1
|
Long BY, Liao X, Liang X. The Hypothalamus and Pituitary Gland Regulate Reproduction and Are Involved in the Development of Polycystic Ovary Syndrome. Neuroendocrinology 2025; 115:315-334. [PMID: 39894018 DOI: 10.1159/000543877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a complex condition with unclear mechanisms, posing a challenge for prevention and treatment of PCOS. The role of the hypothalamus and pituitary gland in regulating female reproduction is critical. Abnormalities in the hypothalamus and pituitary can impair reproductive function. It is important to study hypothalamic and pituitary changes in patients with PCOS. SUMMARY This article reviews articles on the hypothalamus and PCOS with the goal of summarizing what abnormalities of the hypothalamic-pituitary-ovarian axis are present in patients with PCOS and to clarify the pathogenesis of PCOS. We find that the mechanisms by which the hypothalamus and pituitary regulate reproduction in girls are complex and are associated with altered sex hormone levels, obesity, and insulin resistance. Different animal models of PCOS are characterized by different alterations in the hypothalamus and pituitary and respond differently to different treatments, which correspond to the complex pathogenesis of patients with PCOS. KEY MESSAGES Arcuate nucleus (ARC) is associated with luteinizing hormone (LH) surges. Suprachiasmatic nucleus, ARC, and RP3V are associated with LH surges. Animal models of PCOS have different characteristics.
Collapse
Affiliation(s)
- Bin-Yang Long
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xipeng Liao
- Tianjin University of Technology, Tianjin, China
| | - Xin Liang
- School of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Anderson RA. Kisspeptin and neurokinin B neuroendocrine pathways in the control of human ovulation. J Neuroendocrinol 2024; 36:e13371. [PMID: 38404024 DOI: 10.1111/jne.13371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/27/2024]
Abstract
The roles of initially kisspeptin and subsequently neurokinin B pathways in the regulation of human reproduction through the control of GnRH secretion were first identified 20 years ago, as essential for the onset of puberty in both boys and girls. Within that short time we already now have the first licence for clinical use for a neurokinin antagonist in a related indication, for menopausal vasomotor symptoms. Between these two markers of the start and end of the reproductive lifespan, it is clear that these pathways underlie many of the aspects of the hypothalamic regulation of reproduction which had hitherto been enigmatic. In this review, we describe the data currently available from studies designed to elucidate the roles of kisspeptin and neurokinin B in human ovarian function, specifically the regulation of follicle development leading up to ovulation, and in the control of the mid-cycle GnRH/LH surge that triggers ovulation. These studies, undertaken with only very limited pharmacological tools, provide evidence that the neurokinin B pathway is important in controlling the hypothalamic contribution to the precise gonadotropic drive to the ovary that is necessary for mono-ovulation, whereas the switch from negative to positive estrogenic feedback results in kisspeptin-mediated increased GnRH secretion. Potential therapeutic opportunities in conditions characterised by disordered hypothalamic/pituitary function, polycystic ovary syndrome, and functional hypothalamic amenorrhoea, and in the induced LH surge that is a necessary part of IVF treatment are discussed.
Collapse
|
3
|
Sucquart IE, Coyle C, Rodriguez Paris V, Prescott M, Glendining KA, Potapov K, Begg DP, Gilchrist RB, Walters KA, Campbell RE. Investigating GABA Neuron-Specific Androgen Receptor Knockout in two Hyperandrogenic Models of PCOS. Endocrinology 2024; 165:bqae060. [PMID: 38788194 PMCID: PMC11151696 DOI: 10.1210/endocr/bqae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Androgen excess is a hallmark feature of polycystic ovary syndrome (PCOS), the most common form of anovulatory infertility. Clinical and preclinical evidence links developmental or chronic exposure to hyperandrogenism with programming and evoking the reproductive and metabolic traits of PCOS. While critical androgen targets remain to be determined, central GABAergic neurons are postulated to be involved. Here, we tested the hypothesis that androgen signaling in GABAergic neurons is critical in PCOS pathogenesis in 2 well-characterized hyperandrogenic mouse models of PCOS. Using cre-lox transgenics, GABA-specific androgen receptor knockout (GABARKO) mice were generated and exposed to either acute prenatal androgen excess (PNA) or chronic peripubertal androgen excess (PPA). Females were phenotyped for reproductive and metabolic features associated with each model and brains of PNA mice were assessed for elevated GABAergic input to gonadotropin-releasing hormone (GnRH) neurons. Reproductive and metabolic dysfunction induced by PPA, including acyclicity, absence of corpora lutea, obesity, adipocyte hypertrophy, and impaired glucose homeostasis, was not different between GABARKO and wild-type (WT) mice. In PNA mice, acyclicity remained in GABARKO mice while ovarian morphology and luteinizing hormone secretion was not significantly impacted by PNA or genotype. However, PNA predictably increased the density of putative GABAergic synapses to GnRH neurons in adult WT mice, and this PNA-induced plasticity was absent in GABARKO mice. Together, these findings suggest that while direct androgen signaling in GABA neurons is largely not required for the development of PCOS-like traits in androgenized models of PCOS, developmental programming of GnRH neuron innervation is dependent upon androgen signaling in GABA neurons.
