1
|
Fassnacht M, Puglisi S, Kimpel O, Terzolo M. Adrenocortical carcinoma: a practical guide for clinicians. Lancet Diabetes Endocrinol 2025; 13:438-452. [PMID: 40086465 DOI: 10.1016/s2213-8587(24)00378-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/09/2024] [Accepted: 12/09/2024] [Indexed: 03/16/2025]
Abstract
Adrenocortical carcinoma is a rare endocrine malignancy. The management of patients with adrenocortical carcinoma is challenging for several reasons, including its heterogeneous but frequently aggressive biological behaviour; tumour-related hormonal excess (eg, Cushing's syndrome or virilisation); the overall paucity of evidence regarding diagnostic investigation and treatment; the approval of only one drug (mitotane); and the scarcity of centres with sufficient experience. In this Review, we present 25 questions on the most important aspects of the clinical management of adult patients with adrenocortical carcinoma that we have frequently asked ourselves over the past 25 years. We offer our personal answers and perspectives, drawing upon published evidence as well as more than 60 years of collective clinical experience and insights from our management of more than 1700 patients across two centres in Germany and Italy.
Collapse
Affiliation(s)
- Martin Fassnacht
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University of Würzburg, Würzburg, Germany; National Center for Tumor Diseases WERA, Würzburg, Germany.
| | - Soraya Puglisi
- Department of Clinical and Biological Sciences, Internal Medicine, San Luigi Hospital, University of Turin, Turin, Italy
| | - Otilia Kimpel
- Department of Medicine, Division of Endocrinology and Diabetes, University Hospital, University of Würzburg, Würzburg, Germany
| | - Massimo Terzolo
- Department of Clinical and Biological Sciences, Internal Medicine, San Luigi Hospital, University of Turin, Turin, Italy
| |
Collapse
|
2
|
Sun J, Huai J, Zhang W, Zhao T, Shi R, Wang X, Li M, Jiao X, Zhou X. Therapeutic strategies for adrenocortical carcinoma: integrating genomic insights, molecular targeting, and immunotherapy. Front Immunol 2025; 16:1545012. [PMID: 40145087 PMCID: PMC11937102 DOI: 10.3389/fimmu.2025.1545012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/21/2025] [Indexed: 03/28/2025] Open
Abstract
Adrenocortical carcinoma (ACC) is an uncommon and highly aggressive cancer originating in the adrenal cortex, characterized by a high likelihood of recurrence and unfavorable survival rates, particularly in the advanced disease stages. This review discusses the complex molecular pathogenesis of ACC, focusing on critical pathways implicated in the tumorigenesis and providing potential targets for therapy: the Wnt/β-catenin signaling pathway, the IGF2/IGF1R axis, and the apoptosis pathway regulated by p53. Current treatment strategies include surgical resection and mitotane, the sole adrenolytic agent approved by the FDA; however, its effects in advanced disease are suboptimal. Cytotoxic chemotherapy combined with mitotane may be applied, but survival benefits are limited so far. In the following review, we outline emerging targeted therapies, such as mTOR inhibitors and tyrosine kinase inhibitors (TKIs), which show favorable preclinical and clinical data, especially in treatment-resistant ACC. We also emphasize the possible role of immune checkpoint inhibitors (ICIs) in the management of ACC, although their effectiveness is still under study. Upcoming trends in treatment involve forms of personalized medicine, where molecular profiling is integrated to identify actionable biomarkers for administered therapies. This review will attempt to provide a comprehensive framework on how recent breakthroughs in the genomics of ACC, coupled with advances in targeted therapies and immunotherapy, can improve management.
