1
|
Guan G, Du Y, Tang W, Chen M, Yu W, Li H, Cheng Q. Impacts of Prior Anti-Osteoporosis Treatments on Sequential Denosumab Responses in BMD Changes Among Postmenopausal Osteoporosis Women in East China: Real-World Data Analysis. Clin Interv Aging 2025; 20:573-586. [PMID: 40357344 PMCID: PMC12068388 DOI: 10.2147/cia.s511622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Purpose This study aimed to investigate the impacts of prior anti-osteoporosis treatments on bone mineral density (BMD) changes in Chinese postmenopausal women with osteoporosis following 1-year Denosumab (Dmab) therapy. Patients and Methods This retrospective cohort study enrolled 381 postmenopausal women, all receiving a 1-year Dmab treatment. Participants were stratified into five groups based on prior anti-osteoporosis treatments: no treatment (NT), alendronate (ALN), zoledronic acid (ZOL), teriparatide (TPT), and raloxifene (RAL). Potential factors influencing BMD changes were screened using least absolute shrinkage and selection operator (LASSO). The selected variables were then incorporated into a multivariate regression model to identify independent risk factors. Finally, after adjusting for confounders, the impacts of prior anti-osteoporosis treatment on sequential Dmab responses were evaluated. Results 1) Further BMD increases were observed after sequential 1-year Dmab with prior use of other anti-osteoporosis drugs; 2) Compared to the NT group, ZOL significantly reduced BMD changes at the lumbar spine (LS), femoral neck (FN), and total hip (TH) (LS: β = -0.01, P = 0.016; FN: β = -0.01, P = 0.010; TH: β = -0.01, P = 0.011); Significant negative associations with FN BMD changes were observed for the ALN group (β = -0.01, P< 0.001), and the RAL group (β = -0.01, P = 0.010) compared to the NT group; TPT showed no significant differences with the NT group at all sites; 3) Multiple analysis revealed baseline BMD were independently associated with changes in BMD (LS: β = -0.04, P = 0.009; FN: β = -0.19, P <0.001; TH: β = -0.14, P <0.001). Conclusion These findings indicated that prior anti-osteoporosis treatments differentially influenced BMD responses to 1-year Dmab therapy. While patients who had previously been treated with ZOL had limited subsequent BMD improvement, patients who had previously used TPT and had lower baseline BMD benefited more.
Collapse
Affiliation(s)
- Guoyu Guan
- Department of Geriatrics, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yanping Du
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Wenjing Tang
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Minmin Chen
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Weijia Yu
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Huilin Li
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| | - Qun Cheng
- Department of Osteoporosis and Bone Disease, Huadong Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Waghmare PS, Kaushik D, Oz E, Proestos C, Oz F, Kumar M. Unraveling the hormonal approaches for the treatment of rheumatoid arthritis and its complementary interventions. Inflammopharmacology 2025; 33:443-460. [PMID: 39754003 DOI: 10.1007/s10787-024-01633-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/16/2024] [Indexed: 02/22/2025]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune, chronic, systemic inflammatory disease that causes redness, swelling, stiffness, and joint pain. It is a long-lasting disease that can have a widespread impact on the body, often affecting the hands, feet, and wrists. The immune cells, such as dendritic cells, T cells, B cells, macrophages, and neutrophils, play a significant role in bone degradation and inflammation. Several cytokines, including TNF-α and IL-17A, play a significant role in causing bone erosion, cartilage deterioration, and joint inflammation. Progesterone and estrogen have a crucial impact on the pathophysiology of RA, influencing the immune system. Research has demonstrated that hormone replacement therapy (HRT) can effectively reduce inflammation, improve disease activity, enhance joint health, alleviate pain, and promote bone strength. Treatments such as tamoxifen and raloxifene, known as selective estrogen receptor modulators (SERMs), are effective against chronic inflammatory illnesses like RA. The treatment with Gonadotropin-releasing hormone (GnRH) has an impact on the hypothalamic-pituitary-gonadal axis, which in turn affects the activity of RA illness. These alternative treatments hold promise in enhancing well-being and alleviating joint pain for individuals with RA.
Collapse
Affiliation(s)
- Priya Sharad Waghmare
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Deepika Kaushik
- Department of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, HP, 173229, India.
| | - Emel Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, 25240, Türkiye
| | - Charalampos Proestos
- Laboratory of Food Chemistry, Department of Chemistry, School of Sciences, National and Kapodistrian University of Athens Zografou, 157 84, Athens, Greece
| | - Fatih Oz
- Department of Food Engineering, Faculty of Agriculture, Ataturk University, Erzurum, 25240, Türkiye
| | - Mukul Kumar
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara, Punjab, 144411, India.
| |
Collapse
|
3
|
Chang CH, Yang SJ, Young TH, Yao WC. Effect of co-loaded vitamin D3 on intravenous injectable raloxifene delivery system. Colloids Surf B Biointerfaces 2025; 246:114379. [PMID: 39566355 DOI: 10.1016/j.colsurfb.2024.114379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
Owing to its promising advantages, including improved drug bioavailability and therapeutic efficiency at low doses and frequency, increased patient convenience and compliance, and prolonged storage life, nanomedicine has received heightened attention over conventional pharmaceuticals. Human serum albumin (HSA)-based nanoparticles have been used as drug carriers in injectable formulations, with great success and versatility. In this study, raloxifene and vitamin D3 were co-encapsulated in HSA-based nanoparticles (Ral/VitaD/HSA/PSS NPs) as an intravenously injected pharmaceutical formulation in order to enhance their availability in the body. The lyophilization-hydration method was utilized to develop the Ral/VitaD/HSA/PSS NPs. In addition, the characteristics and stability of the NP and the effect of the co-loading of vitamin D3 on raloxifene release in vitro and in vivo were discussed. The raloxifene and vitamin D3 molecules were successfully encapsulated and well dispersed in an amorphous state within Ral/VitaD/HSA/PSS NPs. The prepared Ral/VitaD/HSA/PSS NPs were lyophilized for long-term storage and were both biocompatible and hemocompatible, enhancing alkaline phosphtase activity in osteoblasts. Delivered via intravenous injection, Ral/VitaD/HSA/PSS NPs addressed the low bioavailability of raloxifene and vitamin D3 caused by oral administration, and improved their compatibility and residence time in the body. Overall, the established raloxifene-vitamin D3-co-loaded NPs may be a potential nanomedicine contender for treating postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Chih-Hao Chang
- Department of Orthopedics, National Taiwan University Hospital and National Taiwan University College of Medicine, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan.
| | - Shu-Jyuan Yang
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan.
| | - Tai-Horng Young
- Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, No. 1, Section 1, Jen-Ai Road, Taipei 100, Taiwan
| | - Wei-Cheng Yao
- Department of Anesthesiology and Pain Medicine, Min-Sheng General Hospital, No. 168, Jingguo Road, Taoyuan Dis., Taoyuan City 330, Taiwan
| |
Collapse
|
4
|
Ruiz-Lozano R, Calvo-Gallego JL, Pivonka P, McDonald MM, Martínez-Reina J. An in silico approach to elucidate the pathways leading to primary osteoporosis: age-related vs. postmenopausal. Biomech Model Mechanobiol 2024; 23:1393-1409. [PMID: 38700787 PMCID: PMC11584493 DOI: 10.1007/s10237-024-01846-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/29/2024] [Indexed: 08/24/2024]
Abstract
Numerical models of bone remodelling have traditionally been used to perform in silico tests of bone loss in postmenopausal women and also to simulate the response to different drug treatments. These models simulate the menopausal oestrogen decline by altering certain signalling pathways. However, they do not consider the simultaneous effect that ageing can have on cell function and bone remodelling, and thus on bone loss. Considering ageing and oestrogen decline together is important for designing osteoporosis treatments that can selectively counteract one or the other disease mechanism. A previously developed bone cell population model was adapted to consider the effect of ageing through: (1) the decrease of TGF- β contained in the bone matrix and (2) an increased production of sclerostin by non-skeletal cells. Oestrogen deficiency is simulated in three different ways: (a) an increase in RANKL expression, (b) a decrease in OPG production, and (c) an increase in the responsiveness of osteoclasts to RANKL. The effect of ageing was validated using the cross-sectional study of (Riggs et al. in J Bone Miner Res 19: 1945-1954, 2004) on BMD of trabecular bone of the vertebral body of men. The joint effect of ageing and oestrogen deficiency was validated using these same clinical results but in women. In ageing, the effect of the increasing production of sclerostin is more important than the decrease of TGF- β , while the three mechanisms used to simulate the effect of oestrogen deficiency produce almost identical responses. The results show that an early menopause leads to a lower average density in the fifth decade, but after the sixth decade the average density is independent of the age at menopause. Treatment of osteoporosis with denosumab was also simulated to conclude that the drug is not very effective if started before 10 years after menopause or before age 60.
Collapse
Affiliation(s)
- Rocío Ruiz-Lozano
- Departmento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, 41092, Seville, Spain
| | - José Luis Calvo-Gallego
- Departmento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, 41092, Seville, Spain
| | - Peter Pivonka
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Michelle M McDonald
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Javier Martínez-Reina
- Departmento de Ingeniería Mecánica y Fabricación, Universidad de Sevilla, 41092, Seville, Spain.
| |
Collapse
|
5
|
Chauhan D, Dadge S, Yadav PK, Sultana N, Agarwal A, Vishwakarma S, Rathaur S, Yadav S, K Chourasia M, Gayen JR. LC-MS/MS method for simultaneous estimation of raloxifene, cladrin in rat plasma: application in pharmacokinetic studies. Bioanalysis 2024; 16:141-153. [PMID: 38197392 DOI: 10.4155/bio-2023-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2024] Open
Abstract
Aim: A newer LC-MS/MS method was developed and validated for the simultaneous quantification of raloxifene (RL) and cladrin (CL). Methodology: Both drugs were resolved in RP-18 (4.6 × 50 mm, 5 μ) Xbridge Shield column using acetonitrile and 0.1% aqueous solution of formic acid (FA) (70:30% v/v) as mobile phase by using biological matrices in female Sprague-Dawley rats using-MS/MS. Results: The developed method was found to be linear over the concentration ranges of 1-600 ng/ml, and lower limit of quantification was 1 ng/ml for RL and CL, respectively. Pharmacokinetic results of RL+CL showed Cmax = 4.23 ± 0.61, 26.97 ± 1.14 ng/ml, at Tmax(h) 5.5 ± 1.00 and 3.5 ± 1.00, respectively. Conclusion: Pharmacokinetic study results will be useful in the future for the combined delivery of RL and CL for osteoporosis treatment.