Collapse
Affiliation(s)
- Irene E Sucquart
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Randwick, NSW 2031, Australia
| | - Chris Coyle
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand 9054
| | - Valentina Rodriguez Paris
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Randwick, NSW 2031, Australia
- School of Biomedical Sciences, University of New South Wales Sydney, Randwick, NSW 2052, Australia
| | - Melanie Prescott
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand 9054
| | - Kelly A Glendining
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand 9054
| | - Kyoko Potapov
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand 9054
| | - Denovan P Begg
- Department of Behavioural Neuroscience, School of Psychology, University of New South Wales Sydney, Randwick, NSW, Australia
| | - Robert B Gilchrist
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Randwick, NSW 2031, Australia
| | - Kirsty A Walters
- Fertility & Research Centre, School of Clinical Medicine, University of New South Wales Sydney, Randwick, NSW 2031, Australia
| | - Rebecca E Campbell
- Centre of Neuroendocrinology and Department of Physiology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand 9054
| |
Collapse
|
4
|
Patel B, Koysombat K, Mills EG, Tsoutsouki J, Comninos AN, Abbara A, Dhillo WS. The Emerging Therapeutic Potential of Kisspeptin and Neurokinin B. Endocr Rev 2024; 45:30-68. [PMID: 37467734 PMCID: PMC10765167 DOI: 10.1210/endrev/bnad023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/13/2023] [Accepted: 07/11/2023] [Indexed: 07/21/2023]
Abstract
Kisspeptin (KP) and neurokinin B (NKB) are neuropeptides that govern the reproductive endocrine axis through regulating hypothalamic gonadotropin-releasing hormone (GnRH) neuronal activity and pulsatile GnRH secretion. Their critical role in reproductive health was first identified after inactivating variants in genes encoding for KP or NKB signaling were shown to result in congenital hypogonadotropic hypogonadism and a failure of pubertal development. Over the past 2 decades since their discovery, a wealth of evidence from both basic and translational research has laid the foundation for potential therapeutic applications. Beyond KP's function in the hypothalamus, it is also expressed in the placenta, liver, pancreas, adipose tissue, bone, and limbic regions, giving rise to several avenues of research for use in the diagnosis and treatment of pregnancy, metabolic, liver, bone, and behavioral disorders. The role played by NKB in stimulating the hypothalamic thermoregulatory center to mediate menopausal hot flashes has led to the development of medications that antagonize its action as a novel nonsteroidal therapeutic agent for this indication. Furthermore, the ability of NKB antagonism to partially suppress (but not abolish) the reproductive endocrine axis has supported its potential use for the treatment of various reproductive disorders including polycystic ovary syndrome, uterine fibroids, and endometriosis. This review will provide a comprehensive up-to-date overview of the preclinical and clinical data that have paved the way for the development of diagnostic and therapeutic applications of KP and NKB.