Collapse
Affiliation(s)
- Jing Sun
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
- The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jiaxuan Huai
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wenhui Zhang
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, Ludwig Maximilians University (LMU) University Hospital Munich, Munich, Germany
| | - Run Shi
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xuanbin Wang
- Laboratory of Chinese Herbal Pharmacology, Department of Pharmacology, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Minglun Li
- Department of Radiation Oncology, Lueneburg Hospital, Lueneburg, Germany
| | - Xuehua Jiao
- Department of Endocrinology, Suzhou Ninth People’s Hospital, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Xiqiao Zhou
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Ruddiman KR, Price CE, Bonnecaze AK. A Case of Severe Cushing Syndrome due to Metastatic Adrenocortical Carcinoma Treated With Osilodrostat. AACE Clin Case Rep 2025; 11:53-57. [PMID: 39896957 PMCID: PMC11784602 DOI: 10.1016/j.aace.2024.10.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/04/2024] [Accepted: 10/15/2024] [Indexed: 02/04/2025] Open
Abstract
Background/Objective Osilodrostat used with block-and-replace dosing regimen is an off-label alternative to traditional management of Cushing syndrome due to adrenocortical carcinoma (ACC). Case Report A 70-year-old woman presented with abdominal pain and was found to have a large right adrenal mass and hypercortisolism. Right adrenalectomy was pursued with pathology consistent with diagnosis of ACC. Three months after surgery, hypercortisolemia recurred and bony metastatic disease was detected soon after. The patient received chemotherapy and mitotane; however, mitotane was stopped after development of hemolytic anemia. The patient's urinary free cortisol became severely elevated, and osilodrostat was subsequently initiated for steroidogenesis inhibition. As dosage was increased, the patient presented with fatigue and hypotension and was diagnosed with adrenal insufficiency. This was managed with hydrocortisone in a block-and-replace dosing strategy. Discussion ACC can cause severe hypercortisolism, which is associated with significant morbidity and mortality. Osilodrostat was an effective off-label option for steroidogenesis inhibition in our patient who developed severe hypercortisolism and did not tolerate first-line therapy. Our patient also experienced iatrogenic adrenal insufficiency during treatment with osilodrostat, which was successfully managed using a block-and-replace strategy. There are limited cases currently available that document use of osilodrostat under the above circumstances. Conclusion Although osilodrostat is currently only approved for use in pituitary Cushing disease, we found it effective in off-label use to treat Cushing syndrome due to ACC. Using a block-and-replace treatment strategy was a practical intervention after development of adrenal insufficiency.
Collapse
Affiliation(s)
- Kathleen R Ruddiman
- Division of Endocrinology, Department of Internal Medicine, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | - Catherine E Price
- Division of Endocrinology, Department of Internal Medicine, Wake Forest University School of Medicine Winston-Salem, North Carolina
| | | |
Collapse
|
4
|
Mohan DR, Shah R, Itani M, Awali M, Jasim S. Bilateral Adrenal Tumors: A Visual Case Series. AACE Clin Case Rep 2025; 11:79-86. [PMID: 39896942 PMCID: PMC11784626 DOI: 10.1016/j.aace.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 02/04/2025] Open
Affiliation(s)
- Dipika R. Mohan
- Department of Medicine, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Rutu Shah
- Division of Endocrinology, Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| | - Malak Itani
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Mohamed Awali
- Mallinckrodt Institute of Radiology, Washington University in St. Louis, St. Louis, Missouri
| | - Sina Jasim
- Division of Endocrinology, Metabolism and Lipid Research, School of Medicine, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
5
|
Huang Q, Huang XY, Xue YT, Wu XH, Wu YP, Ke ZB, Kang Z, Xu YC, Chen DN, Wei Y, Xue XY, Huang ZY, Xu N. Molecular Subtypes Defined by Cuproptosis-Associated Genes, Prognostic Model Development, and Tumor Immune Microenvironment Characterization in Adrenocortical Carcinoma. J Inflamm Res 2024; 17:7017-7036. [PMID: 39377045 PMCID: PMC11457769 DOI: 10.2147/jir.s461489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Introduction This study aims to explore the role of cuproptosis-related genes in ACC, utilizing data from TCGA and GEO repositories, and to develop a predictive model for patient stratification. Methods A cohort of 123 ACC patients with survival data was analyzed. RNA-seq data of 17 CRGs were examined, and univariate Cox regression identified prognostic CRGs. A cuproptosis-related network was constructed to show interactions between CRGs. Consensus clustering classified ACC into three subtypes, with transcriptional and survival differences assessed by PCA and survival analysis. Gene set variation analysis (GSVA) and ssGSEA evaluated functional and immune infiltration characteristics across subtypes. Differentially expressed genes (DEGs) were identified, and gene clusters were established. A risk score (CRG_score) was generated using LASSO and multivariate Cox regression, validated across datasets. Tumor microenvironment, stem cell index, mutation status, drug sensitivity, and hormone synthesis were examined in relation to the CRG_score. Protein expression of key genes was validated, and functional studies on ASF1B and NDRG4 were performed. Results Three ACC subtypes were identified with distinct survival outcomes. Subtype B showed the worst prognosis, while subtype C had the best. We identified 214 DEGs linked to cell proliferation and classified patients into three gene clusters, confirming their prognostic value. The CRG_score predicted patient outcomes, with high-risk patients demonstrating worse survival and possible resistance to immunotherapy. Drug sensitivity analysis suggested higher responsiveness to doxorubicin and etoposide in high-risk patients. Conclusion This study suggests the potential prognostic value of CRGs in ACC. The CRG_score model provides a robust tool for risk stratification, with implications for treatment strategies.