Collapse
Affiliation(s)
- Divya Chauhan
- Division of Pharmaceutics & Pharmacokinetics, Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Shailesh Dadge
- Division of Pharmaceutics & Pharmacokinetics, Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Pavan K Yadav
- Division of Pharmaceutics & Pharmacokinetics, Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Nazneen Sultana
- Division of Pharmaceutics & Pharmacokinetics, Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Arun Agarwal
- Division of Pharmaceutics & Pharmacokinetics, Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Sachin Vishwakarma
- Division of Pharmaceutics & Pharmacokinetics, Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shivam Rathaur
- Division of Pharmaceutics & Pharmacokinetics, Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Shubhi Yadav
- Division of Pharmaceutics & Pharmacokinetics, Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
| | - Manish K Chourasia
- Division of Pharmaceutics & Pharmacokinetics, Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| | - Jiaur R Gayen
- Division of Pharmaceutics & Pharmacokinetics, Central Drug Research Institute, Lucknow, Uttar Pradesh, 226031, India
- Academy of Scientific & Innovative Research, Ghaziabad, 201002, India
| |
Collapse
|
6
|
Yoshida G, Kawabata T, Takamatsu H, Saita S, Nakamura S, Nishikawa K, Fujiwara M, Enokidani Y, Yamamuro T, Tabata K, Hamasaki M, Ishii M, Kumanogoh A, Yoshimori T. Degradation of the NOTCH intracellular domain by elevated autophagy in osteoblasts promotes osteoblast differentiation and alleviates osteoporosis. Autophagy 2022; 18:2323-2332. [PMID: 35025696 PMCID: PMC9542956 DOI: 10.1080/15548627.2021.2017587] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Maintenance of bone integrity is mediated by the balanced actions of osteoblasts and osteoclasts. Because macroautophagy/autophagy regulates osteoblast mineralization, osteoclast differentiation, and their secretion from osteoclast cells, autophagy deficiency in osteoblasts or osteoclasts can disrupt this balance. However, it remains unclear whether upregulation of autophagy becomes beneficial for suppression of bone-associated diseases. In this study, we found that genetic upregulation of autophagy in osteoblasts facilitated bone formation. We generated mice in which autophagy was specifically upregulated in osteoblasts by deleting the gene encoding RUBCN/Rubicon, a negative regulator of autophagy. The rubcnflox/flox;Sp7/Osterix-Cre mice showed progressive skeletal abnormalities in femur bones. Consistent with this, RUBCN deficiency in osteoblasts resulted in elevated differentiation and mineralization, as well as an increase in the elevated expression of key transcription factors involved in osteoblast function such as Runx2 and Bglap/Osteocalcin. Furthermore, RUBCN deficiency in osteoblasts accelerated autophagic degradation of NOTCH intracellular domain (NICD) and downregulated the NOTCH signaling pathway, which negatively regulates osteoblast differentiation. Notably, osteoblast-specific deletion of RUBCN alleviated the phenotype in a mouse model of osteoporosis. We conclude that RUBCN is a key regulator of bone homeostasis. On the basis of these findings, we propose that medications targeting RUBCN or autophagic degradation of NICD could be used to treat age-related osteoporosis and bone fracture.Abbreviations: ALPL: alkaline phosphatase, liver/bone/kidney; BCIP/NBT: 5-bromo-4-chloro-3'-indolyl phosphate/nitro blue tetrazolium; BMD: bone mineral density; BV/TV: bone volume/total bone volume; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NICD: NOTCH intracellular domain; RB1CC1/FIP200: RB1-inducible coiled-coil 1; RUBCN/Rubicon: RUN domain and cysteine-rich domain containing, Beclin 1-interacting protein; SERM: selective estrogen receptor modulator; TNFRSF11B/OCIF: tumor necrosis factor receptor superfamily, member 11b (osteoprotegerin).
Collapse
Affiliation(s)
- Gota Yoshida
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tsuyoshi Kawabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Stem Cell Biology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki, Japan
| | - Hyota Takamatsu
- Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shotaro Saita
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Shuhei Nakamura
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keizo Nishikawa
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan,Faculty of Life and Medical Sciences, Department of Medical Life Systems, Doshisha University, Kyoto, Japan
| | - Mari Fujiwara
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Yusuke Enokidani
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Tadashi Yamamuro
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Keisuke Tabata
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Maho Hamasaki
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Graduate School of Medicine and Frontier Biosciences, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine, Allergy and Rheumatic Disease, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Graduate School of Medicine, Osaka University, Osaka, Japan,Department of Intracellular Membrane Dynamics, Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan,CONTACT Tamotsu Yoshimori Osaka University, Osaka, Japan
| |
Collapse
|
7
|
Chitosan-based biomaterials for the treatment of bone disorders. Int J Biol Macromol 2022; 215:346-367. [PMID: 35718150 DOI: 10.1016/j.ijbiomac.2022.06.079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/06/2022] [Accepted: 06/11/2022] [Indexed: 12/22/2022]
Abstract
Bone is an alive and dynamic organ that is well-differentiated and originated from mesenchymal tissues. Bone undergoes continuous remodeling during the lifetime of an individual. Although knowledge regarding bones and their disorders has been constantly growing, much attention has been devoted to effective treatments that can be used, both from materials and medical performance points of view. Polymers derived from natural sources, for example polysaccharides, are generally biocompatible and are therefore considered excellent candidates for various biomedical applications. This review outlines the development of chitosan-based biomaterials for the treatment of bone disorders including bone fracture, osteoporosis, osteoarthritis, arthritis rheumatoid, and osteosarcoma. Different examples of chitosan-based formulations in the form of gels, micro/nanoparticles, and films are discussed herein. The work also reviews recent patents and important developments related to the use of chitosan in the treatment of bone disorders. Although most of the cited research was accomplished before reaching the clinical application level, this manuscript summarizes the latest achievements within chitosan-based biomaterials used for the treatment of bone disorders and provides perspectives for future scientific activities.
Collapse
|
8
|
Eggers B, Wagenheim AM, Jung S, Kleinheinz J, Nokhbehsaim M, Kramer FJ, Sielker S. Effect of Cold Atmospheric Plasma (CAP) on Osteogenic Differentiation Potential of Human Osteoblasts. Int J Mol Sci 2022; 23:ijms23052503. [PMID: 35269642 PMCID: PMC8910241 DOI: 10.3390/ijms23052503] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/22/2022] [Indexed: 01/12/2023] Open
Abstract
Bone regeneration after oral and maxillofacial surgery is a long-term process, which involves various mechanisms. Recently, cold atmospheric plasma (CAP) has become known to accelerate wound healing and have an antimicrobial effect. Since the use of CAP in dentistry is not yet established, the aim of the present study was to investigate the effect of CAP on human calvaria osteoblasts (HCO). HCO were treated with CAP for different durations of time and distances to the cells. Cell proliferation was determined by MTT assay and cell toxicity by LDH assay. Additionally, RT-qPCR was used to investigate effects on osteogenic markers, such as alkaline phosphatase (ALP), bone morphogenic protein (BMP)2, collagen (COL)1A1, osteonectin (SPARC), osteoprotegerin (OPG), osterix (OSX), receptor activator of NF-κB (RANK), RANK Ligand (RANKL), and Runt-related transcription factor (RUNX)2. There were small differences in cell proliferation and LDH release regarding treatment duration and distance to the cells. However, an increase in the expression of RANK and RANKL was observed at longer treatment times. Additionally, CAP caused a significant increase in mRNA expression of genes relevant to osteogenesis. In conclusion, CAP has a stimulating effect on osteoblasts and may thus represent a potential therapeutic approach in the regeneration of hard tissue defects.
Collapse
Affiliation(s)
- Benedikt Eggers
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany;
- Correspondence: (B.E.); (S.S.); Tel.: +49-(0)228-287-22407 (B.E.); +49-251-83-47007 (S.S.)
| | - Anna-Maria Wagenheim
- Research Unit Vascular Biology of Oral Structures (VABOS), Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Münster, Germany; (A.-M.W.); (S.J.); (J.K.)
| | - Susanne Jung
- Research Unit Vascular Biology of Oral Structures (VABOS), Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Münster, Germany; (A.-M.W.); (S.J.); (J.K.)
| | - Johannes Kleinheinz
- Research Unit Vascular Biology of Oral Structures (VABOS), Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Münster, Germany; (A.-M.W.); (S.J.); (J.K.)
| | - Marjan Nokhbehsaim
- Section of Experimental Dento-Maxillo-Facial Medicine, University Hospital Bonn, 53111 Bonn, Germany;
| | - Franz-Josef Kramer
- Department of Oral, Maxillofacial and Plastic Surgery, University Hospital Bonn, 53111 Bonn, Germany;
| | - Sonja Sielker
- Research Unit Vascular Biology of Oral Structures (VABOS), Department of Cranio-Maxillofacial Surgery, University Hospital Muenster, 48149 Münster, Germany; (A.-M.W.); (S.J.); (J.K.)
- Correspondence: (B.E.); (S.S.); Tel.: +49-(0)228-287-22407 (B.E.); +49-251-83-47007 (S.S.)
| |
Collapse
|
9
|
Park S, Heo HA, Kim KW, Pyo SW. Expression of osteogenic markers after administration of selective estrogen receptor modulators during implant placement in the osteoporotic rat maxilla. J Oral Sci 2021; 64:53-58. [PMID: 34955485 DOI: 10.2334/josnusd.21-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
PURPOSE This study examined the effects of raloxifene during bone formation around the dental implant in the ovariectomy-induced osteoporotic rat maxilla. METHODS Fifty-four female 10-week-old Sprague-Dawley rats were divided into three groups (n = 18 each); sham-operated (control), ovariectomized (OVX), and ovariectomized and raloxifene-administered (RAL). Eight weeks after ovariectomy, both upper first molars were extracted, and implants were placed 4 weeks post-extraction. The RAL group was given 1 mg/kg of raloxifene per day while the other groups received a vehicle. Six rats in each group were sacrificed at days 4, 7, and 14 and submitted for quantitative reverse transcription polymerase chain reaction and immunohistochemical staining, for evaluation of osteogenic genes expressions. RESULTS The alkaline phosphatase expression was upregulated in the RAL group compared to the OVX group at day 4. The osteocalcin expression was significantly higher between the RAL group and the OVX group at day 7. Immunohistochemical staining revealed increased expression during the initial bone-forming process and indicated more active bone formation in the RAL group than in the OVX group. CONCLUSION Raloxifene administration enhanced the osteogenic genes and proteins expression in the bone around the implant. Further studies are required to establish the long-term clinical effects of raloxifene administration.
Collapse
Affiliation(s)
- Suhyun Park
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Hyun A Heo
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| | - Kyoung Wook Kim
- Department of Dentistry, Graduate School, The Catholic University of Korea
| | - Sung Woon Pyo
- Department of Dentistry, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea
| |
Collapse
|
10
|
Azami N, Chen PJ, Mehta S, Kalajzic Z, Dutra EH, Nanda R, Yadav S. Raloxifene administration enhances retention in an orthodontic relapse model. Eur J Orthod 2020; 42:371-377. [PMID: 32065225 PMCID: PMC7485273 DOI: 10.1093/ejo/cjaa008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVES Orthodontic relapse is a physiologic process that involves remodelling of the alveolar bone and principle periodontal ligament fibres. Raloxifene is an Food and Drug Administration (FDA)-approved selective oestrogen receptor modulator that inhibits systemic bone loss. In our study, we examined the effects of Raloxifene on alveolar bone modelling and orthodontic relapse in a rodent model. MATERIALS AND METHODS The efficacy of raloxifene was evaluated in 15-week-old male Wistar rats, 8 in each group (Control, Raloxifene, Raloxifene + 7-day relapse, Raloxifene + 14-day relapse) for a total of 42 days. All animals had 14 days of orthodontic tooth movement with a closed nickel-titanium coil spring tied from incisors to right first molar applying 5-8 gm of force. On the day of appliance removal, impression was taken with silicon material and the distance between first molar and second molar was filled with light-cured adhesive resin cement for retention phase. Raloxifene Retention, Raloxifene Retention + 7D, Raloxifene Retention + 14D groups received 14 daily doses of raloxifene (2.0 mg/kg/day) subcutaneously after orthodontic tooth movement during retention. After 14 days of retention, the retainer was removed and right first molar was allowed to relapse for a period of 14 days. Raloxifene injection continued for the Raloxifene + 14-day relapse group during relapse phase too. Control group received saline injections during retention. Animals were euthanized by CO2 inhalation. The outcome measure included percentage of relapse, bone volume fraction, tissue density, and histology analysis using tartrate-resistant acid phosphatase staining and determining receptor activator of nuclear factor-кB-ligand (RANKL) and osteoprotegerin expression. RESULTS Raloxifene Retention + 14D group had significantly less (P < 0.05) orthodontic relapse when compared with other groups. There was a significant increase (P < 0.05) in bone volume fraction and tissue density in the Raloxifene Retention + 14D group when compared with other groups. Similarly, there was significant decrease in number of osteoclasts and RANKL expression in Raloxifene Retention + 14D group when compared with Raloxifene Retention + 7D group (P < 0.05). CONCLUSION Raloxifene could decrease post-orthodontic treatment relapse by decreasing bone resorption and indirectly enhancing bone formation.