Collapse
Affiliation(s)
- Bijal Patel
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Kanyada Koysombat
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Edouard G Mills
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Jovanna Tsoutsouki
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
| | - Alexander N Comninos
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Ali Abbara
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College School of Medicine, Imperial College London, London, W12 0NN, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, 72 Du Cane Rd, London, W12 0HS, UK
| |
Collapse
|
5
|
Wang K, Li Y, Chen Y. Androgen excess: a hallmark of polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1273542. [PMID: 38152131 PMCID: PMC10751361 DOI: 10.3389/fendo.2023.1273542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
Polycystic ovarian syndrome (PCOS) is a metabolic, reproductive, and psychological disorder affecting 6-20% of reproductive women worldwide. However, there is still no cure for PCOS, and current treatments primarily alleviate its symptoms due to a poor understanding of its etiology. Compelling evidence suggests that hyperandrogenism is not just a primary feature of PCOS. Instead, it may be a causative factor for this condition. Thus, figuring out the mechanisms of androgen synthesis, conversion, and metabolism is relatively important. Traditionally, studies of androgen excess have largely focused on classical androgen, but in recent years, adrenal-derived 11-oxygenated androgen has also garnered interest. Herein, this Review aims to investigate the origins of androgen excess, androgen synthesis, how androgen receptor (AR) signaling mediates adverse PCOS traits, and the role of 11-oxygenated androgen in the pathophysiology of PCOS. In addition, it provides therapeutic strategies targeting hyperandrogenism in PCOS.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Yu Chen
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
6
|
Silva MSB, Decoster L, Delpouve G, Lhomme T, Ternier G, Prevot V, Giacobini P. Overactivation of GnRH neurons is sufficient to trigger polycystic ovary syndrome-like traits in female mice. EBioMedicine 2023; 97:104850. [PMID: 37898094 PMCID: PMC10630624 DOI: 10.1016/j.ebiom.2023.104850] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/18/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is the most common endocrine disorder leading to anovulatory infertility. Abnormalities in the central neuroendocrine system governed by gonadotropin-releasing hormone (GnRH) neurons might be related to ovarian dysfunction in PCOS, although the link in this disordered brain-to-ovary communication remains unclear. Here, we manipulated GnRH neurons using chemogenetics in adult female mice to unveil whether chronic overaction of these neurons would trigger PCOS-like hormonal and reproductive impairments. METHODS We used adult Gnrh1cre female mice to selectively target and express the designer receptors exclusively activated by designer drugs (DREADD)-based chemogenetic tool hM3D(Gq) in hypophysiotropic GnRH neurons. Chronic chemogenetic activation protocol was carried out with clozapine N-oxide (CNO) i.p. injections every 48 h over a month. We evaluated the reproductive and hormonal profile before, during, and two months after chemogenetic manipulations. FINDINGS We discovered that the overactivation of GnRH neurons was sufficient to disrupt reproductive cycles, promote hyperandrogenism, and induce ovarian dysfunction. These PCOS features were detected with a long-lasting neuroendocrine dysfunction through abnormally high luteinizing hormone (LH) pulse secretion. Additionally, the GnRH-R blockade prevented the establishment of long-term neuroendocrine dysfunction and androgen excess in these animals. INTERPRETATION Taken together, our results show that hyperactivity of hypothalamic GnRH neurons is a major driver of reproductive and hormonal impairments in PCOS and suggest that antagonizing the aberrant GnRH signaling could be an efficient therapeutic venue for the treatment of PCOS. FUNDING European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement n◦ 725149).
Collapse
Affiliation(s)
- Mauro S B Silva
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Laurine Decoster
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Gaspard Delpouve
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Tori Lhomme
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Gaetan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Vincent Prevot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille, France; Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille, France.
| |
Collapse
|
7
|
Wang K, Li Y. Signaling pathways and targeted therapeutic strategies for polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1191759. [PMID: 37929034 PMCID: PMC10622806 DOI: 10.3389/fendo.2023.1191759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/18/2023] [Indexed: 11/07/2023] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder among women of reproductive age. Although promising strides have been made in the field of PCOS over the past decades, the distinct etiologies of this syndrome are not fully elucidated. Prenatal factors, genetic variation, epigenetic mechanisms, unhealthy lifestyles, and environmental toxins all contribute to the development of this intricate and highly heterogeneous metabolic, endocrine, reproductive, and psychological disorder. Moreover, interactions between androgen excess, insulin resistance, disruption to the hypothalamic-pituitary-ovary (HPO) axis, and obesity only make for a more complex picture. In this review, we investigate and summarize the related molecular mechanisms underlying PCOS pathogenesis from the perspective of the level of signaling pathways, including PI3K/Akt, TGF-β/Smads, Wnt/β-catenin, and Hippo/YAP. Additionally, this review provides an overview of prospective therapies, such as exosome therapy, gene therapy, and drugs based on traditional Chinese medicine (TCM) and natural compounds. By targeting these aberrant pathways, these interventions primarily alleviate inflammation, insulin resistance, androgen excess, and ovarian fibrosis, which are typical symptoms of PCOS. Overall, we hope that this paper will pave the way for better understanding and management of PCOS in the future.