Collapse
Affiliation(s)
- Qi Huang
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
- Department of Urology, Quanzhou First Hospital, Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| | - Xu-Yun Huang
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Yu-Ting Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Xiao-Hui Wu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Yu-Peng Wu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Zhi-Bin Ke
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Zhen Kang
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Yi-Cheng Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Dong-Ning Chen
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Yong Wei
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Xue-Yi Xue
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
| | - Zhi-Yang Huang
- Department of Urology, Quanzhou First Hospital, Fujian Medical University, Quanzhou, 362000, People’s Republic of China
| | - Ning Xu
- Department of Urology, Urology Research Institute, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
- Department of Urology, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, People’s Republic of China
- Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, People’s Republic of China
| |
Collapse
|
6
|
Woo SY, Park S, Kwon KY, Lim DM, Park KY, Kim JD. Ruptured triple hormone-secreting adrenal cortical carcinoma with hyperaldosteronism, hypercortisolism, and elevated normetanephrine: a case report. JOURNAL OF YEUNGNAM MEDICAL SCIENCE 2024; 41:306-311. [PMID: 39238157 PMCID: PMC11534413 DOI: 10.12701/jyms.2024.00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 09/07/2024]
Abstract
We report a case of a ruptured triple hormone-secreting adrenal mass with hyperaldosteronism, hypercortisolism, and elevated normetanephrine levels, diagnosed as adrenal cortical carcinoma (ACC) by histology. A 53-year-old male patient who initially presented with abdominal pain was referred to our hospital for angiocoagulation of an adrenal mass rupture. Abdominal computed tomography revealed a heterogeneous 19×11×15 cm right adrenal mass with invasion into the right lobe of the liver, inferior vena cava, retrocaval lymph nodes, and aortocaval lymph nodes. Angiocoagulation was performed. Laboratory evaluation revealed excess cortisol via a positive 1-mg overnight dexamethasone suppression test, primary hyperaldosteronism via a positive saline infusion test, and plasma normetanephrine levels three times higher than normal. An adrenal mass biopsy was performed for pathological confirmation to commence palliative chemotherapy because surgical management was not deemed appropriate considering the extent of the tumor. Pathological examination revealed stage T4N1M1 ACC. The patient started the first cycle of adjuvant mitotane therapy along with adjuvant treatment with doxorubicin, cisplatin, and etoposide, and was discharged. Clinical cases of dual cortisol- and aldosterone-secreting ACCs or ACCs presenting as pheochromocytomas have occasionally been reported; however, both are rare. Moreover, to the best of our knowledge, a triple hormone-secreting ACC has not yet been reported. Here, we report a rare case and its management. This case report underscores the necessity of performing comprehensive clinical and biochemical hormone evaluations in patients with adrenal masses because ACC can present with multiple hormone elevations.
Collapse
Affiliation(s)
- Sin Yung Woo
- Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Seongji Park
- Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Kun Young Kwon
- Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Dong-Mee Lim
- Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Keun-Young Park
- Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| | - Jong-Dai Kim
- Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea
| |
Collapse
|
7
|
Tourigny DS, Altieri B, Secener KA, Sbiera S, Schauer MP, Arampatzi P, Herterich S, Sauer S, Fassnacht M, Ronchi CL. Cellular landscape of adrenocortical carcinoma at single-nuclei resolution. Mol Cell Endocrinol 2024; 590:112272. [PMID: 38759836 DOI: 10.1016/j.mce.2024.112272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Adrenocortical carcinoma (ACC) is a rare yet devastating tumour of the adrenal gland with a molecular pathology that remains incompletely understood. To gain novel insights into the cellular landscape of ACC, we generated single-nuclei RNA sequencing (snRNA-seq) data sets from twelve ACC tumour samples and analysed these alongside snRNA-seq data sets from normal adrenal glands (NAGs). We find the ACC tumour microenvironment to be relatively devoid of immune cells compared to NAG tissues, consistent with known high tumour purity values for ACC as an immunologically "cold" tumour. Our analysis identifies three separate groups of ACC samples that are characterised by different relative compositions of adrenocortical cell types. These include cell populations that are specifically enriched in the most clinically aggressive and hormonally active tumours, displaying hallmarks of reorganised cell mechanobiology and dysregulated steroidogenesis, respectively. We also identified and validated a population of mitotically active adrenocortical cells that strongly overexpress genes POLQ, DIAPH3 and EZH2 to support tumour expansion alongside an LGR4+ progenitor-like or cell-of-origin candidate for adrenocortical carcinogenesis. Trajectory inference suggests the fate adopted by malignant adrenocortical cells upon differentiation is associated with the copy number or allelic balance state of the imprinted DLK1/MEG3 genomic locus, which we verified by assessing bulk tumour DNA methylation status. In conclusion, our results therefore provide new insights into the clinical and cellular heterogeneity of ACC, revealing how genetic perturbations to healthy adrenocortical renewal and zonation provide a molecular basis for disease pathogenesis.