Collapse
Affiliation(s)
- Niloufar Azami
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| | - Po-Jung Chen
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| | - Shivam Mehta
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| | - Zana Kalajzic
- Department of Oral Health and Diagnostic Sciences, Division of Oral and Maxillofacial Radiology, UConn Health, Farmington, CT, USA
| | - Eliane H Dutra
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| | - Ravindra Nanda
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| | - Sumit Yadav
- Division of Orthodontics, UConn Health, Farmington, CT, USA
| |
Collapse
|
11
|
Wong SK, Mohamad NV, Jayusman PA, Shuid AN, Ima-Nirwana S, Chin KY. The use of selective estrogen receptor modulators on bone health in men. Aging Male 2019; 22:89-101. [PMID: 29508640 DOI: 10.1080/13685538.2018.1448058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Selective estrogen receptor modulators (SERMs) represent a class of drugs that act as agonist or antagonist for estrogen receptor in a tissue-specific manner. The SERMs drugs are initially used for the prevention and treatment of osteoporosis in postmenopausal women. Bone health in prostate cancer patients has become a significant concern, whereby patients undergo androgen deprivation therapy is often associated with deleterious effects on bone. Previous preclinical and epidemiological findings showed that estrogens play a dominant role in improving bone health as compared to testosterone in men. Therefore, this evidence-based review aims to assess the available evidence derived from animal and human studies on the effects of SERMs on the male skeletal system. The effects of SERMs on bone mineral density (BMD)/content (BMC), bone histomorphometry, bone turnover, bone strength and fracture risk have been summarized in this review.
Collapse
Affiliation(s)
- Sok Kuan Wong
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| | - Nur-Vaizura Mohamad
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| | - Putri Ayu Jayusman
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| | - Ahmad Nazrun Shuid
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| | - Soelaiman Ima-Nirwana
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| | - Kok-Yong Chin
- a Department of Pharmacology, Faculty of Medicine , Universiti Kebangsaan Malaysia , Cheras , Kuala Lumpur , Malaysia
| |
Collapse
|
12
|
Varshosaz J, Dayani L, Chegini SP, Minaiyan M. Production of a new platform based on fumed and mesoporous silica nanoparticles for enhanced solubility and oral bioavailability of raloxifene HCl. IET Nanobiotechnol 2019; 13:392-399. [PMID: 31171744 PMCID: PMC8676563 DOI: 10.1049/iet-nbt.2018.5252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 10/04/2018] [Accepted: 01/15/2019] [Indexed: 08/27/2023] Open
Abstract
The purpose of the present study was to compare mesoporous and fumed silica nanoparticles (NPs) to enhance the aqueous solubility and oral bioavailability of raloxifene hydrochloride (RH). Mesoporous silica NPs (MSNs) and fumed silica NPs were used by freeze-drying or spray-drying methods. MSNs were obtained with different ratios of cetyltrimethylammonium bromide. Saturation solubility of the NPs was compared with the pure drug. The optimised formulation was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD) and differential scanning calorimetry. The pharmacokinetic studies were done by oral administration of a single dose of 15 mg/kg of pure drug or fumed silica NPs of RH in Wistar rats. MSNs enhanced the solubility of RH from 19.88 ± 0.12 to 76.5 μg/ml. Freeze-dried fumed silica increased the solubility of the drug more than MSNs (140.17 ± 0.45 μg/ml). However, the spray-dried fumed silica caused about 26-fold enhancement in its solubility (525.7 ± 93.5 μg/ml). Increasing the ratio of silica NPs enhanced the drug solubility. The results of XRD and SEM analyses displayed RH were in the amorphous state in the NPs. Oral bioavailability of NPs showed 3.5-fold increase compared to the pure drug. The RH loaded fumed silica NPs prepared by spray-drying technique could more enhance the solubility and oral bioavailability of RH.
Collapse
Affiliation(s)
- Jaleh Varshosaz
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Ladan Dayani
- Department of Pharmaceutics, Faculty of Pharmacy and Novel Drug Delivery Systems Research Centre, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Mohsen Minaiyan
- Department of Pharmacology, School of Pharmacy, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
13
|
Shao Y, Hernandez-Buquer S, Childress P, Stayrook KR, Alvarez MB, Davis H, Plotkin LI, He Y, Condon KW, Burr DB, Warden SJ, Robling AG, Yang FC, Wek RC, Allen MR, Bidwell JP. Improving Combination Osteoporosis Therapy in a Preclinical Model of Heightened Osteoanabolism. Endocrinology 2017; 158:2722-2740. [PMID: 28637206 PMCID: PMC5659666 DOI: 10.1210/en.2017-00355] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 06/15/2017] [Indexed: 11/19/2022]
Abstract
Combining anticatabolic agents with parathyroid hormone (PTH) to enhance bone mass has yielded mixed results in osteoporosis patients. Toward the goal of enhancing the efficacy of these regimens, we tested their utility in combination with loss of the transcription factor Nmp4 because disabling this gene amplifies PTH-induced increases in trabecular bone in mice by boosting osteoblast secretory activity. We addressed whether combining a sustained anabolic response with an anticatabolic results in superior bone acquisition compared with PTH monotherapy. Additionally, we inquired whether Nmp4 interferes with anticatabolic efficacy. Wild-type and Nmp4-/- mice were ovariectomized at 12 weeks of age, followed by therapy regimens, administered from 16 to 24 weeks, and included individually or combined PTH, alendronate (ALN), zoledronate (ZOL), and raloxifene (RAL). Anabolic therapeutic efficacy generally corresponded with PTH + RAL = PTH + ZOL > PTH + ALN = PTH > vehicle control. Loss of Nmp4 enhanced femoral trabecular bone increases under PTH + RAL and PTH + ZOL. RAL and ZOL promoted bone restoration, but unexpectedly, loss of Nmp4 boosted RAL-induced increases in femoral trabecular bone. The combination of PTH, RAL, and loss of Nmp4 significantly increased bone marrow osteoprogenitor number, but did not affect adipogenesis or osteoclastogenesis. RAL, but not ZOL, increased osteoprogenitors in both genotypes. Nmp4 status did not influence bone serum marker responses to treatments, but Nmp4-/- mice as a group showed elevated levels of the bone formation marker osteocalcin. We conclude that the heightened osteoanabolism of the Nmp4-/- skeleton enhances the effectiveness of diverse osteoporosis treatments, in part by increasing hyperanabolic osteoprogenitors. Nmp4 provides a promising target pathway for identifying barriers to pharmacologically induced bone formation.
Collapse
Affiliation(s)
- Yu Shao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Selene Hernandez-Buquer
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Paul Childress
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Keith R. Stayrook
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Marta B. Alvarez
- Department of Orthopedic Surgery, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Hannah Davis
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Lilian I. Plotkin
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Yongzheng He
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Herman B. Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Keith W. Condon
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - David B. Burr
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Stuart J. Warden
- Center for Translational Musculoskeletal Research, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
- Department of Physical Therapy, School of Health and Rehabilitation Sciences, Indiana University, Indianapolis, Indiana 46202
| | - Alexander G. Robling
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Feng-Chun Yang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, Florida 33136
| | - Ronald C. Wek
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| | - Matthew R. Allen
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Richard A. Roudebush Veterans Administration Medical Center, Indianapolis, Indiana 46202
| | - Joseph P. Bidwell
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana 46202
- Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202
| |
Collapse
|
14
|
Karvande A, Khedgikar V, Kushwaha P, Ahmad N, Kothari P, Verma A, Kumar P, Nagar GK, Mishra PR, Maurya R, Trivedi R. Heartwood extract from Dalbergia sissoo promotes fracture healing and its application in ovariectomy-induced osteoporotic rats. ACTA ACUST UNITED AC 2017; 69:1381-1397. [PMID: 28664619 DOI: 10.1111/jphp.12764] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/07/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES This study was undertaken to investigate the effects of a heartwood ethanolic extract (HEE) made from the Dalbergia sissoo on facture healing and in the prevention of pathological bone loss resulting from estrogen deficiency in ovariectomized (Ovx) rats. METHODS Heartwood ethanolic extract (250, 500 and 1000 mg/kg per day) was administered orally immediately next day after drill-hole injury and continued for 2 weeks. Ovx rats received HEE at same doses for 12 weeks and compared with 17-β estradiol (E2; 100 μg/kg for 5 days/week subcutaneously) group. Confocal imaging for fracture healing, micro-architecture of long bones, biomechanical strength, formation of mineralized nodule by bone marrow osteoprogenitor cells, bone turnover markers and gene expression were studied. One-way ANOVA was used to test significance. KEY FINDINGS Heartwood ethanolic extract treatment promoted fracture healing, formation of new bone at the drill-hole site and stimulated osteogenic genes at callus region. HEE administration to the Ovx rats exhibited better micro-architectural parameters at various anatomical positions, better bone biomechanical strength and more osteoprogenitor cells in the bone marrow compared with Ovx + vehicle group. HEE exhibited no uterine estrogenicity. CONCLUSIONS Oral administration of HEE was found to promote fracture healing and exhibited osteoprotective effect by possibly stimulation of osteoblast function.
Collapse
Affiliation(s)
- Anirudha Karvande
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Vikram Khedgikar
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Priyanka Kushwaha
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Naseer Ahmad
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Priyanka Kothari
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Ashwni Verma
- Division of Pharmaceutics, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Padam Kumar
- Division of Medicinal & Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Geet Kumar Nagar
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Prabhat Ranjan Mishra
- Division of Pharmaceutics, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Lucknow, Uttar Pradesh, India
| |
Collapse
|
15
|
Ahmad N, Chillara R, Kushwaha P, Khedgikar V, Karvande A, Choudhary D, Adhikary S, Maurya R, Trivedi R. Evaluation of anti-osteoporotic activity of butanolic fraction from Passiflora foetida in ovariectomy-induced bone loss in mice. Biomed Pharmacother 2017; 88:804-813. [PMID: 28160755 DOI: 10.1016/j.biopha.2017.01.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/05/2017] [Accepted: 01/16/2017] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE In this study, we have evaluated the skeletal effects of butanolic fraction (BF) from Passiflora foetida in an estrogen deficient mice bone loss model. STUDY DESIGN Skeletal effect of BF was studied in ovariectomized (OVx) female Balb/c mice. BF (50 and 100mg/kg/day dose orally) was given for 8 weeks. Micro-architecture of long bones, biomechanical strength, formations of mineralized nodule by bone marrow osteoprogenitor cells, osteoid formation and bone turnover markers were studied. One way ANOVA was used to test the significance of effects of Passiflora foetida. RESULTS OVx mice treated with BF represented with better micro-architectural parameters at various anatomical positions, better bone biomechanical strength and more osteoprogenitor cells in the bone marrow compared with OVx group. BF did not exhibit uterine estrogenicity. CONCLUSION Oral administration of BF at both the doses (50 and 100mg/kg/day) derived from Passiflora Foetida, was found to afford anti-osteoporotic effect under estrogen deficiency by likely stimulation of osteoblast function and inhibition of osteoclast function.
Collapse
Affiliation(s)
- Naseer Ahmad
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Raju Chillara
- Division of Medicinal & Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Priyanka Kushwaha
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Vikram Khedgikar
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Anirudha Karvande
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Dharmendra Choudhary
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Sulekha Adhikary
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Rakesh Maurya
- Division of Medicinal & Process Chemistry, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India
| | - Ritu Trivedi
- Division of Endocrinology, Central Drug Research Institute (Council of Scientific and Industrial Research), Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, Uttar Pradesh, India.
| |
Collapse
|
16
|
Abstract
Bone mass in the skeleton is dependent on the coordinated activities of bone-forming osteoblasts and bone-resorbing osteoclasts in discrete bone multi-cellular units. Remodeling of bone in these units is important not only for maintaining bone mass, but also to repair microdamage, to prevent accumulation of too much old bone, and for mineral homeostasis. The activities of osteoblasts and osteoclasts are controlled by a variety of hormones and cytokines, as well as by mechanical loading. Most importantly, sex hormones are very crucial for keeping bone mass in balance, and the lack of either estrogen or testosterone leads to decreased bone mass and increased risk for osteoporosis. The prevalence of osteoporotic fractures is increasing dramatically in the Western part of the world and is a major health problem in many countries. In the present review, the cellular and molecular mechanisms controlling bone remodeling and the influence of sex hormones on these processes are summarized. In a separate paper in this issue, the pathogenesis of post-menopausal osteoporosis will be compared with that of inflammation-induced bone remodeling, including the evidence for and against the hypothesis that concomitant post-menopausal osteoporotic disease influences the progression of periodontal disease.