Collapse
Affiliation(s)
- Kexin Wang
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yanhua Li
- Department of General Practice, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
8
|
Dong J, Rees DA. Polycystic ovary syndrome: pathophysiology and therapeutic opportunities. BMJ MEDICINE 2023; 2:e000548. [PMID: 37859784 PMCID: PMC10583117 DOI: 10.1136/bmjmed-2023-000548] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/18/2023] [Indexed: 10/21/2023]
Abstract
Polycystic ovary syndrome is characterised by excessive levels of androgens and ovulatory dysfunction, and is a common endocrine disorder in women of reproductive age. Polycystic ovary syndrome arises as a result of polygenic susceptibility in combination with environmental influences that might include epigenetic alterations and in utero programming. In addition to the well recognised clinical manifestations of hyperandrogenism and ovulatory dysfunction, women with polycystic ovary syndrome have an increased risk of adverse mental health outcomes, pregnancy complications, and cardiometabolic disease. Unlicensed treatments have limited efficacy, mostly because drug development has been hampered by an incomplete understanding of the underlying pathophysiological processes. Advances in genetics, metabolomics, and adipocyte biology have improved our understanding of key changes in neuroendocrine, enteroendocrine, and steroidogenic pathways, including increased gonadotrophin releasing hormone pulsatility, androgen excess, insulin resistance, and changes in the gut microbiome. Many patients with polycystic ovary syndrome have high levels of 11-oxygenated androgens, with high androgenic potency, that might mediate metabolic risk. These advances have prompted the development of new treatments, including those that target the neurokinin-kisspeptin axis upstream of gonadotrophin releasing hormone, with the potential to lessen adverse clinical sequelae and improve patient outcomes.
Collapse
Affiliation(s)
- Jiawen Dong
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - D Aled Rees
- Neuroscience and Mental Health Innovation Institute, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
9
|
Ubba V, Joseph S, Awe O, Jones D, Dsilva MK, Feng M, Wang J, Fu X, Akbar RJ, Bodnar BH, Hu W, Wang H, Yang X, Yang L, Yang P, Ahima R, Divall S, Wu S. Neuronal AR Regulates Glucose Homeostasis and Energy Expenditure in Lean Female Mice With Androgen Excess. Endocrinology 2023; 164:bqad141. [PMID: 37738624 DOI: 10.1210/endocr/bqad141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/24/2023]
Abstract
Hyperandrogenemia and polycystic ovary syndrome are a result of the imbalance of androgen levels in females. Androgen receptor (Ar) mediates the effect of androgen, and this study examines how neuronal Ar in the central nervous system mediates metabolism under normal and increased androgen conditions in female mice. The neuron-specific ARKO mouse (SynARKO) was created from female (Ar fl/wt; synapsin promoter driven Cre) and male (Ar fl/y) mice. A glucose tolerance test revealed impaired glucose tolerance that was partially alleviated in the SynARKO-dihydrotestosterone (DHT) mice compared with Con-DHT mice after 4 months of DHT treatment. Heat production and food intake was higher in Con-DHT mice than in Con-veh mice; these effects were not altered between SynARKO-veh and SynARKO-DHT mice, indicating that excess androgens may partially alter calorie intake and energy expenditure in females via the neuronal Ar. The pAkt/Akt activity was higher in the hypothalamus in Con-DHT mice than in Con-veh mice, and this effect was attenuated in SynARKO-DHT mice. Western blot studies show that markers of inflammation and microglia activation, such as NF-kB p-65 and IBA1, increased in the hypothalamus of Con-DHT mice compared with Con-veh. These studies suggest that neuronal Ar mediates the metabolic impacts of androgen excess in females.
Collapse
Affiliation(s)
- Vaibhave Ubba
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Serene Joseph
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Olubusayo Awe
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Dustin Jones
- Department of Cellular and Molecular Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Milan K Dsilva
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Mingxiao Feng
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Junjiang Wang
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Xiaomin Fu
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| | - Razeen J Akbar
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Brittany H Bodnar
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Xiaofeng Yang
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Ling Yang
- Department of Medical Genetics & Molecular Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rexford Ahima
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Sara Divall
- Department of Pediatrics, University of Washington, Seattle's Children's Hospital, Seattle, WA 98145-5005, USA
| | - Sheng Wu
- Center for Metabolic Disease Research, Temple University School of Medicine, Philadelphia, PA 19140, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21087, USA
| |
Collapse
|
10
|
Kouhetsani S, Khazali H, Rajabi-Maham H. Orexin antagonism and substance-P: Effects and interactions on polycystic ovary syndrome in the wistar rats. J Ovarian Res 2023; 16:89. [PMID: 37147728 PMCID: PMC10161431 DOI: 10.1186/s13048-023-01168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder without definitive treatments. Orexin and Substance-P (SP) neuropeptides can affect the ovarian steroidogenesis. Moreover, there are limited studies about the role of these neuropeptides in PCOS. We aimed here to clarify the effects of orexins and SP in PCOS as well as any possible interactions between them. METHODS For this purpose, the animals (n = five rats per group) received intraperitoneally a single dose of SB-334,867-A (orexin-1 receptor antagonist; OX1Ra), JNJ-10,397,049 (orexin-2 receptor antagonist; OX2Ra), and CP-96,345 (neurokinin-1 receptor antagonist; NK1Ra), alone or in combination with each other after two months of PCOS induction. The blocking of orexin and SP receptors was studied in terms of ovarian histology, hormonal changes, and gene expression of ovarian steroidogenic enzymes. RESULTS The antagonists' treatment did not significantly affect the formation of ovarian cysts. In the PCOS groups, the co-administration of OX1Ra and OX2Ra as well as their simultaneous injections with NK1Ra significantly reversed testosterone levels and Cyp19a1 gene expression when compared to the PCOS control group. There were no significant interactions between the PCOS groups that received NK1Ra together with one or both OX1R- and OX2R-antagonists. CONCLUSION The blocking of the orexin receptors modulates abnormal ovarian steroidogenesis in the PCOS model of rats. This suggests that the binding of orexin-A and -B to their receptors reduces Cyp19a1 gene expression while increasing testosterone levels.