Collapse
Affiliation(s)
- David S Tourigny
- School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Kerim A Secener
- Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany; Institute of Biochemistry, Department of Biology, Chemistry and Pharmacy, Free University Berlin, Berlin, 14195, Germany
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Marc P Schauer
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany; Center for Cellular Immunotherapy, Department of Internal Medicine II, University Hospital of Würzburg, Würzburg, 97080, Germany
| | | | - Sabine Herterich
- Central Laboratory, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Sascha Sauer
- Max Delbrück Center for Molecular Medicine, Berlin, 13125, Germany
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, University Hospital of Würzburg, Würzburg, 97080, Germany
| | - Cristina L Ronchi
- Institute of Metabolism and System Research, University of Birmingham, Birmingham, B15 2TT, UK; Centre for Endocrinology, Diabetes and Metabolism (CEDAM), Birmingham Health Partners, Birmingham, B15 2GW, UK.
| |
Collapse
|
8
|
Mariniello K, Pittaway JFH, Altieri B, Borges KS, Hadjidemetriou I, Ribeiro C, Ruiz-Babot G, Lim JA, Foster J, Cleaver J, Sosabowski J, Rahman N, Doroszko M, Hantel C, Sigala S, Abate A, Tamburello M, Kiseljak-Vassiliades K, Wierman M, Parvanta L, Abdel-Aziz TE, Chung TT, Di Marco A, Palazzo F, Gomez-Sanchez CE, Taylor DR, Rayner O, Ronchi CL, Gaston-Massuet C, Sbiera S, Drake WM, Rognoni E, Kroiss M, Breault DT, Fassnacht M, Guasti L. Dlk1 is a novel adrenocortical stem/progenitor cell marker that predicts malignancy in adrenocortical carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.22.609117. [PMID: 39229217 PMCID: PMC11370565 DOI: 10.1101/2024.08.22.609117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Disruption of processes involved in tissue development and homeostatic self-renewal is increasingly implicated in cancer initiation, progression, and recurrence. The adrenal cortex is a dynamic tissue that undergoes life-long turnover. Here, using genetic fate mapping and murine adrenocortical carcinoma (ACC) models, we have identified a population of adrenocortical stem cells that express delta-like non-canonical Notch ligand 1 (DLK1). These cells are active during development, near dormant postnatally but are re-expressed in ACC. In a study of over 200 human ACC samples, we have shown DLK1 expression is ubiquitous and is an independent prognostic marker of recurrence-free survival. Paradoxically, despite its progenitor role, spatial transcriptomic analysis has identified DLK1 expressing cell populations to have increased steroidogenic potential in human ACC, a finding also observed in four human and one murine ACC cell lines. Finally, the cleavable DLK1 ectodomain is measurable in patients' serum and can discriminate between ACC and other adrenal pathologies with high sensitivity and specificity to aid in diagnosis and follow-up of ACC patients. These data demonstrate a prognostic role for DLK1 in ACC, detail its hierarchical expression in homeostasis and oncogenic transformation and propose a role for its use as a biomarker in this malignancy.
Collapse
Affiliation(s)
- Katia Mariniello
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - James F H Pittaway
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Barbara Altieri
- Division of Endocrinology and Diabetes, Dept. of Medicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Kleiton Silva Borges
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Irene Hadjidemetriou
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Claudio Ribeiro
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Gerard Ruiz-Babot
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technical, University Dresden, Dresden, Germany
| | - Jiang A Lim
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Julie Foster
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Julie Cleaver
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Jane Sosabowski
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ UK
| | - Nafis Rahman
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Milena Doroszko
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zurich, Switzerland
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124 Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124 Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25124 Brescia, Italy
| | - Katja Kiseljak-Vassiliades
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Endocrinology, Metabolism and Diabetes at Rocky Mountain Regional Veterans Affair Medical Center, Washington, DC, USA
| | - Margaret Wierman
