1741] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
BACKGROUND GnRH-II has been shown to exert a strong antiproliferative action on tumors of the female reproductive system. The data so far reported on the effects of GnRH-II on prostate cancer growth are controversial. Moreover, it is still unclear through which receptor [type I or type II GnRH-receptor (GnRH-R)] GnRH-II might modulate cancer cell proliferation. OBJECTIVE The objective of this work was to investigate whether GnRH-II might affect the proliferation of prostate cancer cells and to identify the GnRH-R through which the peptide might exert its activity. DESIGN We investigated the effects of GnRH-II on prostate cancer cell proliferation. We then transfected PC3 cells with a small interfering RNA targeted to type I GnRH-R. After receptor silencing we evaluated the effects of GnRH-II on cell proliferation and on forskolin-induced intracellular cAMP accumulation. Similar experiments were performed by silencing type II GnRH-R. RESULTS GnRH-II exerted an antiproliferative activity on prostate cancer cells. Transfection of PC3 cells with a type I GnRH-R small interfering RNA resulted in a significant decrease of the expression of this receptor. After type I GnRH-R silencing: 1) the antiproliferative effect of GnRH-II was completely abrogated; and 2) GnRH-II lost its capacity to counteract the forskolin-induced cAMP accumulation. On the contrary, type II GnRH-R silencing did not counteract the antiproliferative effect of GnRH-II. CONCLUSIONS GnRH-II exerts a specific and significant antiproliferative action on prostate cancer cells. This antitumor effect is mediated by the activation of type I (but not of type II) GnRH-R and by its coupled cAMP intracellular signaling pathway.
Collapse
Affiliation(s)
- Marina Montagnani Marelli
- Center of Endocrinological Oncology, Department of Endocrinology, Physiopathology and Applied Biology, University of Milano, 20133 Milano, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Poon SL, An BS, So WK, Hammond GL, Leung PCK. Temporal recruitment of transcription factors at the 3',5'-cyclic adenosine 5'-monophosphate-response element of the human GnRH-II promoter. Endocrinology 2008; 149:5162-71. [PMID: 18599546 DOI: 10.1210/en.2008-0481] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
GnRH-II is a potent GnRH subtype involved in modulating OVCAR-3 cell proliferation and the invasive properties of JEG-3 cells, and an atypical cAMP-response element (CRE) in the human GnRH-II promoter influences its activation. We demonstrated that the GnRH-II promoter is activated by 8-bromoadenosine-cAMP in several cell lines including alphaT3, TE671, JEG-3, and OVCAR-3 cells and that cAMP enhances GnRH-II mRNA levels in JEG-3 and OVCAR-3 cells. Moreover, 8-bromoadenosine-cAMP increases cAMP response element-binding protein (CREB) phosphorylation in JEG-3 and OVCAR-3 cells and augments CBP and CCAAT/enhancer-binding protein (C/EBP)-beta coimmunoprecipitation with phosphorylated CREB (p-CREB) in a temporally defined manner from nuclear extracts. When CREB, CBP, and C/EBPbeta levels were knocked down by small interfering RNA, reductions in any of these transcription factors reduced cAMP-enhanced GnRH-II promoter activity and GnRH-II mRNA levels in JEG-3 and OVCAR-3 cells. Importantly, chromatin immunoprecipitation assay showed that p-CREB bound the CRE within the endogenous GnRH-II promoter within 1 h and that p-CREB association with C/EBPbeta occurs within 2 h of cAMP stimulation, coincident with the first appearance of C/EBPbeta at the CRE. By contrast, maximum interactions between p-CREB and CBP do not occur until at least 4 h after cAMP stimulation, and this is reflected in the progressive loading of CBP at the CRE at 2-4 h, as demonstrated by chromatin immunoprecipitation. Taken together, these data suggest that p-CREB, C/EBPbeta, and CBP are recruited to the CRE of the GnRH-II promoter in a temporarily defined manner to enhance its transcription in JEG-3 and OVCAR-3 cells in response to cAMP.