Collapse
Affiliation(s)
- Somayeh Kouhetsani
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Homayoun Khazali
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Hassan Rajabi-Maham
- Department of Animal Sciences and Marine Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
11
|
Wang X, Wang Q, Zhao M, Xu Y, Fu B, Zhang L, Wu S, Yang D, Jia C. Cold exposure-induced alterations in the brain peptidome and gut microbiome are linked to energy homeostasis in mice. Mol Cell Proteomics 2023; 22:100525. [PMID: 36871861 PMCID: PMC10114514 DOI: 10.1016/j.mcpro.2023.100525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/21/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Energy homeostasis of mammals during cold exposure involves complicated neural regulation and is affected by gut microbiota. However, the regulatory mechanism remains unclear partially due to a lack of comprehensive knowledge of the signaling molecules involved. Herein, we performed region-resolvable quantitative profiling of the brain peptidome using cold-exposed mouse models and interrogated the interaction between gut microbes and brain peptides in response to cold. Region-specific alterations in the brain peptidome were observed during chronic cold exposure and were correlated with gut microbiome composition. Several proSAAS-derived peptides exhibited a positive correlation with Lactobacillus. The hypothalamus-pituitary axis exhibited a sensitive response to cold exposure. We obtained a candidate pool of bioactive peptides that potentially participate in the regulation of cold-induced energy homeostasis. Intervention with cold-adapted microbiota in mice decreased the abundance of hypothalamic neurokinin B and subsequently contributed to shifting the fuel source for energy consumption from lipids to glucose. Collectively, this study demonstrated that gut microbes modulate brain peptides contributing to energy metabolism, providing a data resource for understanding the regulatory mechanism of energy homeostasis upon cold exposure.
Collapse
Affiliation(s)
- Xue Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China; School of Chemistry &Environmental Sciences, Hebei University, Hebei Province, Baoding 071002, China
| | - Qianqian Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Mingxin Zhao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Ying Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Bin Fu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China
| | - Li Zhang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Shuai Wu
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China
| | - Danfeng Yang
- Tianjin Institute of Environmental and Operational Medicine, Tianjin 300050, China.
| | - Chenxi Jia
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, Beijing Institute of Lifeomics, National Center for Protein Sciences (The PHOENIX Center, Beijing), Beijing 102206, China; Lead contact.
| |
Collapse
|
12
|
Guo F, Fernando T, Zhu X, Shi Y. The overexpression of neurokinin B-neurokinin 3 receptor system exerts direct effects on the ovary under PCOS-like conditions to interfere with mitochondrial function. Am J Reprod Immunol 2023; 89:e13663. [PMID: 36453600 DOI: 10.1111/aji.13663] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/13/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
PROBLEM The increased hypothalamic neurokinin B (NKB) level may contribute to the hyperactive LH pulse secretion in Polycystic ovary syndrome (PCOS). However, the expression and role of the neurokinin B-neurokinin 3 receptor (NKB-NK3R) system in the local ovarian tissue of PCOS have not been clarified. We constructed in vivo and in vitro models to elucidate the mechanism of the NKB-NK3R pathway in reproductive endocrine disorders of PCOS. METHOD OF STUDY The granulosa cell line-KGN cells were set in palmitic acid (PA) and dihydrotestosterone (DHT) to simulate the PCOS-like conditions. And we used the high-fat/high-glucose diet to build a PCOS-like mice model and neurokinin 3 receptor antagonist (NK3Ra) was administered to half of the mice. The expression of the NKB-NK3R system, mitochondrial functions, hormone levels, and inflammatory state was evaluated. RESULTS The PCOS-like stimulations induced the NKB-NK3R system and MAPK-ERK pathway overexpression in KGN cells, in an approximate dose and time-dependent manner. The NKB-NK3R system overactivated the MAPK-ERK pathway to increase NNT overexpression, disturb NADH/NADPH pools, aggravate the oxidation state, and decrease ATP production. With overexpression of the NKB-NK3R system in the local ovarian tissue, ovulatory dysfunction, progesterone deficiency, and pro-inflammatory states were apparent in PCOS-like mice. Antagonizing the receptor, NK3R, reversed the adverse reproductive endocrine phenotypes via improving mitochondrial dysfunction. CONCLUSIONS In addition to the central regulation, local ovarian overexpression of the NKB-NK3R system participated in the adverse reproductive endocrine phenotypes, supporting the therapeutic implications of NK3Ra for PCOS.