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Endocrinology, Metabolism and Diabetes at Rocky Mountain Regional Veterans Affair Medical Center, Washington, DC, USA
| | - Laila Parvanta
- Department of Surgery, St Bartholomew's Hospital, West Smithfield, London, EC1A 7BE, United Kingdom
| | - Tarek E Abdel-Aziz
- Department of Surgery, University College London Hospitals NHS Foundation Trust, London NW1 2PG, United Kingdom
| | - Teng-Teng Chung
- Department of Endocrinology, University College London Hospitals NHS Foundation Trust, London NW1 2PG, United Kingdom
| | - Aimee Di Marco
- Department of Endocrine and Thyroid Surgery, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - Fausto Palazzo
- Department of Endocrine and Thyroid Surgery, Hammersmith Hospital, Imperial College London, London W12 0HS, United Kingdom
| | - Celso E Gomez-Sanchez
- Endocrine Section, G.V. (Sonny) Montgomery VA Medical Center and the Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS, USA
| | - David R Taylor
- Department of Clinical Biochemistry (Synnovis Analytics), King's College Hospital, London SE5 9RS, United Kingdom
| | - Oliver Rayner
- Department of Clinical Biochemistry (Synnovis Analytics), King's College Hospital, London SE5 9RS, United Kingdom
| | - Cristina L Ronchi
- Institute of Metabolism and System Research College of Medical and Dental Sciences, University of Birmingham, B15 2TT, United Kingdom
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Silviu Sbiera
- Division of Endocrinology and Diabetes, Dept. of Medicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - William M Drake
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Emanuel Rognoni
- Centre for Cell Biology & Cutaneous Research, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Matthias Kroiss
- Division of Endocrinology and Diabetes, Dept. of Medicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany
- Department of Internal Medicine IV, LMU University Hospital, LMU Munich, Ziemssenstraße 5, 80336 München, Germany
| | - David T Breault
- Division of Endocrinology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Cambridge, Massachusetts
| | - Martin Fassnacht
- Division of Endocrinology and Diabetes, Dept. of Medicine, University Hospital, University of Würzburg, 97080 Würzburg, Germany
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
9
|
Cioppi F, Cantini G, Ercolino T, Chetta M, Zanatta L, Nesi G, Mannelli M, Maggi M, Canu L, Luconi M. Targeted Next Generation Sequencing molecular profiling and its clinical application in adrenocortical cancer. Eur J Endocrinol 2024; 191:17-30. [PMID: 38917236 DOI: 10.1093/ejendo/lvae077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/07/2024] [Accepted: 06/20/2024] [Indexed: 06/27/2024]
Abstract
OBJECTIVE Adrenal cortical carcinoma (ACC) is a rare malignancy with a generally poor but heterogeneous prognosis, especially depending on the tumour stage at diagnosis. Identification of somatic gene alterations combined with clinical/histopathological evaluation of the tumour can help improve prognostication. We applied a simplified targeted-Next-Generation Sequencing (NGS) panel to characterise the mutational profiles of ACCs, providing potentially relevant information for better patient management. DESIGN AND METHODS Thirty frozen tumour specimens from a local ACC series were retrospectively analysed by a custom-NGS panel (CDKN2A, CTNNB1, DAXX, MED12, NF1, PRKAR1A, RB1, TERT, TP53, ZNRF3) to detect somatic prioritised single-nucleotide variants. This cohort was integrated with 86 patients from the ACC-TCGA series bearing point-mutations in the same genes and their combinations identified by our panel. Primary endpoints of the analysis on the total cohort (113 patients) were overall survival (OS) and progression-free survival (PFS), and hazard ratio (HR) for the different alterations grouped by the signalling pathways/combinations affected. RESULTS Different PFS, OS, and HR were associated to the different pathways/combinations, being NF1 + TP53 and Wnt/β-catenin + Rb/p53 combined mutations the most deleterious, with a statistical significance for progression HR which is retained only in low-(I/II) stages-NF1 + TP53 combination: HR = 2.96[1.01-8.69] and HR = 13.23[3.15-55.61], all and low stages, respectively; Wnt/β-catenin + Rb/p53 combined pathways: HR = 6.47[2.54-16.49] and HR = 16.24[3.87-68.00], all and low-stages, respectively. CONCLUSIONS A simplified targeted-NGS approach seems the best routinely applicable first step towards somatic genetic characterisation of ACC for prognostic assessment. This approach proved to be particularly promising in low-stage cases, suggesting the need for more stringent surveillance and personalised treatment.