Collapse
Affiliation(s)
- U H Lerner
- Department of Oral Cell Biology, Umeå University, Umeå SE-901 87, Sweden.
| |
Collapse
|
17
|
Sun J, Sun WJ, Li ZY, Li L, Wang Y, Zhao Y, Wang C, Yu LR, Li LZ, Zhang YL. Daidzein increases OPG/RANKL ratio and suppresses IL-6 in MG-63 osteoblast cells. Int Immunopharmacol 2016; 40:32-40. [PMID: 27576059 DOI: 10.1016/j.intimp.2016.08.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/11/2016] [Accepted: 08/17/2016] [Indexed: 02/07/2023]
Abstract
Daidzein is a major dietary source of isoflavones found in Leguminosae, and belongs to the family of diphenolic compounds. The estrogenic effects of daidzein to prompt bone formation and prevent bone resorption have been observed in animal models and cultured cells. In our study, we studied the effects of daidzein, raloxifene and E2 on expression of the osteoblast-produced bone regulatory factors OPG, RANKL and IL-6 in human osteoblastic MG-63 cells. Results suggest that treatment with daidzein, raloxifene and E2 increased the levels of OPG and decreased those of RANKL and IL-6. The effects of daidzein on OPG and RANKL expression are mediated by both ERα and ERβ but those on IL-6 production primarily by ERα. Moreover, daidzein may promote activation of the classic estrogen response element (ERE) pathway through increasing ERα, ERβ and steroid hormone receptor coactivator (SRC)-1 expression. E2 was also able to enhance transcription derived from the ERE, while raloxifene has no effect on it. Raloxifene increased ERα protein and gene expression levels but had no effect on ERβ protein and gene expression at 0.1μM. E2 was found significantly increased the protein and mRNA levels of SRC-1, while raloxifene has no effect on it compared with control. This ability of daidzein to affect osteoblastic cells makes it a good candidate for the treatment of bone loss in postmenopausal women.
Collapse
Affiliation(s)
- Jing Sun
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China; Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Wei Jia Sun
- Department of Medical Administration, The General Hospital of Chinese People's Armed Police Forces, Beijing, People's Republic of China
| | - Zheng Yang Li
- Department of Orthodontics, Tianjin Stomatological Hospital, Tianjin, People's Republic of China
| | - Ling Li
- Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Yue Wang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China; Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China.
| | - Yu Zhao
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Cong Wang
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Li Ren Yu
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China
| | - Ling Zhi Li
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China; Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Yong Liang Zhang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China; Ministry of Training, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China.
| |
Collapse
|
18
|
Golden D, Saria EA, Hansen MF. Regulation of Osteoblast Migration Involving Receptor Activator of Nuclear Factor-kappa B (RANK) Signaling. J Cell Physiol 2015; 230:2951-60. [PMID: 25893522 DOI: 10.1002/jcp.25024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 04/16/2015] [Indexed: 01/12/2023]
Abstract
Bone remodeling requires osteoclast activation, resorption, and reversal, prior to osteoblast migration into the bone pit. The Receptor Activator of NF-κB (RANK) signaling pathway plays an important role in bone remodeling. Two components of the RANK signaling pathway, RANK Ligand (RANKL) and the decoy receptor Osteoprotegerin (OPG), are expressed predominantly on the surface of osteoblasts, while RANK is principally expressed on the surface of osteoclasts. However, RANK has also been reported to be expressed on the surface of osteoblasts and osteosarcoma tumor cells. Treatment with soluble RANKL (sRANKL) of both normal osteoblasts and osteosarcoma tumor cells activated phosphorylation of ERK, p38(MAPK) , Akt, and p65(NF-κB). However, modified Boyden chamber assays and wound repair assays showed differential response to sRANKL-induced chemotactic migration in normal osteoblasts and osteosarcoma tumor cells. In contrast to previously published results, both normal osteoblasts and osteosarcoma tumor cells responded to sRANKL-induced chemotactic migration but the normal osteoblasts did so only in the presence of an ERK pathway inhibitor. For both normal and tumor cells, the chemotactic response could be blocked by inhibiting the PI3K/Akt or p65(NF-κB) pathway. Response to sRANKL in normal and tumor cells suggests a role for RANK/ERK-mediated signaling in normal osteoblasts chemotactic migration during bone remodeling that is altered or lost during osteosarcoma tumorigenesis.
Collapse
Affiliation(s)
- Diana Golden
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Elizabeth A Saria
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut
| | - Marc F Hansen
- Center for Molecular Medicine, University of Connecticut Health Center, Farmington, Connecticut
| |
Collapse
|
19
|
Biason TP, Goldberg TBL, Kurokawa CS, Moretto MR, Teixeira AS, Nunes HRDC. Low-dose combined oral contraceptive use is associated with lower bone mineral content variation in adolescents over a 1-year period. BMC Endocr Disord 2015; 15:15. [PMID: 25990414 PMCID: PMC4443632 DOI: 10.1186/s12902-015-0012-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 03/26/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Low-dose combined oral contraceptives (COCs) can interfere with bone mass acquisition during adolescence. This study aimed to evaluate bone mineral density (BMD) and bone mineral content (BMC) in female adolescents taking a standard low-dose COC (ethinylestradiol 20 μg/desogestrel 150 μg) over a 1-year period and to compare their data with those of healthy adolescents from the same age group not taking COCs. METHODS This was a non-randomized parallel-control study with a 1-year follow-up. Sixty-seven adolescents aged from 12 to 19 years, divided into COC users (n = 41) taking 20 μg ethinylestradiol/150 μg desogestrel and COC non-user controls (n = 26), were evaluated by bone densitometry examinations at baseline and after 12 months. Comparisons between the groups at the study onset were performed using the Mann-Whitney test with the significance level fixed at 5% or p < 0.05. Comparisons between the groups at the study onset and after 12 months were based on variations in the median percentages for bone mass variables. RESULTS The COC users presented with low bone mass acquisition in the lumbar spine, and had BMD and BMC median variations of 2.07% and +1.57%, respectively, between the measurements at baseline and 12 months. The control group had median variations of +12.16% and +16.84% for BMD and BMC, respectively, over the same period. The total body BMD and BMC showed similar evolutions during the study in both groups. Statistical significance (p < 0.05) was seen for the BMC percentage variation between COC users and non-users. CONCLUSIONS Use of a low-dose COC (ethinylestradiol 20 μg/desogestrel 150 μg) was associated with lower bone mass acquisition in adolescents during the study period. TRIAL REGISTRATION Registry Number, RBR-5h9b3c.
Collapse
Affiliation(s)
- Talita Poli Biason
- Department of Pediatrics, Adolescent Medicine Discipline, Graduate Program in Gynecology, Obstetrics, and Mastology, Botucatu School of Medicine, São Paulo State University (UNESP), São Paulo, Brazil.
| | - Tamara Beres Lederer Goldberg
- Department of Pediatrics, Adolescent Medicine Discipline, Graduate Program in Gynecology, Obstetrics, and Mastology, Botucatu School of Medicine, São Paulo State University (UNESP), São Paulo, Brazil.
| | - Cilmery Suemi Kurokawa
- Clinical and Experimental Pediatrics Research Center, Department of Pediatrics, Botucatu Medical School, São Paulo State University (UNESP), São Paulo, Brazil.
| | - Maria Regina Moretto
- Clinical and Experimental Pediatrics Research Center, Department of Pediatrics, Botucatu Medical School, São Paulo State University (UNESP), São Paulo, Brazil.
| | - Altamir Santos Teixeira
- Department of Tropical Diseases and Diagnostic Imaging, Botucatu School of Medicine, São Paulo State University (UNESP), São Paulo, Brazil.
| | | |
Collapse
|
20
|
Hermansen LL, Sørensen M, Barckman J, Bechtold JE, Søballe K, Baas J. Incorporation of raloxifene-impregnated allograft around orthopedic titanium implants impairs early fixation but improves new bone formation. Acta Orthop 2015; 86:127-33. [PMID: 25175661 PMCID: PMC4366660 DOI: 10.3109/17453674.2014.958808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND The anti-osteoporotic drug raloxifene reduces the risk of vertebral fractures by increasing bone mass density. We investigated whether raloxifene offers any benefits in augmenting early fixation of orthopedic implants in the setting of impaction bone grafting. METHODS 24 non-weight-bearing grafted gap implants were inserted bilaterally into the tibia of 12 dogs. The 2.5-mm peri-implant gap was filled with either raloxifene-impregnated or untreated bone allograft. Implants were harvested after 28 days. Implant fixation was assessed by mechanical testing and histomorphometric evaluation. RESULTS Raloxifene-treated allograft reduced early implant fixation compared to untreated allograft, as measured by inferior maximum shear strength (p < 0.001) and apparent shear stiffness (p = 0.001). We found that the raloxifene group had more newly formed bone in the gap around the implant (p = 0.02), but also less allograft (p = 0.03). INTERPRETATION The accelerated allograft resorption in the raloxifene group explained the impaired early fixation, despite its stimulation of new bone formation. Our results with local and possible high-dose treatment are not consistent with current theory regarding the mechanism of how systemic raloxifene administration counteracts the decrease in BMD in postmenopausal women. Instead of being solely anti-resorptive as generally held, our results indicate a possible anabolic side of raloxifene.
Collapse
Affiliation(s)
- Lars L Hermansen
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Sørensen
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Jeppe Barckman
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Joan E Bechtold
- Orthopedic Biomechanics Laboratory, Minneapolis Medical Research Foundation, University of Minnesota and Excelen Center for Bone and Joint Research and Education, Minneapolis, MN, USA
| | - Kjeld Søballe
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Baas
- Othopedic Research Laboratory, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Wang Y, Yang C, Xie WL, Zhao YW, Li ZM, Sun WJ, Li LZ. Puerarin concurrently stimulates osteoprotegerin and inhibits receptor activator of NF-κB ligand (RANKL) and interleukin-6 production in human osteoblastic MG-63 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1032-6. [PMID: 24854571 DOI: 10.1016/j.phymed.2014.04.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/13/2014] [Accepted: 04/06/2014] [Indexed: 05/23/2023]
Abstract
Puerarin, a daidzein-8-C-glucoside, is the major isoflavone glycoside found in the Chinese herb radix of Pueraria lobata (Willd.) Ohwi, and has received increasing attention because of its possible role in the prevention of osteoporosis. In our previous studies, puerarin reduced the bone resorption of osteoclasts and promoted long bone growth in fetal mouse in vitro. Further study confirmed that puerarin stimulated proliferation and differentiation of osteoblasts in rat. However, the mechanisms underlying its actions on human bone cells have remained largely unknown. Here we show that puerarin concurrently stimulates osteoprotegerin (OPG) and inhibits receptor activator of nuclear factor-κB ligand (RANKL) and Interleukin-6 (IL-6) production by human osteoblastic MG-63 cells containing two estrogen receptor (ER) isotypes. Treatment with the ER antagonist ICI 182,780 abrogates the above actions of puerarin on osteoblast-derived cells. Using small interfering double-stranded RNAs technology, we further demonstrate that the effects of puerarin on OPG and RANKL expression are mediated by both ERα and ERβ but those on IL-6 production primarily by ERα. Moreover, we demonstrate that puerarin may promote activation of the classic estrogen response element (ERE) pathway through increasing ERα, ERβ and steroid hormone receptor coactivator (SRC)-1 expression. Therefore, puerarin will be a promising agent that prevents or retards osteoporosis.