Collapse
Affiliation(s)
- Fei Guo
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Taniya Fernando
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China
| | - Xiaoyong Zhu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| | - Yingli Shi
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Shanghai, China
| |
Collapse
|
13
|
Recent advances in emerging PCOS therapies. Curr Opin Pharmacol 2023; 68:102345. [PMID: 36621270 DOI: 10.1016/j.coph.2022.102345] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 01/08/2023]
Abstract
Polycystic ovary syndrome is a prevalent endocrinopathy involving androgen excess, and anovulatory infertility. The disorder is also associated with many comorbidities such as obesity and hyperinsulinemia, and an increased risk of cardiovascular complications. Reproductive, endocrine, and metabolic symptoms are highly variable, with heterogenous phenotypes adding complexity to clinical management of symptoms. This review highlights recent findings regarding emerging therapies for treating polycystic ovary syndrome, including i) pharmacological agents to target androgen excess, ii) modulation of kisspeptin signalling to target central neuroendocrine dysregulation, and iii) novel insulin sensitisers to combat peripheral metabolic dysfunction.
Collapse
|
14
|
Zhang L, Fernando T, Liu Y, Liu Y, Zhu X, Li M, Shi Y. Neurokinin 3 receptor antagonist-induced adipocyte activation improves obesity and metabolism in PCOS-like mice. Life Sci 2022; 310:121078. [DOI: 10.1016/j.lfs.2022.121078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/04/2022] [Accepted: 10/11/2022] [Indexed: 11/09/2022]
|
15
|
Garg A, Patel B, Abbara A, Dhillo WS. Treatments targeting neuroendocrine dysfunction in polycystic ovary syndrome (PCOS). Clin Endocrinol (Oxf) 2022; 97:156-164. [PMID: 35262967 DOI: 10.1111/cen.14704] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 01/01/2023]
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder in women of reproductive age and is the leading cause of anovulatory subfertility. Increased gonadotrophin releasing hormone (GnRH) pulsatility in the hypothalamus results in preferential luteinizing hormone (LH) secretion from the pituitary gland, leading to ovarian hyperandrogenism and oligo/anovulation. The resultant hyperandrogenism reduces negative feedback from sex steroids such as oestradiol and progesterone to the hypothalamus, and thus perpetuates the increase in GnRH pulsatility. GnRH neurons do not have receptors for oestrogen, progesterone, or androgens, and thus the disrupted feedback is hypothesized to occur via upstream neurons. Likely candidates for these upstream regulators of GnRH neuronal pulsatility are Kisspeptin, Neurokinin B (NKB), and Dynorphin neurons (termed KNDy neurons). Growing insight into the neuroendocrine dysfunction underpinning the heightened GnRH pulsatility seen in PCOS has led to research on the use of pharmaceutical agents that specifically target the activity of these KNDy neurons to attenuate symptoms of PCOS. This review aims to highlight the neuroendocrine abnormalities that lead to increased GnRH pulsatility in PCOS, and outline data on recent therapeutic advancements that could potentially be used to treat PCOS. Emerging evidence has investigated the use of neurokinin 3 receptor (NK3R) antagonists as a method of reducing GnRH pulsatility and alleviating features of PCOS such as hyperandrogenism. We also consider other potential mechanisms by which increased GnRH pulsatility is controlled, which could form the basis of future avenues of research.