Collapse
Affiliation(s)
- Francesca Cioppi
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
| | - Giulia Cantini
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
| | - Tonino Ercolino
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Massimiliano Chetta
- Medical Genetics, Azienda Ospedaliera di Rilievo Nazionale (A.O.R.N.) Cardarelli, Padiglione, 80131 Naples, Italy
| | - Lorenzo Zanatta
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Gabriella Nesi
- Department of Health Sciences, University of Florence, 50139 Florence, Italy
| | - Massimo Mannelli
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
| | - Mario Maggi
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Letizia Canu
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
- Azienda Ospedaliero-Universitaria Careggi, (AOUC), 50139 Florence, Italy
| | - Michaela Luconi
- European Network for the Study of Adrenal Tumours (ENSAT) Centre of Excellence, University of Florence, 50139 Florence, Italy
- Department of Experimental and Clinical Biomedical Sciences, Endocrinology Section, University of Florence, 50139 Florence, Italy
- Centro di Ricerca e Innovazione sulle Patologie Surrenaliche, AOU Careggi, 50139 Florence, Italy
| |
Collapse
|
10
|
Ohmoto A, Hayashi N, Takahashi S, Ueki A. Current prospects of hereditary adrenal tumors: towards better clinical management. Hered Cancer Clin Pract 2024; 22:4. [PMID: 38532453 DOI: 10.1186/s13053-024-00276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Adrenocortical carcinoma (ACC) and pheochromocytoma/paraganglioma (PPGL) are two rare types of adrenal gland malignancies. Regarding hereditary tumors, some patients with ACC are associated with with Li-Fraumeni syndrome (LFS), and those with PPGL with multiple endocrine neoplasia type 2. Recent studies have expanded this spectrum to include other types of hereditary tumors, such as Lynch syndrome or familial adenomatous polyposis. Individuals harboring germline TP53 pathogenic variants that cause LFS have heterogeneous phenotypes depending on the respective variant type. As an example, R337H variant found in Brazilian is known as low penetrant. While 50-80% of pediatric ACC patients harbored a LFS, such a strong causal relationship is not observed in adult patients, which suggests different pathophysiologies between the two populations. As for PPGL, because multiple driver genes, such as succinate dehydrogenase (SDH)-related genes, RET, NF1, and VHL have been identified, universal multi-gene germline panel testing is warranted as a comprehensive and cost-effective approach. PPGL pathogenesis is divided into three molecular pathways (pseudohypoxia, Wnt signaling, and kinase signaling), and this classification is expected to result in personalized medicine based on genomic profiles. It remains unknown whether clinical characteristics differ between cases derived from genetic predisposition syndromes and sporadic cases, or whether the surveillance strategy should be changed depending on the genetic background or whether it should be uniform. Close cooperation among medical genomics experts, endocrinologists, oncologists, and early investigators is indispensable for improving the clinical management for multifaceted ACC and PPGL.
Collapse
Affiliation(s)
- Akihiro Ohmoto
- Division of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, 417 East 68th Street, New York, NY, 10065, USA.
| | - Naomi Hayashi
- Division of Genomic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan
- Division of Clinical Genetic Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan
| | - Shunji Takahashi
- Division of Medical Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan
- Division of Genomic Medicine, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan
| | - Arisa Ueki
- Division of Clinical Genetic Oncology, Cancer Institute Hospital of Japanese Foundation for Cancer Research, Tokyo, 1358550, Japan
| |
Collapse
|
11
|
Wang Q, Wang X, Liu B, Ma S, Zhang F, Sun S, Jing Y, Fan Y, Ding Y, Xiong M, Li J, Zhai Q, Zheng Y, Liu C, Xu G, Yang J, Wang S, Ye J, Izpisua Belmonte JC, Qu J, Liu GH, Zhang W. Aging induces region-specific dysregulation of hormone synthesis in the primate adrenal gland. NATURE AGING 2024; 4:396-413. [PMID: 38503993 DOI: 10.1038/s43587-024-00588-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 02/05/2024] [Indexed: 03/21/2024]
Abstract
Adrenal glands, vital for steroid secretion and the regulation of metabolism, stress responses and immune activation, experience age-related decline, impacting systemic health. However, the regulatory mechanisms underlying adrenal aging remain largely uninvestigated. Here we established a single-nucleus transcriptomic atlas of both young and aged primate suprarenal glands, identifying lipid metabolism and steroidogenic pathways as core processes impacted by aging. We found dysregulation in centripetal adrenocortical differentiation in aged adrenal tissues and cells in the zona reticularis region, responsible for producing dehydroepiandrosterone sulfate (DHEA-S), were highly susceptible to aging, reflected by senescence, exhaustion and disturbed hormone production. Remarkably, LDLR was downregulated in all cell types of the outer cortex, and its targeted inactivation in human adrenal cells compromised cholesterol uptake and secretion of dehydroepiandrosterone sulfate, as observed in aged primate adrenal glands. Our study provides crucial insights into endocrine physiology, holding therapeutic promise for addressing aging-related adrenal insufficiency and delaying systemic aging.