Collapse
Affiliation(s)
- Yue Wang
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China; Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China.
| | - Cheng Yang
- Department of Anesthesiology, Affiliated Hospital of Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Wen Li Xie
- Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Yan Wei Zhao
- Department of Pharmacology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Zong Min Li
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Wei Jia Sun
- Department of Pathogenic Biology and Immunology, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China
| | - Ling Zhi Li
- Tianjin Key Laboratory for Prevention and Control of Occupational and Environmental Hazard, Tianjin, People's Republic of China; Department of Pharmaceutical Chemistry, Logistics College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China.
| |
Collapse
|
22
|
Abstract
Osteogenesis and bone remodeling are complex biological processes that are essential for the formation of new bone tissue and its correct functioning. When the balance between bone resorption and formation is disrupted, bone diseases and disorders such as Paget's disease, fibrous dysplasia, osteoporosis and fragility fractures may result. Recent advances in bone cell biology have revealed new specific targets for the treatment of bone loss that are based on the inhibition of bone resorption by osteoclasts or the stimulation of bone formation by osteoblasts. Bisphosphonates, antiresorptive agents that reduce bone resorption, are usually recommended as first-line therapy in women with postmenopausal osteoporosis. Numerous studies have shown that bisphosphonates are able to significantly reduce the risk of femoral and vertebral fractures. Other antiresorptive agents indicated for the treatment of osteoporosis include selective estrogen receptor modulators, such as raloxifene. Denosumab, a human monoclonal antibody, is another antiresorptive agent that has been approved in Europe and the USA. This agent blocks the RANK/RANKL/OPG system, which is responsible for osteoclastic activation, thus reducing bone resorption. Other approved agents include bone anabolic agents, such as teriparatide, a recombinant parathyroid hormone that improves bone microarchitecture and strength, and strontium ranelate, considered to be a dual-action drug that acts by both osteoclastic inhibition and osteoblastic stimulation. Currently, anti-catabolic drugs that act through the Wnt-β catenin signaling pathway, serving as Dickkopf-related protein 1 inhibitors and sclerostin antagonists, are also in development. This concise review provides an overview of the drugs most commonly used for the control of osteogenesis in bone diseases.
Collapse
|
23
|
Saini D, Fazil M, Ali MM, Baboota S, Ali J. Formulation, development and optimization of raloxifene-loaded chitosan nanoparticles for treatment of osteoporosis. Drug Deliv 2014; 22:823-36. [PMID: 24725026 DOI: 10.3109/10717544.2014.900153] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Osteoporosis (OP) is a disease of skeletal system and is associated with fragility fracture at the hip, spine and wrist. Various drugs have been used to treat OP. One of them is raloxifene hydrochloride (RLX), a second-generation selective estrogen receptor modulator (SERM) approved by the USFDA. RLX possesses only 2% absolute bioavailability (BA) by oral route due to its extensive first-pass metabolism. OBJECTIVE The purpose of the current research work was to develop and evaluate RLX-loaded chitosan nanoparticles (CS-NPs) for treatment of OP with enhanced BA. MATERIALS AND METHODS The RLX-loaded CS-NPs were prepared by gelation of CS with tripolyphosphate (TPP) by ionic cross-linking. Formulation was optimized and in vitro drug release and in vivo study were performed. RESULTS AND DISCUSSIONS CS-NPs were formed by the ionic gelation method. The particle size, entrapment efficiency and loading efficiency varied from 216.65 to 1890 nm, 32.84 to 97.78% and 23.89 to 62.46%, respectively. Release kinetics showed diffusion-controlled and Fickian release pattern. In vivo study indicated higher plasma drug concentration with NPs administered intranasally as compared to drug suspension administered through oral route (p < 0.05). A significantly higher drug concentration in plasma was achieved in 10 min after nasal administration with respect to oral administration. CONCLUSION The results suggest that RLX-loaded CS-NPs have better BA and would be a promising approach for intranasal (i.n.) delivery of RLX for the treatment of OP.
Collapse
Affiliation(s)
- Deepa Saini
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| | - Mohammad Fazil
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| | - Mushir M Ali
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| | - Sanjula Baboota
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| | - Javed Ali
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , New Delhi , India
| |
Collapse
|
24
|
Update on raloxifene: mechanism of action, clinical efficacy, adverse effects, and contraindications. Obstet Gynecol Surv 2014; 68:467-81. [PMID: 23942473 DOI: 10.1097/ogx.0b013e31828baef9] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Raloxifene is the only selective estrogen receptor modulator approved for long-term treatment in the prevention of osteoporotic fractures and for the reduction of invasive breast cancer risk in post-menopausal women. The demonstrated beneficial effects on bone and mammalian tissue led clinical and molecular research to focus mainly on these organs, giving less attention to all other systemic effects. The aim of this review was to evaluate all described systemic effects of raloxifene, investigating its molecular and tissutal mechanism of action. A literature research was carried out in electronic databases MEDLINE, EMBASE, ScienceDirect, and the Cochrane Library in interval time between 2000 and 2012. Outcomes were considered in relation to positive/adverse effects concerning bone metabolism, lipid metabolism, coagulation pattern, menopausal symptoms, breast cancer onset, and endometrial cancer onset. Raloxifene acts as an estrogen agonist or antagonist depending on the tissue. This feature is related to specific actions on at least 2 distinct estrogen receptors, whose proportions vary according to tissue type. Raloxifene is a drug for the treatment of osteoporosis and for the prevention of estrogen receptor-positive breast cancer because it guarantees a safety profile on the endometrium. Raloxifene is furthermore an effective therapy in women with increased levels of plasma cholesterol. Raloxifene treatment shifts the coagulation pattern toward prothrombosis, and the patients should be exhaustively informed about the risks associated with therapy. Raloxifene does not show to affect memory and cognition. Finally, it is noteworthy that quality-of-life studies demonstrated some favorable effects of raloxifene.
Collapse
|
25
|
Li H, Xiao H, Lin L, Jou D, Kumari V, Lin J, Li C. Drug Design Targeting Protein–Protein Interactions (PPIs) Using Multiple Ligand Simultaneous Docking (MLSD) and Drug Repositioning: Discovery of Raloxifene and Bazedoxifene as Novel Inhibitors of IL-6/GP130 Interface. J Med Chem 2014; 57:632-41. [DOI: 10.1021/jm401144z] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Huameng Li
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Hui Xiao
- Center
for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - Li Lin
- Division
of Cardiology, Department of Internal Medicine, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, P. R. China
| | - David Jou
- Center
for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - Vandana Kumari
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jiayuh Lin
- Center
for Childhood Cancer, The Research Institute at Nationwide Children’s Hospital, Columbus, Ohio 43205, United States
| | - Chenglong Li
- Biophysics
Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Division
of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
26
|
Muzio LL, Santarelli A, Orsini G, Memè L, Mattioli-Belmonte M, De Florio I, Gatto R, Gallusi G, Nocini P, Bertossi D, Emanuelli M, Putignano A, Bambini F. MG63 and MC3T3-E1 Osteoblastic Cell Lines Response to Raloxifene. EUR J INFLAMM 2013. [DOI: 10.1177/1721727x1301100322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Bone resorption in edentulous regions often results in inadequate ridge for implant osseointegration. In order to overcome this problem, the use of osteoconductive biomaterials has been proposed as a carrier for different types of pharmacological molecules. Since raloxifene, a drug used in osteoporosis therapy, inhibits the osteoclast, but not osteoblast functions, it has been suggested to improve recovery during implant surgery. The present work evaluated in vitro the effect of raloxifene on two different cell populations: the human osteoblast-like cells (MG63) and osteoblasts derived from rat calvaria (MC3T3-E1). The morpho-functional investigations carried out showed a different behavior of the two cell lines. Raloxifene showed a stimulatory effect towards MG63 cell proliferation with a significant increase in cell viability after 7 days of culture. On the contrary, MC3T3-E1 cells showed a significant reduction in cell viability, when compared with the same cells at 72 h, or with the control cell population. The predominantly proliferative effect of raloxifene on MG63 cells is partly confirmed by the reduction of alkaline phosphatase activity, an early marker of osteoblast differentiation. The different effect of raloxifene on osteoblastic population in relationship to the type and age of the cell is an issue that needs further investigation.
Collapse
Affiliation(s)
- L. Lo Muzio
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
| | - A. Santarelli
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
- Odontostomatologic Clinic, National Institute of Care and Research on Ageing, Ancona, Italy
| | - G. Orsini
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
| | - L. Memè
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
| | - M. Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - I. De Florio
- Department of Clinical and Experimental Medicine, Foggia University, Foggia, Italy
- Department of Surgical Sciences, L'Aquila University, L'Aquila, Italy
| | - R. Gatto
- Department of Surgical Sciences, L'Aquila University, L'Aquila, Italy
| | - G. Gallusi
- Department of Surgical Sciences, L'Aquila University, L'Aquila, Italy
| | - P.F. Nocini
- Department of Maxillo-Facial Surgery, University of Verona, Verona, Italy
| | - D. Bertossi
- Department of Maxillo-Facial Surgery, University of Verona, Verona, Italy
| | - M. Emanuelli
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
| | - A. Putignano
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
| | - F. Bambini
- Department of Clinical Specialistic and Stomatological Sciences, Marche Polytechnic University, Ancona, Italy
- Odontostomatologic Clinic, National Institute of Care and Research on Ageing, Ancona, Italy
| |
Collapse
|
27
|
Mozzanega B, Gizzo S, Bernardi D, Salmaso L, Patrelli TS, Mioni R, Finos L, Nardelli GB. Cyclic variations of bone resorption mediators and markers in the different phases of the menstrual cycle. J Bone Miner Metab 2013; 31:461-7. [PMID: 23479185 DOI: 10.1007/s00774-013-0430-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 01/24/2013] [Indexed: 11/29/2022]
Abstract
Female hormones are very important in regulating bone homeostasis; the drop of estrogen levels occurring at menopause is linked to a dramatic prevalence of bone resorption on formation. Only a small number of studies investigated the relationship between changes in circulating female sex hormones and the markers and mediators of bone homeostasis and they showed conflicting results. To explore such relationships we studied 20 young fertile healthy women, aged between 19 and 32 years. None had received hormone treatment for at least 6 months. We assayed luteinizing hormone, follicle-stimulating hormone, progesterone and 17β-estradiol, as well as the levels of osteoprotegerin (OPG), C-terminal telopeptide of collagen type I (CTx) and RANKL (receptor activator of nuclear factor-B ligand) in samples drawn from every subject at four different times during the menstrual cycle when estrogens are lowest, at the start of the cycle: T 0 (2-4th day); when estrogens are highest, in the pre-ovulatory period: T 14 (12-14th day); when progesterone activity is highest, in the advanced luteal phase: T 26 (24-26th day); and again at the start of the next cycle: T 01 (2-4th day). We observed that CTx levels are highest at the start of the cycle, decreased significantly from T 0 to T 26 (pfwe = 0.0455) and then increased from T 26 to T 01 (pfwe = 0.0415); OPG, on the other hand, which was also highest at the start of the cycle, decreased significantly from T 0 to T 14 (pfwe = 0.02) and then increased, though not significantly, from T 14 to T 01; no variation was observed in RANKL values at any time. We observed inverse correlations between estradiol and OPG levels, which became highly significant at T 01 between estradiol nadir and OPG peak levels (pfw = 0.0095). Furthermore, the increase of estradiol from T 0 to T 14 was negatively correlated with the concomitant decrease of OPG (pfwe = 0.0277), as was the fall of estradiol from T 26 to T 01 with the OPG peak levels, both at T 01 (pfw = 0.0045) and at T 0 (pfwe = 0.0381). We also observed direct correlations between the OPG levels and the variations of progesterone in the preceding intervals, but they never attained statistical significance. We conclude that OPG and CTx fluctuation during the menstrual cycle are likely due to the physiological variations of sex steroids levels.
Collapse
Affiliation(s)
- Bruno Mozzanega
- Dipartimento della Salute della Donna del Bambino, U.O.C. di Clinica Ginecologica e Ostetrica, Via Giustiniani 3, 35128, Padua, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Harmankaya N, Karlsson J, Palmquist A, Halvarsson M, Igawa K, Andersson M, Tengvall P. Raloxifene and alendronate containing thin mesoporous titanium oxide films improve implant fixation to bone. Acta Biomater 2013; 9:7064-73. [PMID: 23467043 DOI: 10.1016/j.actbio.2013.02.040] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 10/27/2022]
Abstract
This study tested the hypothesis that osteoporosis drug-loaded mesoporous TiO2 implant coatings can be used to improve bone-implant integration. Two osteoporosis drugs, Alendronate (ALN) and Raloxifene (RLX), were immobilized in nanoporous oxide films prepared on Ti screws and evaluated in vivo in rat tibia. The drug release kinetics were monitored in vitro by quartz crystal microbalance with dissipation and showed sustained release of both drugs. The osteogenic response after 28days of implantation was evaluated by quantitative polymerase chain reaction (qPCR), removal torque, histomorphometry and ultrastructural interface analysis. The drug-loaded implants showed significantly improved bone fixation. In the case of RLX, stronger bone-remodelling activity was observed compared with controls and ALN-loaded implants. The ultrastructural interface analysis revealed enhanced apatite formation inside the RLX coating and increased bone density outside the ALN coating. Thus, this novel combination of a thin mesoporous TiO2 carrier matrix and appropriate drugs can be used to accelerate implant fixation in trabecular bone.