Collapse
Affiliation(s)
- Akanksha Garg
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Bijal Patel
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
| | - Ali Abbara
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| | - Waljit S Dhillo
- Section of Investigative Medicine, Division of Diabetes, Endocrinology and Metabolism, Imperial College London, London, UK
- Department of Diabetes and Endocrinology, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
16
|
Coyle CS, Prescott M, Handelsman DJ, Walters KA, Campbell RE. Chronic androgen excess in female mice does not impact luteinizing hormone pulse frequency or putative GABAergic inputs to GnRH neurons. J Neuroendocrinol 2022; 34:e13110. [PMID: 35267218 PMCID: PMC9286661 DOI: 10.1111/jne.13110] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/17/2022] [Accepted: 02/17/2022] [Indexed: 11/28/2022]
Abstract
Polycystic ovary syndrome (PCOS) is associated with androgen excess and, frequently, hyperactive pulsatile luteinizing hormone (LH) secretion. Although the origins of PCOS are unclear, evidence from pre-clinical models implicates androgen signalling in the brain in the development of PCOS pathophysiology. Chronic exposure of female mice to dihydrotestosterone (DHT) from 3 weeks of age drives both reproductive and metabolic impairments that are ameliorated by selective androgen receptor (AR) loss from the brain. This suggests centrally driven mechanisms in hyperandrogen-mediated PCOS-like pathophysiology that remain to be defined. Acute prenatal DHT exposure can also model the hyperandrogenism of PCOS, and this is accompanied by increased LH pulse frequency and increased GABAergic innervation of gonadotrophin-releasing hormone (GnRH) neurons. We aimed to determine the impact of chronic exposure of female mice to DHT, which models the hyperandrogenism of PCOS, on pulsatile LH secretion and putative GABAergic input to GnRH neurons. To do this, GnRH-green fluorescent protein (GFP) female mice received either DHT or blank capsules for 90 days from postnatal day 21 (n = 6 or 7 per group). Serial tail-tip blood sampling was used to measure LH dynamics and perfusion-fixed brains were collected and immunolabelled for vesicular GABA transporter (VGAT) to assess putative GABAergic terminals associated with GFP-labelled GnRH neurons. As expected, chronic DHT resulted in acyclicity and significantly increased body weight. However, no differences in LH pulse frequency or the density of VGAT appositions to GnRH neurons were identified between ovary-intact DHT-treated females and controls. Chronic DHT exposure significantly increased the number of AR expressing cells in the hypothalamus, whereas oestrogen receptor α-expressing neuron number was unchanged. Therefore, although chronic DHT exposure from 3 weeks of age increases AR expressing neurons in the brain, the GnRH neuronal network changes and hyperactive LH secretion associated with prenatal androgen excess are not evident. These findings suggest that unique central mechanisms are involved in the reproductive impairments driven by exposure to androgen excess at different developmental stages.
Collapse
Affiliation(s)
- Chris S. Coyle
- Centre for Neuroendocrinology and Department of PhysiologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - Melanie Prescott
- Centre for Neuroendocrinology and Department of PhysiologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| | - David J Handelsman
- Andrology LaboratoryANZAC Research InstituteConcord HospitalUniversity of SydneySydneyNSWAustralia
| | - Kirsty A. Walters
- Fertility and Research CentreSchool of Women’s and Children’s HealthUniversity of New South WalesSydneyNSWAustralia
| | - Rebecca E. Campbell
- Centre for Neuroendocrinology and Department of PhysiologySchool of Biomedical SciencesUniversity of OtagoDunedinNew Zealand
| |
Collapse
|
17
|
Al-Hussaniy HA, Alburghaif AH, Naji MA. Leptin hormone and its effectiveness in reproduction, metabolism, immunity, diabetes, hopes and ambitions. J Med Life 2022; 14:600-605. [PMID: 35027962 PMCID: PMC8742898 DOI: 10.25122/jml-2021-0153] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Leptin is a hormone derived from adipose tissue and the small intestine, mainly in enterocytes; it helps regulate the energy balance by suppressing hunger, resulting in decreased fat mass in adipocytes. Leptin has specific receptors in the ventromedial and arcuate nuclei and other parts of the hypothalamus and the feeding center in the ventral tegmental area. It also plays a role in regulatory aspects other than fat cells, such as obesity, which is linked to a loss of sensitivity of leptin receptors, resulting in an inability to produce satiety and an increase in food intake. Moreover, leptin plays a part in lactation, bone density, the immune system, diabetes treatments, and hypertriglyceridemia. The latest studies in leptin suggest that an analog of leptin may treat DM and hypertriglyceridemia. Further research should be conducted on the effectiveness of leptin on other related diseases.