Collapse
Affiliation(s)
- Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuebao Wang
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Shuai Ma
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Zhang
- Division of Endocrinology, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Shuhui Sun
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yaobin Jing
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- International Center for Aging and Cancer, Hainan Medical University, Haikou, China
| | - Yanling Fan
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Muzhao Xiong
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaocheng Zhai
- Division of Endocrinology, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | - Yandong Zheng
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Chengyu Liu
- University of Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Si Wang
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China
- The Fifth People's Hospital of Chongqing, Chongqing, China
- Aging Biomarker Consortium, Beijing, China
| | - Jinlin Ye
- The Joint Innovation Center for Engineering in Medicine, Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou, China
| | | | - Jing Qu
- University of Chinese Academy of Sciences, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| |
Collapse
|
12
|
Mihai R, De Crea C, Guerin C, Torresan F, Agcaoglu O, Simescu R, Walz MK. Surgery for advanced adrenal malignant disease: recommendations based on European Society of Endocrine Surgeons consensus meeting. Br J Surg 2024; 111:znad266. [PMID: 38265812 PMCID: PMC10805373 DOI: 10.1093/bjs/znad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/02/2023] [Indexed: 01/25/2024]
Affiliation(s)
- Radu Mihai
- Churchill Cancer Centre, Oxford University Hospital NHS Foundation Trust, Oxford, UK
| | - Carmela De Crea
- Centro di Ricerca in Chirurgia delle Ghiandole Endocrine e dell’Obesità, Università Cattolica del Sacro Cuore, Rome, Italy
- Endocrine Surgery Unit, Hospital Fatebenefratelli Isola Tiberina—Gemelli Isola, Rome, Italy
| | - Carole Guerin
- Department of Endocrine and Metabolic Surgery, Aix-Marseille University, Hôpital de La Conception, Marseille, France
| | - Francesca Torresan
- Endocrine Surgery Unit, Department of Surgery, Oncology and Gastroenterology, University of Padua, Padua, Italy
| | - Orhan Agcaoglu
- Department of General Surgery, Koc University School of Medicine, Istanbul, Turkey
| | - Razvan Simescu
- Department of General and Endocrine Surgery, Medlife-Humanitas Hospital, Cluj-Napoca, Romania
| | - Martin K Walz
- Department of Surgery and Minimally Invasive Surgery, Kliniken Essen-Mitte, Essen, Germany
| |
Collapse
|
13
|
Mohan DR, Borges KS, Finco I, LaPensee CR, Rege J, Solon AL, Little DW, Else T, Almeida MQ, Dang D, Haggerty-Skeans J, Apfelbaum AA, Vinco M, Wakamatsu A, Mariani BMP, Amorim LC, Latronico AC, Mendonca BB, Zerbini MCN, Lawlor ER, Ohi R, Auchus RJ, Rainey WE, Marie SKN, Giordano TJ, Venneti S, Fragoso MCBV, Breault DT, Lerario AM, Hammer GD. β-Catenin-Driven Differentiation Is a Tissue-Specific Epigenetic Vulnerability in Adrenal Cancer. Cancer Res 2023; 83:2123-2141. [PMID: 37129912 PMCID: PMC10330305 DOI: 10.1158/0008-5472.can-22-2712] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/19/2023] [Accepted: 04/28/2023] [Indexed: 05/03/2023]
Abstract
Adrenocortical carcinoma (ACC) is a rare cancer in which tissue-specific differentiation is paradoxically associated with dismal outcomes. The differentiated ACC subtype CIMP-high is prevalent, incurable, and routinely fatal. CIMP-high ACC possess abnormal DNA methylation and frequent β-catenin-activating mutations. Here, we demonstrated that ACC differentiation is maintained by a balance between nuclear, tissue-specific β-catenin-containing complexes, and the epigenome. On chromatin, β-catenin bound master adrenal transcription factor SF1 and hijacked the adrenocortical super-enhancer landscape to maintain differentiation in CIMP-high ACC; off chromatin, β-catenin bound histone methyltransferase EZH2. SF1/β-catenin and EZH2/β-catenin complexes present in normal adrenals persisted through all phases of ACC evolution. Pharmacologic EZH2 inhibition in CIMP-high ACC expelled SF1/β-catenin from chromatin and favored EZH2/β-catenin assembly, erasing differentiation and restraining cancer growth in vitro and in vivo. These studies illustrate how tissue-specific programs shape oncogene selection, surreptitiously encoding targetable therapeutic vulnerabilities. SIGNIFICANCE Oncogenic β-catenin can use tissue-specific partners to regulate cellular differentiation programs that can be reversed by epigenetic therapies, identifying epigenetic control of differentiation as a viable target for β-catenin-driven cancers.