Collapse
|
29
|
Takeda S, Sakai S, Shiraishi A, Koike N, Mihara M, Endo K. Combination treatment with eldecalcitol (ED-71) and raloxifene improves bone mechanical strength by suppressing bone turnover and increasing bone mineral density in ovariectomized rats. Bone 2013; 53:167-73. [PMID: 23232307 DOI: 10.1016/j.bone.2012.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 11/22/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
The aim of this study was to investigate the effect of combination treatment with eldecalcitol (ELD) and raloxifene (RAL) on bone turnover, bone mineral density (BMD), and bone strength. Eight-month-old rats were ovariectomized (OVX) or sham operated, and divided into five groups (Sham, OVX+vehicle, OVX+RAL, OVX+ELD and OVX+ELD+RAL). ELD (7.5 ng/kg) and RAL (0.3mg/kg) were orally administered alone or in combination daily. Urinary deoxypyridinoline (DPD) levels were measured after 4, 8, and 12 weeks of treatment. After 12 weeks of treatment, BMD and mechanical properties of the lumbar spine and femur were assessed, and bone histomorphometry was performed. Urinary DPD levels in all the treatment groups were significantly decreased compared with the OVX+vehicle group. At 4 weeks of treatment, urinary DPD level of the combination group was significantly lower than that of either monotherapy group. The reduction in the BMD of the lumbar spine and femur by OVX was significantly prevented in all the treatment groups, and the BMD in the combination group was significantly higher than that in either monotherapy group. The ultimate load and work to failure of the fifth lumbar vertebra were significantly improved only by the combination treatment. The femoral midshaft ultimate load was significantly increased in the OVX+ELD group and the combination group, and the femoral midshaft work to failure was increased only in the combination group. Bone histomorphometric analysis using the third lumbar vertebra revealed that osteoblast surface (Ob.S/BS), osteoclast surface (Oc.S/BS) and osteoclast number (N.Oc/BS) significantly decreased in all treatment groups, and osteoid surface (OS/BS) and bone formation rate (BFR/BS) significantly decreased in the ELD-treated and combination groups. The values of Ob.S/BS and OS/BS in the combination group were lower than those in either of the monotherapy groups. The bone formation parameters in the combination group were not reduced to below levels of the sham-operated control, suggesting that the combination therapy with ELD and RAL may not cause oversuppression of bone turnover. These results indicated that the combination treatment with ELD and RAL might be a beneficial therapy with respect to their combined effects of enhancing the mechanical properties of trabecular and cortical bone by suppressing bone turnover and increasing BMD more than either monotherapy.
Collapse
Affiliation(s)
- Satoshi Takeda
- Product Research Department, Chugai Pharmaceutical Co., Ltd., Japan
| | | | | | | | | | | |
Collapse
|
30
|
Yoh K, Hamaya E, Urushihara H, Iikuni N, Yamamoto T, Taketsuna M, Miyauchi A, Sowa H, Tanaka K. Quality of life in raloxifene-treated Japanese women with postmenopausal osteoporosis: a prospective, postmarketing observational study. Curr Med Res Opin 2012; 28:1757-66. [PMID: 23035693 DOI: 10.1185/03007995.2012.736860] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To assess changes in quality of life (QOL) and pain in raloxifene-treated Japanese women with postmenopausal osteoporosis. RESEARCH DESIGN AND METHODS This prospective, postmarketing observational study was conducted at 60 Japanese hospitals from September 2007 to February 2009 and included Japanese women with postmenopausal osteoporosis who were new to standard treatment with raloxifene (60 mg/day). Primary outcome measures (QOL and pain) were assessed using the Short Form-8 (SF-8), European Quality of Life Instrument (EQ-5D), osteoporosis-specific Japanese Osteoporosis Quality of Life Questionnaire (JOQOL), a visual analogue scale (VAS-pain), and a pain frequency survey. Assessments were performed at baseline and 8 (except JOQOL) and 24 weeks after first administration of raloxifene. Adverse drug reactions were recorded. Japan Pharmaceutical Information Center registration number: JapicCTI-070465. RESULTS A total of 506 participants, mean (±standard deviation [SD]) age = 70.7 ± 8.7 years, completed ≥1 follow-up assessment and were included in the analyses. All QOL scores increased from baseline during follow-up. All SF-8 domain scores increased significantly from baseline after 8 and 24 weeks (P < 0.001). Mean (±SD) EQ-5D scores increased significantly from baseline (0.70 ± 0.17) by 0.05 ± 0.15 after 8 weeks and 0.07 ± 0.17 after 24 weeks (P < 0.001). The mean (±SD) total JOQOL score increased significantly from baseline (66.8 ± 16.5) by 3.8 ± 11.3 after 24 weeks (P < 0.001). The percentage of participants with a ≥20 mm reduction in VAS-pain was 32.6% (120/368) and 39.5% (115/291) after 8 and 24 weeks, respectively. The frequency of pain reported by participants decreased after 8 and 24 weeks. Forty adverse drug reactions were reported by 34 participants. LIMITATIONS Limitations include the lack of a control group, the possibility of the changes being due to the natural disease course, and potential selection bias. CONCLUSIONS Our findings suggest that standard treatment with raloxifene improves QOL and relieves pain in Japanese women with postmenopausal osteoporosis in a real-world clinical setting.
Collapse
Affiliation(s)
- Kousei Yoh
- Department of Orthopedic Surgery, Sasayama Hospital, Hyogo College of Medicine, Sasayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Luvizuto ER, Dias SSMD, Okamoto T, Dornelles RCM, Okamoto R. Raloxifene therapy inhibits osteoclastogenesis during the alveolar healing process in rats. Arch Oral Biol 2011; 56:984-90. [PMID: 21536255 DOI: 10.1016/j.archoralbio.2011.03.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 02/12/2011] [Accepted: 03/24/2011] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To investigate the expression of OPG, RANKL and TRAP during alveolar healing process (7, 14, 21, 28 and 42 postoperative days) in ovariectomized rats treated with raloxifene or with oestrogen replacement therapy, using immunohistochemistry reaction approach. MATERIALS AND METHODS Wistar female rats (10 weeks age) were submitted to ovariectomy surgery (OVX) or sham surgery. The female rats were divided in four groups: (1) sham; (2) OVX/O (ovariectomy and oil); (3) OVX/E2 (ovariectomy and oestrogen replacement); (4) OVX/RLX (ovariectomy and raloxifene therapy). RESULTS It was observed high amount of OPG immunolabelling with predominance at 14 and 21 postoperative days on sham and OVX/RLX groups, respectively. At 7 postoperative days, there was no difference between the groups for TRAP protein. Otherwise, to the other periods, it was observed greater expression of TRAP and RANKL protein on OVX/O group compared to sham, OVX/E2 and OVX/RLX groups. It was also observed a discrete TRAP immunolabelling at 28 and 42 postoperative days on OVX/RLX group. CONCLUSIONS Oestrogen deficiency induces osteoclastogenesis in the alveolar healing process. Quantitative changes in the osteoclastic activity could be prevented through the raloxifene therapy.
Collapse
Affiliation(s)
- Eloá R Luvizuto
- Department of Surgery and Integrated Clinic, Araçatuba Dental School, UNESP-Univ Estadual Paulista, Brazil.
| | | | | | | | | |
Collapse
|
32
|
Wang Y, Li LZ, Zhang YL, Zhu YQ, Wu J, Sun WJ. LC, a novel estrone-rhein hybrid compound, concurrently stimulates osteoprotegerin and inhibits receptor activator of NF-κB ligand (RANKL) and interleukin-6 production by human osteoblastic cells. Mol Cell Endocrinol 2011; 337:43-51. [PMID: 21291955 DOI: 10.1016/j.mce.2011.01.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 12/31/2010] [Accepted: 01/25/2011] [Indexed: 01/28/2023]
Abstract
Estrogen analogues are promising drugs for postmenopausal osteoporosis, but because of their possible side effects such as increased risk of cancer, estrogens which exert their estrogenic effects selectively on bone are desired. It has been shown that rhein inhibits osteoclast formation and bone resorption activity and has an antitumor role in several types of cancers. Having found that rhein had high affinity for the bone mineral, we synthesized estrone-rhein hybrid compounds and confirmed that one of these hybrid compounds, LC, exhibited a selective profile in the bone and prevented bone loss but had no effect on endometrium growth in ovariectomized rats. However, the mechanisms underlying its actions on human bone cells have not been well defined. Here we show that LC concurrently stimulates osteoprotegerin (OPG) and inhibits receptor activator of nuclear factor-κB ligand (RANKL) and Interleukin-6 (IL-6) production by human osteoblastic MG-63 cells containing two estrogen receptor (ER) isotypes. Treatment with the ER antagonist ICI 182,780 abrogates the above actions of LC on osteoblast-derived cells. Using small interfering double-stranded RNAs (siRNA) technology, we further demonstrate that the effects of LC on IL-6 production are mediated by both ERα and ERβ but those on OPG and RANKL expression primarily by ERα. Furthermore, we also demonstrate that LC functions at least partially through activation of the classic estrogen response element (ERE) pathway as well as Ras/MEK/ERK and PI3K/Akt signaling. The effect of LC on bone is due to not only its estrogenic activity but also action of its rhein moiety. Also, this compound shows much weaker effect on breast epithelial cell growth than that of estrone. Therefore, using rhein for conjugating compounds is a promising method of effectively targeting estrogens to the bone.
Collapse
Affiliation(s)
- Yue Wang
- Department of Immunology, Medical College of Chinese People's Armed Police Forces, Tianjin, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
33
|
Alendronate and raloxifene affect the osteoprotegerin/RANKL system in human osteoblast primary cultures from patients with osteoporosis and osteoarthritis. Eur J Pharmacol 2011; 650:682-7. [DOI: 10.1016/j.ejphar.2010.10.058] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2010] [Revised: 10/06/2010] [Accepted: 10/16/2010] [Indexed: 01/06/2023]
|
34
|
Messalli EM, Scaffa C. Long-term safety and efficacy of raloxifene in the prevention and treatment of postmenopausal osteoporosis: an update. Int J Womens Health 2010; 1:11-20. [PMID: 21072271 PMCID: PMC2971719 DOI: 10.2147/ijwh.s3894] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The integrity of bone tissue and its remodeling that occurs throughout life requires a coordinated activity of osteoblasts and osteoclasts. The decreased estrogen circulating level during postmenopausal transition, with a prevalence of osteoclastic activity over osteoblastic activity, represents the main cause of bone loss and osteoporosis. Osteoporosis is a chronic disease requiring long-term therapy and it is important to evaluate the efficacy and safety of treatments over several years, as the fear of health risks is a common reason for discontinuing therapy. Raloxifene is a selective estrogen receptor modulator (SERM) leading to estrogen-agonist effects in some tissues and estrogen-antagonist effects in others. Raloxifene is effective to prevent and treat postmenopausal vertebral osteoporosis, with reduction of spine fractures and, in post-hoc analyses, non-spine fractures in high-risk subjects. Moreover, raloxifene reduces the risk of invasive breast cancer and improves the levels of serum lipoprotein but with an increased risk of venous thromboembolism and fatal stroke, without significant change in the incidence of coronary events. For these reasons the overall risk-benefit profile is favorable. Therefore, when considering the use of raloxifene in a postmenopausal woman, we should take into account the osteoporosis-related individual risk and weigh the potential benefits, skeletal and extra-skeletal, against the health risks.