Collapse
Affiliation(s)
| | | | - Meena Akeel Naji
- Department of Family Medicine, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
18
|
Kanasaki H, Tumurbaatar T, Cairang Z, Tumurgan Z, Oride A, Okada H, Kyo S. Impact of One-Week Administration of Dihydrotestosterone in Rat Anterior Pituitary Gland. Int J Endocrinol 2022; 2022:9525227. [PMID: 36311909 PMCID: PMC9616675 DOI: 10.1155/2022/9525227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/06/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Hyperandrogenism causes dysfunction of the hypothalamic-pituitary-gonadal (HPG) axis in reproductive women. In this study, we examined the effects of dihydrotestosterone (DHT) on characteristic changes in rat anterior pituitary gland samples. DHT was administered to ovary-intact 6-week postnatal female rats for 7 days, after which the anterior pituitary glands were examined and compared with those in control rats. Estrous cyclicity was not drastically disrupted by DHT treatment. Common gonadotropin α subunit (Cga), luteinizing hormone β subunit (Lhb), and follicle-stimulating hormone (FSH) β subunit (Fshb) gene expression levels were not modulated by DHT treatment, while prolactin (Prl) gene expression was significantly repressed by DHT. Gonadotropin-releasing hormone (GnRH) receptor (Gnrh-r) gene expression was significantly inhibited by DHT, whereas pituitary adenylate cyclase-activating polypeptide (PACAP) receptor (Pca1-r) gene expression was increased by DHT. Gene expression levels of the receptors encoded by thyrotropin-releasing hormone (Trh-r) and kisspeptin (Kiss1-r) genes were unchanged. Expression of inhibin α subunit (Inha) and activin βA subunits (Actba) within the pituitary was inhibited by DHT treatment, while activin B subunit (Actbb) and follistatin (Fst) gene expression was unchanged by DHT. In mouse pituitary gonadotroph LβT2 cells, DHT did not modulate the gene expression of Gnrh-r, but it inhibited the expression of Inha and Actba subunits within the LβT2 cells. In rat prolactin-producing GH3 cells, DHT did not modulate prolactin gene expression, but it increased Pac1-r gene expression. The present observations suggest that DHT directly or indirectly affects the anterior pituitary gland and induces characteristic changes in hormone-producing cells.
Collapse
Affiliation(s)
- Haruhiko Kanasaki
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Tuvshintugs Tumurbaatar
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Zhouma Cairang
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Zolzaya Tumurgan
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Aki Oride
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Hiroe Okada
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| | - Satoru Kyo
- Department of Obstetrics and Gynecology, Shimane University School of Medicine, Izumo 693-8501, Japan
| |
Collapse
|
19
|
Abbara A, Dhillo WS. Targeting Elevated GnRH Pulsatility to Treat Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2021; 106:e4275-e4277. [PMID: 34117885 PMCID: PMC8475200 DOI: 10.1210/clinem/dgab422] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Ali Abbara
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
| | - Waljit S Dhillo
- Section of Endocrinology and Investigative Medicine, Imperial College London, Hammersmith Hospital, London, W12 0NN, UK
- Correspondence: Waljit S. Dhillo, PhD, MBBS, Department of Investigative Medicine, Imperial College London, 6th Fl, Commonwealth Bldg, Hammersmith Hospital, Du Cane Rd, London, W12 ONN, UK.
| |
Collapse
|
20
|
Hypothalamic neurokinin signalling and its application in reproductive medicine. Pharmacol Ther 2021; 230:107960. [PMID: 34273412 DOI: 10.1016/j.pharmthera.2021.107960] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/29/2022]
Abstract
The discovery of the essential requirement for kisspeptin and subsequently neurokinin B signalling for human reproductive function has sparked renewed interest in the neuroendocrinology of reproduction. A key discovery has been a population of cells co-expressing both these neuropeptides and dynorphin in the hypothalamus, directly regulating gonadotropin hormone releasing hormone (GnRH) secretion and thus pituitary secretion of gonadotropins. These neurons also project to the vasomotor centre, and their overactivity in estrogen deficiency results in the common and debilitating hot flushes of the menopause. Several antagonists to the neurokinin 3 receptor, for which neurokinin B is the endogenous ligand, have been developed, and are entering clinical studies in human reproductive function and clinical trials. Even single doses can elicit marked declines in testosterone levels in men, and their use has elicited evidence of the regulation of ovarian follicle growth in women. The most advanced indication is the treatment of menopausal vasomotor symptoms, where these drugs show remarkable results in both the degree and speed of symptom control. A range of other reproductive indications are starting to be explored, notably in polycystic ovary syndrome, the most common endocrinopathy in women.
Collapse
|