1
|
Pant A, Moar K, Arora TK, Dakal TC, Ranga V, Sharma NK, Maurya PK. Deciphering the role of circulating miRNAs in the etiology and pathophysiology of endometriosis: An updated compiled review. Exp Cell Res 2025; 446:114482. [PMID: 40015501 DOI: 10.1016/j.yexcr.2025.114482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/28/2025] [Accepted: 02/23/2025] [Indexed: 03/01/2025]
Abstract
Endometriosis is characterized by the presence of endometrial tissue outside of the uterus. It is a benign chronic condition with incapacitating symptoms like infertility and pelvic pain. Endometriosis has a detrimental impact on the reproductive health of women, placing a heavy financial strain on the medical system. It is a multifactorial disorder governed by numerous mechanisms or risk factors that contribute to the pathologies of the disease. With limitations in diagnostics techniques, it is challenging to detect the disease at an initial stage. In around 1 % of endometriotic patients malignant state may reach, leading to severe consequences. To overcome such challenges, at present, numerous circulating miRNAs have been studied in plasma or serum samples from patients with endometriosis to develop a non-invasive diagnostic biomarker-based tool to identify the disease early. Our review compiles the miRNAs in bodily fluids that are linked with endometriosis-related mechanisms, which may serve as a potential biomarker. Some of these mechanisms are common in both cancer and endometriosis. Additionally, we have also emphasised the miRNAs with a putative role in cancer development and progression that could be used as a biomarker. This may further aid in protecting the 1 % of affected females from ovarian, breast, and in some cases endometrial cancer. We have come across several miRNAs associated with multiple mechanisms associated with endometriosis. miR-199a and miRNAs-let-7 family are some of the most common miRNAs that assist in multiple mechanisms such as cell proliferation, invasion, apoptosis, and epithelial-mesenchymal transition. Strategic planning and additional investigation into the identified miRNAs would make them a viable therapeutic target for the optimal management of endometriosis.
Collapse
Affiliation(s)
- Anuja Pant
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India, 123031
| | - Kareena Moar
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India, 123031
| | - Taruna K Arora
- Reproductive Biology and Maternal Child Health Division, Indian Council of Medical Research, New Delhi, 110029, India
| | - Tikam Chand Dakal
- Genome and Computational Biology Lab, Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, 313001, Rajasthan, India
| | - Vipin Ranga
- DBT-NECAB, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Narendra Kumar Sharma
- Department of Bioscience and Biotechnology, Banasthali Vidyapith, Tonk, 304022, Rajasthan, India
| | - Pawan Kumar Maurya
- Department of Biochemistry, Central University of Haryana, Mahendergarh, India, 123031.
| |
Collapse
|
2
|
Banerjee S, Xu W, Doctor A, Driss A, Nezhat C, Sidell N, Taylor RN, Thompson WE, Chowdhury I. TNFα-Induced Altered miRNA Expression Links to NF-κB Signaling Pathway in Endometriosis. Inflammation 2023; 46:2055-2070. [PMID: 37389684 PMCID: PMC10673760 DOI: 10.1007/s10753-023-01862-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/21/2023] [Indexed: 07/01/2023]
Abstract
Endometriosis is a common gynecological inflammatory disorder characterized by immune system dysregulation, which is involved in lesion initiation and progression. Studies have demonstrated that several cytokines are associated with the evolution of endometriosis, including tumor necrosis factor-α (TNFα). TNFα is a non-glycosylated cytokine protein with potent inflammatory, cytotoxic, and angiogenic potential. In the current study, we examined the ability of TNFα to induce dysregulation of microRNAs (miRNAs) linked to NFkB signaling pathways, thus contributing to the pathogenesis of endometriosis. Using RT-qPCR, the expression of several miRNAs was quantified in primary cells derived from eutopic endometrium of endometriosis subjects (EESC) and normal endometrial stromal cells (NESC), and also TNFα-treated NESCs. The phosphorylation of the pro-inflammatory molecule NF-κB and the candidates of the survival pathways PI3K, AKT, and ERK was measured by western blot analysis. The elevated secretion of TNFα in EESCs downregulates the expression level of several miRNAs significantly in EESCs compared to NESCs. Also, treatment of NESCs with exogenous TNFα significantly reduced the expression of miRNAs in a dose-dependent manner to levels similar to EESCs. In addition, TNFα significantly increased the phosphorylation of the PI3K, AKT, ERK, and NF-κB signaling pathways. Notably, treatment with curcumin (CUR, diferuloylmethane), an anti-inflammatory polyphenol, significantly increased the expression of dysregulated miRNAs in EESC in a dose-dependent manner. Our findings demonstrate that TNFα is upregulated in EESCs, which subsequently dysregulates the expression of miRNAs, contributing to the pathophysiology of endometriotic cells. CUR effectively inhibits the expression of TNFα, subsequently altering miRNA levels and suppressing the phosphorylation of AKT, ERK, and NF-κB.