Collapse
Affiliation(s)
- Enrico M Messalli
- Department of Gynaecology, Obstetrics and Reproductive Medicine, Second University of Naples, Largo Madonna delle Grazie 1, Naples, Italy
| | - Cono Scaffa
- Department of Gynaecology, Obstetrics and Reproductive Medicine, Second University of Naples, Largo Madonna delle Grazie 1, Naples, Italy
| |
Collapse
|
35
|
Cardioprotective effects of long-term treatment with raloxifene, a selective estrogen receptor modulator, on myocardial ischemia/reperfusion injury in ovariectomized rats. Menopause 2010; 17:127-34. [PMID: 19745773 DOI: 10.1097/gme.0b013e3181b4c4ac] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The aim of this study was to investigate the beneficial effect of long-term treatment with raloxifene (RAL), a selective estrogen receptor modulator, on myocardial ischemia/reperfusion (MI/R) injury in ovariectomized (Ovx) rats. METHODS Ovariectomy was performed in female Sprague-Dawley rats 8 weeks old. Ovx rats were treated with RAL 1 or 5 mg/kg (gavage, once daily) or 17beta-estradiol (E2; 50 microg/kg SC, three times a week) for 8 weeks. The cardioprotective effect of RAL was evaluated in an open-chest anesthetized rat model of MI/R, which was induced by 40-minute left coronary artery occlusion and 100-minute reperfusion. RESULTS Long-term treatment with RAL 1 mg/kg significantly suppressed the duration of ventricular tachycardia elicited by MI. After MI/R, the levels of plasma creatine kinase-MB fraction and lactate dehydrogenase in Ovx rats were significantly higher than those in the sham group, which were significantly reduced by long-term treatment with RAL 1 mg/kg or E2. Neutrophil myeloperoxidase activity in ischemic myocardium markedly increased in the Ovx group, whereas long-term treatment with RAL 1 or 5 mg/kg or E2 significantly suppressed the elevation of myeloperoxidase activity. After MI/R, the protein expression of phosphorylated inhibitory kappaBalpha and caspase-3 in ischemic myocardium pronouncedly increased in the Ovx group and was attenuated by long-term treatment with RAL 1 mg/kg or E2. CONCLUSIONS Long-term treatment with RAL can reduce the severity of MI-induced arrhythmias and attenuate MI/R-induced damages and apoptosis in Ovx rats. This cardioprotective effect of RAL may be associated with inhibition of neutrophil infiltration and suppression of nuclear factor-kappaB activation.
Collapse
|
36
|
Ulrich-Vinther M. Gene therapy methods in bone and joint disorders. ACTA ORTHOPAEDICA. SUPPLEMENTUM 2010. [DOI: 10.1080/17453690610046512] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
37
|
Yan MZ, Xu Y, Gong YX, Liu JM, Lu SY, Huang L, Wang ZG, Zhao YJ, Pang XF. Raloxifene inhibits bone loss and improves bone strength through an Opg-independent mechanism. Endocrine 2010; 37:55-61. [PMID: 20963556 DOI: 10.1007/s12020-009-9267-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
The osteoblast-derived paracrine factor osteoprotegerin (OPG) is considered to play a key role in inhibition of osteoclast formation and activity. Recently, raloxifene, a nonsteroidal benzothiophene, was found to exert anti-resorptive effects via modulating OPG expression in osteoblasts. To explore whether raloxifene regulates bone metabolism via an OPG-dependant pathway in vivo, we investigated the effects of raloxifene on bone loss in Opg-deficient mice. The results show that bone mineral density and bone strength are increased in mice deficient for Opg after treatment with raloxifene for 30 days. Histomorphometric analysis shows that raloxifene can increase bone trabecular area and decrease the number of osteoclasts in Opg (-/-) mice. Moreover, raloxifene reduces Rankl transcription and serum level of Rankl, which is dramatically increased in Opg knockout mice. These results suggest that raloxifene-induced inhibition of bone resorption may be independent of Opg pathway in mice.
Collapse
Affiliation(s)
- Mei-zhu Yan
- Department of Geriatrics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 200025 Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
PHILLIPS MELODYD, FLYNN MICHAELG, MCFARLIN BRIANK, STEWART LAURAK, TIMMERMAN KYLEL. Resistance Training at Eight-Repetition Maximum Reduces the Inflammatory Milieu in Elderly Women. Med Sci Sports Exerc 2010; 42:314-25. [DOI: 10.1249/mss.0b013e3181b11ab7] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
39
|
Anastasilakis AD, Toulis KA, Polyzos SA, Terpos E. RANKL inhibition for the management of patients with benign metabolic bone disorders. Expert Opin Investig Drugs 2010; 18:1085-102. [PMID: 19558335 DOI: 10.1517/13543780903048929] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The receptor activator of NF-kappaB ligand (RANKL) is a member of the TNF receptor superfamily, essential for osteoclastogenesis. It binds to its receptor activator of NF-kappaB on the surface of osteoclast precursors and enhances their differentiation, survival and fusion, while it activates mature osteoclasts and inhibits their apoptosis. The effects of RANKL are counteracted by osteoprotegerin (OPG), a neutralizing decoy receptor. Derangement of the balance in RANKL/OPG action is implicated in the pathophysiology of metabolic bone diseases, including osteoporosis. Current therapies used to prevent or treat metabolic bone diseases are thought to act, at least in part, through modification of the RANKL/OPG dipole. The idea of using a molecule that could specifically bind and neutralize RANKL to decrease bone resorption and subsequent bone loss is appealing. Recombinant OPG was initially tested. Denosumab, a fully human monoclonal antibody against RANKL, is a promising antiresorptive agent under investigation. It rapidly decreases bone turnover markers resulting in a significant increase in bone mineral density and reduction in fracture risk. However, because receptor activator of NF-kappaB activation by RANKL is also essential for T-cell growth and dendritic-cell function, inhibition of its action could simultaneously affect the immune system, leading to susceptibility in infections or malignancies.
Collapse
|
40
|
Li CJ, Chang JK, Chou CH, Wang GJ, Ho ML. The PI3K/Akt/FOXO3a/p27Kip1 signaling contributes to anti-inflammatory drug-suppressed proliferation of human osteoblasts. Biochem Pharmacol 2009; 79:926-37. [PMID: 19883628 DOI: 10.1016/j.bcp.2009.10.019] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 10/21/2009] [Accepted: 10/21/2009] [Indexed: 12/17/2022]
Abstract
Akt has been reported to suppress p27(Kip1) promoter activity through Forkhead box O (FOXO) in different kinds of cells. Previous studies indicated that anti-inflammatory drugs up-regulated p27(Kip1), and this effect might play an important role in anti-inflammatory drug-induced cell cycle arrest of human osteoblasts (hOBs). In this study, we hypothesized that these drugs might increase p27(Kip1) expression in hOBs by altering the Akt/FOXO signaling. We tested this hypothesis by examining the influences of three anti-inflammatory drugs on the levels and/or activities of Akt, FOXO and p27(Kip1) as well as the relationship between these factors and proliferation of hOBs. We tested the effects of indomethacin (10(-5) and 10(-4)M), celecoxib (10(-6) and 10(-5)M), and dexamethasone (10(-7) and 10(-6)M) using PI3K inhibitor, LY294002 (10(-5)M) as the basis of comparison. The three drugs suppressed the canonical level of phosphorylated Akt in hOBs. This was accompanied by elevated FOXO3a level and increased promoter activity, mRNA expression and protein level of p27(Kip1). Furthermore, the anti-inflammatory drugs suppressed the EGF-induced increases in proliferation, phosphorylation, and nucleus translocation of Akt. Simultaneously, they suppressed EGF-induced decreases of FOXO3a nucleus accumulation and p27(Kip1) mRNA expression. On the other hand, FOXO silencing significantly attenuated the drug-induced up-regulation of p27(Kip1) and suppression of proliferation in hOBs. To the best of our knowledge, this study represents the first to demonstrate that Akt/FOXO3a/p27(Kip1) pathway contributes to suppression of hOB proliferation by anti-inflammatory drugs. We suggest that anti-inflammatory drugs suppress hOB proliferation, at least partly, through inactivating Akt, activating FOXO3a, and eventually up-regulating p27(Kip1) expression.
Collapse
Affiliation(s)
- Ching-Ju Li
- Department of Physiology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | |
Collapse
|
41
|
Rachner TD, Benad P, Rauner M, Goettsch C, Singh SK, Schoppet M, Hofbauer LC. Osteoprotegerin production by breast cancer cells is suppressed by dexamethasone and confers resistance against TRAIL-induced apoptosis. J Cell Biochem 2009; 108:106-16. [DOI: 10.1002/jcb.22232] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Takahata M, Ito M, Abe Y, Abumi K, Minami A. The effect of anti-resorptive therapies on bone graft healing in an ovariectomized rat spinal arthrodesis model. Bone 2008; 43:1057-66. [PMID: 18835375 DOI: 10.1016/j.bone.2008.08.124] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 05/18/2008] [Accepted: 08/15/2008] [Indexed: 10/21/2022]
Abstract
Bone grafting is commonly used to treat skeletal disorders associated with a large bone defect or unstable joint. Spinal arthrodesis surgery, which is the most common application of bone graft, is performed in the elderly and anti-resorptive therapy is sometimes started postoperatively in patients with bone fragility due to osteoporosis, despite insufficient knowledge about the effects of these drugs on bone graft healing. Therefore, we studied the effect of bisphosphonates (BP) and selective estrogen receptor modulators (SERM) on bone graft healing in an ovariectomized rat spinal arthrodesis model. Female Sprague-Dawley rats (n=100) were ovariectomized or sham-operated, and randomized into four groups: Sham (sham-operated+vehicle), Ovx (ovariectomy+vehicle), Ovx-Rlx (ovariectomy+raloxifene, 1 mg/kg/day), and Ovx-Aln (ovariectomy+alendronate, 0.01 mg/kg/day). Four weeks after ovariectomy, lumbar spinal arthrodesis surgery was performed using an autologous bone graft. Animals were killed 2, 4, and 8 weeks after surgery, and fusion assessment, three-dimensional micro-computed tomography, histomorphometry, mRNA expression analysis, and serum bone metabolic marker analysis were performed. The results indicated that neither BP nor SERM significantly altered the fusion rate, but the bone graft healing process was differentially affected. BP inhibited endochondral ossification and graft bone resorption, but induced the growth of a larger, denser fusion mass compared to Ovx by strongly suppressing osteoclastic activity. SERM mildly suppressed bone remodeling, but did not significantly inhibit the ossification process, leading to a fusion mass comparable with that of Sham animals. These findings suggested that spinal fusion surgery outcome is not likely to be altered by BP or SERM treatment started immediately after spinal arthrodesis surgery; however, to avoid adverse effects of BP on bone graft healing, BP treatment should be delayed during the immediate postoperative period.
Collapse
Affiliation(s)
- Masahiko Takahata
- Department of Orthopaedic Surgery, Hokkaido University Graduate School of Medicine, Kita-15 Nishi-7, Kita-ku, Sapporo, 060-8638, Japan.
| | | | | | | | | |
Collapse
|
43
|
Pathophysiological roles of osteoprotegerin (OPG). Eur J Cell Biol 2008; 88:1-17. [PMID: 18707795 DOI: 10.1016/j.ejcb.2008.06.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 06/25/2008] [Accepted: 06/26/2008] [Indexed: 12/11/2022] Open
Abstract
Osteoprotegerin (OPG) is a secreted glycoprotein central to bone turnover via its role as a decoy receptor for the receptor activator of nuclear factor kappaB ligand (RANKL) and has traditionally been linked to a number of bone-related diseases. However, there is additional evidence that OPG can promote cell survival by inhibiting TNF-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. As a result, a number of in vitro, in vivo and clinical studies have been performed assessing the role of OPG in tumourigenesis. Similar studies have been performed regarding vascular pathologies, resulting from observations of expression and regulation of OPG in the vasculature. This review aims to provide an update on this area and assess the potential protective or detrimental role of OPG in both vascular pathologies and tumourigenesis.