Collapse
Affiliation(s)
- Song Ling Poon
- Department of Obstetrics and Gynaecology, University of British Columbia, Room 2H-30, 4490 Oak Street, Vancouver, British Columbia, Canada V6H 3V5
| | | | | | | | | |
Collapse
|
7
|
Yeung CM, An BS, Cheng CK, Chow BKC, Leung PCK. Expression and transcriptional regulation of the GnRH receptor gene in human neuronal cells. Mol Hum Reprod 2005; 11:837-42. [PMID: 16364974 DOI: 10.1093/molehr/gah241] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
GnRH, acts via the GnRH receptor (GnRHR), plays a pivotal role in human reproduction by stimulating the synthesis and secretion of gonadotropins from pituitary gonadotropes. Studies have also suggested that it has other extra-pituitary functions. To date, the transcriptional regulation of human GnRHR gene in the brain remains largely unknown. Recently, the human cerebellar medulloblastoma cell line TE-671 is found to express GnRH. We report here for the first time that GnRHR is also expressed in this neuronal cell line. Treatment with GnRHR agonist stimulated the phosphorylation of both ERK1/2 and JNK in the cells. Moreover, transient transfection of various human GnRHR promoter-luciferase constructs into the cells identified an upstream promoter region located between -2197 and -1018. Important cis-acting regulatory elements were found at -1300/-1018 and -2197/- 1900, as deletion of either region caused a dramatic decrease in the promoter activity. An upstream GnRHR promoter element was identified to be important for basal transcription in the human neuronal TE-671 cells, in contrast to the previous finding that a downstream promoter is responsible for the gonadotrope-specific expression. Furthermore, we showed that antide (GnRHR antagonist) significantly stimulated the GnRHR promoter activity and inhibition of protein kinase C (PKC) pathway by staurosporine could also up-regulate the promoter activity in dose- and time-dependent manners. Taken together, these data suggest that activation of the GnRHR by interacting with GnRH may transcriptionally down-regulate itself via the PKC pathway in human neuronal cells.
Collapse
Affiliation(s)
- Chung-Man Yeung
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada
| | | | | | | | | |
Collapse
|
8
|
Cheng CK, Leung PCK. Molecular biology of gonadotropin-releasing hormone (GnRH)-I, GnRH-II, and their receptors in humans. Endocr Rev 2005; 26:283-306. [PMID: 15561800 DOI: 10.1210/er.2003-0039] [Citation(s) in RCA: 174] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In human beings, two forms of GnRH, termed GnRH-I and GnRH-II, encoded by separate genes have been identified. Although these hormones share comparable cDNA and genomic structures, their tissue distribution and regulation of gene expression are significantly dissimilar. The actions of GnRH are mediated by the GnRH receptor, which belongs to a member of the rhodopsin-like G protein-coupled receptor superfamily. However, to date, only one conventional GnRH receptor subtype (type I GnRH receptor) uniquely lacking a carboxyl-terminal tail has been found in the human body. Studies on the transcriptional regulation of the human GnRH receptor gene have indicated that tissue-specific gene expression is mediated by differential promoter usage in various cell types. Functionally, there is growing evidence showing that both GnRH-I and GnRH-II are potentially important autocrine and/or paracrine regulators in some extrapituitary compartments. Recent cloning of a second GnRH receptor subtype (type II GnRH receptor) in nonhuman primates revealed that it is structurally and functionally distinct from the mammalian type I receptor. However, the human type II receptor gene homolog carries a frameshift and a premature stop codon, suggesting that a full-length type II receptor does not exist in humans.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, British Columbia, Canada V6H 3V5
| | | |
Collapse