Collapse
Affiliation(s)
- Saswati Banerjee
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Wei Xu
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Aaron Doctor
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Adel Driss
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
| | - Ceana Nezhat
- Nezhat Medical Center, 5555 Peachtree Dunwoody Road, Atlanta, GA, 30342, USA
| | - Neil Sidell
- Department of Gynecology & Obstetrics, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Robert N Taylor
- Department of Obstetrics and Gynecology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, 14203, USA
| | - Winston E Thompson
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, 30310, USA
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA
| | - Indrajit Chowdhury
- Department of Obstetrics and Gynecology, Morehouse School of Medicine, 720 Westview Drive Southwest, Atlanta, GA, 30310, USA.
| |
Collapse
|
3
|
Banerjee S, Xu W, Doctor A, Driss A, Nezhat C, Sidell N, Taylor RN, Thompson WE, Chowdhury I. TNFα-induced altered miRNA expression links to NF-κB signaling pathway in endometriosis. RESEARCH SQUARE 2023:rs.3.rs-2870585. [PMID: 37205467 PMCID: PMC10187425 DOI: 10.21203/rs.3.rs-2870585/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Endometriosis is a common gynecological inflammatory disorder characterized by immune system dysregulation, which is involved in lesion initiation and progression. Studies have demonstrated that several cytokines are associated with the evolution of endometriosis, including tumor necrosis factor-α (TNFα). TNFα is a non-glycosylated cytokine protein with potent inflammatory, cytotoxic, and angiogenic potential. In the current study, we examined the ability of TNFα to induce dysregulation of microRNAs (miRNAs) linked to NFkB-signaling pathways, thus contributing to the pathogenesis of endometriosis. Using RT-QPCR, the expression of several miRNAs were quantified in primary cells derived from eutopic endometrium of endometriosis subjects (EESC) and normal endometrial stromal cells (NESC) and also TNFα treated NESCs. The phosphorylation of the pro-inflammatory molecule NF-κB and the candidates of the survival pathways PI3K, AKT and ERK was measured by westernblot analysis. The elevated secretion of TNFα in EESCs downregulates the expression level of several miRNAs significantly (p < 0.05) in EESCs compared to NESC. Also treatment of NESCs with exogenous TNFα significantly reduced the expression of miRNAs in a dose-dependent manner to levels similar to EESCs. In addition, TNFα significantly increased the phosphorylation of the PI3K, AKT, ERK, and NF-κB signaling pathways. Notably, treatment with curcumin (CUR, diferuloylmethane), an anti-inflammatory polyphenol, significantly increased the expression of dysregulated miRNAs in EESC in a dose-dependent manner. Our findings demonstrate that TNFα is upregulated in EESCs, which subsequently dysregulates the expression of miRNAs, contributing to the pathophysiology of endometriotic cells. CUR effectively inhibits the expression of TNFα, subsequently altering miRNA levels and suppresses the phosphorylation of AKT, ERK, and NF-κB.