Collapse
|
44
|
Kallio A, Guo T, Lamminen E, Seppänen J, Kangas L, Väänänen HK, Härkönen P. Estrogen and the selective estrogen receptor modulator (SERM) protection against cell death in estrogen receptor alpha and beta expressing U2OS cells. Mol Cell Endocrinol 2008; 289:38-48. [PMID: 18455292 DOI: 10.1016/j.mce.2008.03.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2007] [Revised: 03/12/2008] [Accepted: 03/12/2008] [Indexed: 01/16/2023]
Abstract
In the current work, we compared the ability of 17beta-estradiol (E2) and the selective estrogen receptor modulators (SERMs), tamoxifen (Tam), raloxifene (Ral) and ospemifene (Osp) to promote the survival of osteoblast-derived cells against etoposide-induced apoptosis. In order to compare the roles of the two estrogen receptor (ER) isotypes, we created a U2OS human osteosarcoma cell line stably expressing either ERalpha (ERalpha) or ERbeta (ERbeta). Transfection with either of the ERs was able to render the U2OS cells sensitive to E2. We show that E2 opposed etoposide-induced apoptosis and that the effect was mediated via both ER isotypes. The ER isotype selective agonists propyl-pyrazole-triol (PPT) and diarylpropionitrile (DPN) had the same effect in U2OS/ERalpha and U2OS/ERbeta cells, respectively. Osp also opposed apoptosis at least in U2OS/ERalpha cells. Tam and Ral were not able to protect against etoposide-induced cell death. In order to evaluate the protective effects of E2 and Osp upon etoposide challenge, we studied the expression of two E2-regulated, osteoblast-produced cytokines, IL-6 and OPG in E2 and SERM-treated U2OS/ERalpha and U2OS/ERbeta cells. Etoposide strongly increased expression of IL-6 and decreased that of OPG. E2 opposed IL-6 increase only in U2OS/ERalpha cells and OPG decrease primarily in ERbeta cells. Osp opposed the effect of etoposide on OPG primarily in U2OS/ERbeta cells but interestingly, it had little effect on IL-6 expression. E2, PPT, DNP and Osp also inhibited etoposide-induced death and cytokine changes in SAOS-2 osteosarcoma cells expressing endogenous ERalpha and ERbeta. Collectively, our results suggest that the osteoblast protective anti-apoptotic effects of E2 are mediated by both ERalpha and ERbeta but those of Osp primarily by ERalpha. In addition, E2 and Osp opposed the etoposide-induced increase of IL-6 and decrease of OPG which changes would increase osteoclastic activity. These anti-resorptive effects of E2 and Osp upon etoposide challenge differed from each other and they seemed to be differentially mediated in ERalpha and ERbeta expressing osteoblast-derived U2OS cells.
Collapse
Affiliation(s)
- Anu Kallio
- Institute of Biomedicine, Department of Anatomy, University of Turku, Tykistökatu 6 B, 20520 Turku, Finland
| | | | | | | | | | | | | |
Collapse
|
45
|
Fernández-García D, Muñoz-Torres M, Mezquita-Raya P, de la Higuera M, Alonso G, Reyes-García R, Ochoa AS, Ruiz-Requena ME, Luna JD, Escobar-Jiménez F. Effects of raloxifene therapy on circulating osteoprotegerin and RANK ligand levels in post-menopausal osteoporosis. J Endocrinol Invest 2008; 31:416-21. [PMID: 18560259 DOI: 10.1007/bf03346385] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous in vitro studies suggest that the anti-resorptive effect of raloxifene might be mediated by changes in several cytokines involved in the bone remodeling process. In this context, the osteoprotegerin (OPG)- receptor activator of NF kappa B ligand (RANKL) system is considered a key component in the osteoclastogenesis regulation. The aim of this study was to determine the effects of raloxifene treatment on serum concentrations of OPG, receptor RANKL and its relationship with biochemical markers of bone turnover and bone mineral density (BMD) in previously untreated women with post-menopausal osteoporosis. We selected 47 post-menopausal women (mean age 63+/-7 yr) with densitometric criteria of osteoporosis. We determined at baseline, 3, 6, and 12 months anthropometric parameters, biochemical markers of bone turnover, serum levels of 25(OH) D, serum levels of OPG and RANKL. BMD (dual-energy x-ray absorptiometry) in lumbar spine (LS) femoral neck and total hip was measured at baseline and 12 months after raloxifene (60 mg/day) treatment. Serum levels of OPG decreased in the 3rd and 6th month of treatment (p<0.001) and returned to basal levels in the 12th month. There was a significant decrease of RANKL levels and OPG/RANKL ratio after 1 yr of raloxifene treatment. In addition, BMD in LS increased significantly (2.5%) in the 12th month of treatment (p=0.031). Finally, the biochemical markers of bone turnover (total alkaline phosphatase, bone alkaline phosphatase, osteocalcin, tartrate-resistant acid phosphatase, urine cross-linked carboxi-terminal telopeptide of type I collagen) decreased significantly from the 3rd month of treatment. In conclusion, our results support the hypothesis that raloxifene may inhibit osteoclast activity, at least partly modulating the OPG-RANKL system.
Collapse
Affiliation(s)
- D Fernández-García
- Bone Metabolic Unit, Endocrinology Division, University Hospital San Cecilio Granada, RETICEF, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Delmas PD. Clinical potential of RANKL inhibition for the management of postmenopausal osteoporosis and other metabolic bone diseases. J Clin Densitom 2008; 11:325-38. [PMID: 18375161 DOI: 10.1016/j.jocd.2008.02.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Revised: 02/01/2008] [Accepted: 02/04/2008] [Indexed: 12/13/2022]
Abstract
Osteoporosis affects millions of people worldwide, causing decreases in bone strength and a marked increase in fracture risk. Current therapies increase bone mineral density and reduce the risk of fractures, but dosing requirements are often considered inconvenient, and patient compliance with therapy is poor. This review will discuss recent discoveries in bone biology, which have demonstrated that the interaction of osteoprotegerin (OPG), receptor activator of nuclear factor--kappa B (RANK), and RANK ligand (RANKL) is critical for the regulation of bone remodeling. Collectively, these preclinical studies have shown that endogenous RANKL inhibition by OPG underlies the normal mechanism for maintaining the correct balance between bone resorption and bone formation. Multiple clinical trials are in progress to investigate the therapeutic potential of RANKL inhibition by denosumab, a fully human monoclonal anti-RANKL antibody, in the treatment of postmenopausal osteoporosis and other bone loss diseases. The results of these human trials will also be discussed.
Collapse
Affiliation(s)
- Pierre D Delmas
- Université de Lyon and INSERM Research Unit 831, Lyon, France.
| |
Collapse
|
47
|
Kearns AE, Khosla S, Kostenuik PJ. Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 2008; 29:155-92. [PMID: 18057140 PMCID: PMC2528846 DOI: 10.1210/er.2007-0014] [Citation(s) in RCA: 567] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 11/15/2007] [Indexed: 12/13/2022]
Abstract
Osteoclasts and osteoblasts dictate skeletal mass, structure, and strength via their respective roles in resorbing and forming bone. Bone remodeling is a spatially coordinated lifelong process whereby old bone is removed by osteoclasts and replaced by bone-forming osteoblasts. The refilling of resorption cavities is incomplete in many pathological states, which leads to a net loss of bone mass with each remodeling cycle. Postmenopausal osteoporosis and other conditions are associated with an increased rate of bone remodeling, which leads to accelerated bone loss and increased risk of fracture. Bone resorption is dependent on a cytokine known as RANKL (receptor activator of nuclear factor kappaB ligand), a TNF family member that is essential for osteoclast formation, activity, and survival in normal and pathological states of bone remodeling. The catabolic effects of RANKL are prevented by osteoprotegerin (OPG), a TNF receptor family member that binds RANKL and thereby prevents activation of its single cognate receptor called RANK. Osteoclast activity is likely to depend, at least in part, on the relative balance of RANKL and OPG. Studies in numerous animal models of bone disease show that RANKL inhibition leads to marked suppression of bone resorption and increases in cortical and cancellous bone volume, density, and strength. RANKL inhibitors also prevent focal bone loss that occurs in animal models of rheumatoid arthritis and bone metastasis. Clinical trials are exploring the effects of denosumab, a fully human anti-RANKL antibody, on bone loss in patients with osteoporosis, bone metastasis, myeloma, and rheumatoid arthritis.
Collapse
Affiliation(s)
- Ann E Kearns
- Endocrine Research Unit, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | | |
Collapse
|
48
|
Rachner TD, Schoppet M, Niebergall U, Hofbauer LC. 17β-Estradiol inhibits osteoprotegerin production by the estrogen receptor-α-positive human breast cancer cell line MCF-7. Biochem Biophys Res Commun 2008; 368:736-41. [DOI: 10.1016/j.bbrc.2008.01.118] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2008] [Accepted: 01/26/2008] [Indexed: 01/18/2023]
|
49
|
Jochems C, Islander U, Kallkopf A, Lagerquist M, Ohlsson C, Carlsten H. Role of raloxifene as a potent inhibitor of experimental postmenopausal polyarthritis and osteoporosis. ACTA ACUST UNITED AC 2007; 56:3261-70. [PMID: 17907171 DOI: 10.1002/art.22873] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE In postmenopausal rheumatoid arthritis (RA), both estrogen deficiency and the inflammatory disease contribute to the development of generalized osteoporosis. Hormone replacement therapy (HRT) with estradiol preserves bone mineral density (BMD) and ameliorates arthritis, but long-term therapy is no longer an option due to significant side effects. We therefore used a mouse model of human RA to test the hypothesis that a selective estrogen receptor modulator (SERM), the raloxifene analog LY117018, could be beneficial in the treatment of both arthritis and osteoporosis. METHODS Female DBA/1 mice were ovariectomized and arthritis was induced with collagen immunization. Mice received an injection of raloxifene, estradiol, or vehicle control, administered prophylactically or therapeutically, and thereafter the clinical arthritis score was evaluated continuously. At termination, BMD was analyzed with peripheral quantitative computed tomography. Paws were collected for histology, and sera were analyzed for cytokines and markers of bone and cartilage turnover. Levels of cytokine messenger RNA (mRNA) were investigated with real-time polymerase chain reaction. RESULTS Treatment with raloxifene dramatically decreased the frequency and severity of arthritis. Effective preservation of bone and cartilage was seen in raloxifene-exposed mice, as demonstrated by increased BMD and decreased serum levels of cartilage oligomeric matrix protein in the raloxifene-treated mice compared with controls. Decreased levels of mRNA for both tumor necrosis factor alpha and RANKL in spleen cells from raloxifene-treated arthritic mice indicated an immunosuppressive action of this SERM. CONCLUSION In a well-established model of postmenopausal RA, the raloxifene analog LY117018 potently inhibits the progression of arthritis and the associated development of osteoporosis, both in a prophylactic and in a therapeutic regimen. Since long-term HRT has been associated with significant side effects, raloxifene may be a useful adjuvant treatment for postmenopausal RA.
Collapse
|
50
|
Viereck V, Siggelkow H, Pannem R, Braulke T, Scharf JG, Kübler B. Alteration of the insulin-like growth factor axis during in vitro differentiation of the human osteosarcoma cell line HOS 58. J Cell Biochem 2007; 102:28-40. [PMID: 17372931 DOI: 10.1002/jcb.21274] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The insulin-like growth factors I and II (IGF-I, IGF-II), their receptors, and high affinity binding proteins (IGFBPs) represent a family of cellular modulators that play essential roles in the development and differentiation of cells and tissues including the skeleton. Recently, the human osteosarcoma cell line HOS 58 cells were used as an in vitro model of osteoblast differentiation characterized by (i) a rapid proliferation rate in low-density cells that decreased continuously with time of culture and (ii) an increasing secretion of matrix proteins during their in vitro differentiation. In the present paper, HOS 58 cells with low cell density at early time points of the in vitro differentiation (i) displayed a low expression of IGF-I and -II; (ii) synthesized low levels of IGFBP-2, -3, -4, and -5, but (iii) showed high expression levels of both the type I and II IGF receptors. During the in vitro differentiation of HOS 58 cells, IGF-I and -II expressions increased continuously in parallel with an upregulation of IGFBP-2, -3, -4, and -5 whereas the IGF-I receptor and IGF-II/M6P receptor mRNA were downregulated. In conclusion, the high proliferative activity in low cell density HOS 58 cells was associated with high mRNA levels of the IGF-IR, but low concentrations of IGFBP-2. The rate of proliferation of HOS 58 cells continuously decreased during cultivation in parallel with a decline in IGF-IR expression, but increase of mitoinhibitory IGFBP-2. These data are indicative for a role of the IGF axis during the in vitro differentiation of HOS 58 cells.
Collapse
Affiliation(s)
- Volker Viereck
- Department of Obstetrics and Gynecology, Georg-August-Universität, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|