|
9
|
Cheng CK, Hoo RLC, Chow BKC, Leung PCK. Functional cooperation between multiple regulatory elements in the untranslated exon 1 stimulates the basal transcription of the human GnRH-II gene. Mol Endocrinol 2003; 17:1175-91. [PMID: 12663744 DOI: 10.1210/me.2002-0418] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The wide distribution of GnRH-II and conservation of its structure over all vertebrate classes suggest that the neuropeptide possesses vital biological functions. Although recent studies have shown that the expression of the human GnRH-II gene is regulated by cAMP and estrogen, the molecular mechanisms governing its basal transcription remain poorly understood. Using the neuronal TE-671 and placental JEG-3 cells, we showed that the minimal human GnRH-II promoter was located between nucleotide -1124 and -750 (relative to the translation start codon) and that the untranslated exon 1 was important to produce full promoter activity. Two putative E-box binding sites and one Ets-like element were identified within the first exon, and mutational analysis demonstrated that these cis-acting elements functioned cooperatively to stimulate the human GnRH-II gene transcription. EMSAs, UV cross-linking, and Southwestern blot analyses indicated that the basic helix-loop-helix transcription factor AP-4 bound specifically to the two E-box binding sites, whereas an unidentified protein bound to the Ets-like element. The functional importance of AP-4 in controlling human GnRH-II gene transcription was demonstrated by overexpression of sense and antisense full-length AP-4 cDNAs. Taken together, our present data demonstrate a novel mechanism in stimulating basal human GnRH-II gene transcription mediated by cooperative actions of multiple regulatory elements within the untranslated first exon of the gene.
Collapse
Affiliation(s)
- Chi Keung Cheng
- Department of Obstetrics and Gynecology, University of British Columbia, Vancouver, Canada V6H 3V5
| | | | | | | |
Collapse
|
10
|
Morgan K, Conklin D, Pawson AJ, Sellar R, Ott TR, Millar RP. A transcriptionally active human type II gonadotropin-releasing hormone receptor gene homolog overlaps two genes in the antisense orientation on chromosome 1q.12. Endocrinology 2003; 144:423-36. [PMID: 12538601 DOI: 10.1210/en.2002-220622] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
GnRH-II peptide hormone exhibits complete sequence conservation across vertebrate species, including man. Type-II GnRH receptor genes have been characterized recently in nonhuman primates, but the human receptor gene homolog contains a frameshift, a premature stop codon (UGA), and a 3' overlap of the RBM8A gene on chromosome 1q.12. A retrotransposed pseudogene, RBM8B, retains partial receptor sequence. In this study, bioinformatics show that the human receptor gene promoter overlaps the peroxisomal protein 11-beta gene promoter and the premature UGA is positionally conserved in chimpanzee. A CGA [arginine (Arg)] occurs in porcine DNA, but UGA is shifted one codon to the 5' direction in bovine DNA, suggesting independent evolution of premature stop codons. In contrast to marmoset tissue RNA, exon- and strand-specific probes are required to distinguish differently spliced human receptor gene transcripts in cell lines (HP75, IMR-32). RBM8B is not transcribed. Sequencing of cDNAs for spliced receptor mRNAs showed no evidence for alteration of the premature UGA by RNA editing, but alternative splicing circumvents the frameshift to encode a two-membrane-domain protein before this UGA. A stem-loop motif resembling a selenocysteine insertion sequence and a potential alternative translation initiation site might enable expression of further proteins involved in interactions within the GnRH system.
Collapse
Affiliation(s)
- Kevin Morgan
- Medical Research Council Human Reproductive Sciences Unit, University of Edinburgh Academic Centre, Edinburgh EH16 4SB, United Kingdom.