Collapse
Affiliation(s)
- Dipika R. Mohan
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kleiton S. Borges
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Isabella Finco
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Christopher R. LaPensee
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - April L. Solon
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Donald W. Little
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Tobias Else
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
| | - Madson Q. Almeida
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Derek Dang
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, University of Michigan, Ann Arbor, MI, USA
| | - James Haggerty-Skeans
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, University of Michigan, Ann Arbor, MI, USA
| | - April A. Apfelbaum
- Doctoral Program in Cancer Biology, University of Michigan, Ann Arbor, MI, USA
- Seattle Children’s Research Institute, University of Washington, Seattle, WA, USA
| | - Michelle Vinco
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Alda Wakamatsu
- Departamento de Patologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Beatriz M. P. Mariani
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Larissa Costa Amorim
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Ana Claudia Latronico
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Berenice B. Mendonca
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | | | - Elizabeth R. Lawlor
- Seattle Children’s Research Institute, University of Washington, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Ryoma Ohi
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Richard J. Auchus
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Lieutenant Colonel Charles S. Kettles Veterans Affairs Medical Center, Ann Arbor, MI, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - William E. Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Suely K. N. Marie
- Laboratório de Biologia Molecular e Celular/LIM15, Departamento de Neurologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - Thomas J. Giordano
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, USA
| | - Sriram Venneti
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
- Laboratory of Brain Tumor Metabolism and Epigenetics, University of Michigan, Ann Arbor, MI, USA
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | - Maria Candida Barisson Villares Fragoso
- Unidade de Suprarrenal, Laboratório de Hormônios e Genética Molecular/LIM42, Hospital das Clínicas, Departamento de Clínica Médica, Disciplina de Endocrinologia, Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
- Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo, SP, Brazil
| | - David T. Breault
- Division of Endocrinology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Co-senior authors
| | - Gary D. Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Cell & Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center Endocrine Oncology Program, University of Michigan, Ann Arbor, MI, USA
- Co-senior authors
| |
Collapse
|
14
|
Mohan DR, Lerario AM. Closing the loop on adrenal health, dysfunction, and disease. Sci Transl Med 2023; 15:eadh4450. [PMID: 37343081 DOI: 10.1126/scitranslmed.adh4450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
A wearable microdialysis device measures ultradian patterns of adrenal hormone secretion in humans at minute scale (Upton et al.).
Collapse
Affiliation(s)
- Dipika R Mohan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Antonio Marcondes Lerario
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
15
|
Turai PI, Nyirő G, Borka K, Micsik T, Likó I, Patócs A, Igaz P. Exploratory Circular RNA Profiling in Adrenocortical Tumors. Cancers (Basel) 2022; 14:4313. [PMID: 36077848 PMCID: PMC9454786 DOI: 10.3390/cancers14174313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Differentiation of adrenocortical adenoma (ACA) and carcinoma (ACC) is often challenging even in the histological analysis. Circular RNAs (circRNAs) belonging to the group of non-coding RNAs have been implicated as relevant factors in tumorigenesis. Our aim was to explore circRNA expression profiles in adrenocortical tumors by next-generation sequencing followed by RT-qPCR validation. Archived FFPE (formalin-fixed, paraffin embedded) including 8 ACC, 8 ACA and 8 normal adrenal cortices (NAC) were used in the discovery cohort. For de novo and known circRNA expression profiling, a next-generation sequencing platform was used. CIRI2, CircExplorer2, AutoCirc bioinformatics tools were used for the discovery of circRNAs. The top five most differentially circRNAs were measured by RT-qPCR in an independent validation cohort (10 ACC, 8 ACA, 8 NAC). In silico predicted, interacting microRNAs potentially sponged by differentially expressed circRNAs were studied by individual RT-qPCR assays. We focused on overexpressed circRNAs here. Significantly differentially expressed circRNAs have been revealed between the cohorts by NGS. Only circPHC3 could be confirmed to be significantly overexpressed in ACC, ACA vs. NAC samples by RT-qPCR. We could not observe microRNA expression changes fully corresponding to our sponging hypothesis. To the best of our knowledge, our study is the first to investigate circRNAs in adrenocortical tumors. Further studies are warranted to explore their biological and diagnostic relevance.
Collapse
Affiliation(s)
- Péter István Turai
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| | - Gábor Nyirő
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, H-1089 Budapest, Hungary
| | - Katalin Borka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University, H-1091 Budapest, Hungary
| | - Tamás Micsik
- Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary
| | - István Likó
- MTA-SE Hereditary Tumors Research Group, Eötvös Lóránd Research Network, H-1089 Budapest, Hungary
| | - Attila Patócs
- Department of Laboratory Medicine, Faculty of Medicine, Semmelweis University, H-1089 Budapest, Hungary
- MTA-SE Hereditary Tumors Research Group, Eötvös Lóránd Research Network, H-1089 Budapest, Hungary
- Department of Molecular Genetics, National Institute of Oncology, H-1122 Budapest, Hungary
| | - Peter Igaz
- Department of Endocrinology, ENS@T Research Center of Excellence, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, H-1083 Budapest, Hungary
- MTA-SE Molecular Medicine Research Group, Eötvös Loránd Research Network, H-1083 Budapest, Hungary
| |
Collapse
|