| | | | | | | | | | | |
Collapse
|
11
|
Chen A, Ganor Y, Rahimipour S, Ben-Aroya N, Koch Y, Levite M. The neuropeptides GnRH-II and GnRH-I are produced by human T cells and trigger laminin receptor gene expression, adhesion, chemotaxis and homing to specific organs. Nat Med 2002; 8:1421-6. [PMID: 12447356 DOI: 10.1038/nm1202-801] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2002] [Accepted: 10/21/2002] [Indexed: 11/08/2022]
Abstract
Can T cells be directly activated to de novo gene expression by gonadotropin-releasing hormone-II (GnRH-II), a unique 10-amino-acid neuropeptide conserved through 500 million years of evolution? GnRH-II, which has been identified in mammals, shares 70% homology with the mammalian hypothalamic neurohormone GnRH (GnRH-I), the primary regulator of reproduction, but is encoded by a different gene. Although both neuropeptides are produced mainly in brain, their localization and promoter regulation differ, suggestive of distinct functions. Indeed, GnRH-II barely affects reproduction and its role in mammalian physiology is unknown. We find here that human normal and leukemic T cells produce GnRH-II and GnRH-I. Further, exposure of normal or cancerous human or mouse T cells to GnRH-II or GnRH-I triggered de novo gene transcription and cell-surface expression of a 67-kD non-integrin laminin receptor that is involved in cellular adhesion and migration and in tumor invasion and metastasis. GnRH-II or GnRH-I also induced adhesion to laminin and chemotaxis toward SDF-1alpha, and augmented entry in vivo of metastatic T-lymphoma into the spleen and bone marrow. Homing of normal T cells into specific organs was reduced in mice lacking GnRH-I. A specific GnRH-I-receptor antagonist blocked GnRH-I- but not GnRH-II-induced effects, which is suggestive of signaling through distinct receptors. We suggest that GnRH-II and GnRH-I, secreted from nerves or autocrine or paracrine sources, interact directly with T cells and trigger gene transcription, adhesion, chemotaxis and homing to specific organs, which may be of clinical relevance.
Collapse
Affiliation(s)
- Alon Chen
- Department of Neurobiology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | |
Collapse
|
12
|
Torgersen J, Nourizadeh-Lillabadi R, Husebye H, Aleström P. In silico and in situ characterization of the zebrafish (Danio rerio) gnrh3 (sGnRH) gene. BMC Genomics 2002; 3:25. [PMID: 12188930 PMCID: PMC126252 DOI: 10.1186/1471-2164-3-25] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2002] [Accepted: 08/21/2002] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gonadotropin releasing hormone (GnRH) is responsible for stimulation of gonadotropic hormone (GtH) in the hypothalamus-pituitary-gonadal axis (HPG). The regulatory mechanisms responsible for brain specificity make the promoter attractive for in silico analysis and reporter gene studies in zebrafish (Danio rerio). RESULTS We have characterized a zebrafish [Trp7, Leu8] or salmon (s) GnRH variant, gnrh3. The gene includes a 1.6 Kb upstream regulatory region and displays the conserved structure of 4 exons and 3 introns, as seen in other species. An in silico defined enhancer at -976 in the zebrafish promoter, containing adjacent binding sites for Oct-1, CREB and Sp1, was predicted in 2 mammalian and 5 teleost GnRH promoters. Reporter gene studies confirmed the importance of this enhancer for cell specific expression in zebrafish. Interestingly the promoter of human GnRH-I, known as mammalian GnRH (mGnRH), was shown capable of driving cell specific reporter gene expression in transgenic zebrafish. CONCLUSIONS The characterized zebrafish Gnrh3 decapeptide exhibits complete homology to the Atlantic salmon (Salmo salar) GnRH-III variant. In silico analysis of mammalian and teleost GnRH promoters revealed a conserved enhancer possessing binding sites for Oct-1, CREB and Sp1. Transgenic and transient reporter gene expression in zebrafish larvae, confirmed the importance of the in silico defined zebrafish enhancer at -976. The capability of the human GnRH-I promoter of directing cell specific reporter gene expression in zebrafish supports orthology between GnRH-I and GnRH-III.
Collapse
Affiliation(s)
- Jacob Torgersen
- Department of Biochemistry, Physiology and Nutrition, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033 Oslo, Norway
| | - Rasoul Nourizadeh-Lillabadi
- Department of Biochemistry, Physiology and Nutrition, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033 Oslo, Norway
| | - Harald Husebye
- Department of Botany, NTNU/ Realfagbygget, N-7491 Trondheim, Norway
| | - Peter Aleström
- Department of Biochemistry, Physiology and Nutrition, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033 Oslo, Norway
| |
Collapse
|