Collapse
Affiliation(s)
| | - Wei Xu
- Morehouse School of Medicine
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Rossi M, Seidita I, Vannuccini S, Prisinzano M, Donati C, Petraglia F. Epigenetics, endometriosis and sex steroid receptors: An update on the epigenetic regulatory mechanisms of estrogen and progesterone receptors in patients with endometriosis. VITAMINS AND HORMONES 2023; 122:171-191. [PMID: 36863793 DOI: 10.1016/bs.vh.2023.01.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Endometriosis is a benign gynecological disease affecting ∼10% of reproductive-aged women and is defined as the presence of endometrial glands and stroma outside the uterine cavity. Endometriosis can cause a variety of health problems, from pelvic discomfort to catamenial pneumothorax, but it's mainly linked with severe and chronic pelvic pain, dysmenorrhea, and deep dyspareunia, as well as reproductive issues. The pathogenesis of endometriosis involves an endocrine dysfunction, with estrogen dependency and progesterone resistance, and inflammatory mechanism activation, together with impaired cell proliferation and neuroangiogenesis. The present chapter aims to discuss the main epigenetic mechanisms related to estrogen receptors (ERs) and progesterone receptors (PRs) in patients with endometriosis. There are numerous epigenetic mechanisms participating in endometriosis, regulating the expression of the genes encoding these receptors both indirectly, through the regulation of transcription factors, and directly, through DNA methylation, histone modifications, micro RNAs and long noncoding RNAs. This represents an open field of investigation, which may lead to important clinical implications such as the development of epigenetic drugs for the treatment of endometriosis and the identification of specific and early biomarkers for the disease.
Collapse
Affiliation(s)
- Margherita Rossi
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Isabelle Seidita
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Silvia Vannuccini
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Matteo Prisinzano
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Chiara Donati
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy
| | - Felice Petraglia
- Obstetrics and Gynecology, and Molecular Biology, Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Careggi University Hospital, Florence, Italy.
| |
Collapse
|
5
|
Roles of microRNAs in Regulating Apoptosis in the Pathogenesis of Endometriosis. Life (Basel) 2022; 12:life12091321. [PMID: 36143357 PMCID: PMC9500848 DOI: 10.3390/life12091321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/24/2022] Open
Abstract
Endometriosis is a gynecologic disorder characterized by the presence of endometrial tissues outside the uterine cavity affecting reproductive-aged women. Previous studies have shown that microRNAs and their target mRNAs are expressed differently in endometriosis, suggesting that this molecule may play a role in the development and persistence of endometriotic lesions. microRNA (miRNA), a small non-coding RNA fragment, regulates cellular functions such as cell proliferation, differentiation, and apoptosis by the post-transcriptional modulation of gene expression. In this review, we focused on the dysregulated miRNAs in women with endometriosis and their roles in the regulation of apoptosis. The dysregulated miRNAs and their target genes in this pathophysiology were highlighted. Circulating miRNAs as potential biomarkers for the diagnosis of endometriosis have also been identified. As shown by various studies, miRNAs were reported to be a potent regulator of gene expression in endometriosis; thus, identifying the dysregulated miRNAs and their target genes could help discover new therapeutic targets for treating this disease. The goal of this review is to draw attention to the functions that miRNAs play in the pathophysiology of endometriosis, particularly those that govern cell death.
Collapse
|
6
|
Nasu K, Aoyagi Y, Zhu R, Okamoto M, Yano M, Kai K, Kawano Y. Role of repressed microRNAs in endometriosis. Med Mol Morphol 2022; 55:1-7. [PMID: 34463829 DOI: 10.1007/s00795-021-00303-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/19/2021] [Indexed: 02/06/2023]
Abstract
Endometriosis is a common, estrogen-dependent benign tumor that affect 3-10% women of reproductive age, and is characterized by the ectopic growth of endometrial tissue, which is found primarily in the rectovaginal septum, ovaries, and pelvic peritoneum. To date, accumulating evidence suggests that various epigenetic aberrations, including the expression of aberrant microRNAs (miRNAs), play definite roles in the pathogenesis of endometriosis. This review summarizes the recent findings on the aberrantly repressed miRNAs, as well as their potential roles regarding the pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan.
- Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Oita, Japan.
| | - Yoko Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Ruofei Zhu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Mamiko Okamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Mitsutake Yano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Kentaro Kai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Yasushi Kawano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| |
Collapse
|
7
|
Zhu R, Nasu K, Hijiya N, Yoshihashi M, Hirakawa T, Aoyagi Y, Narahara H. hsa-miR-199a-3p Inhibits Motility, Invasiveness, and Contractility of Ovarian Endometriotic Stromal Cells. REPRODUCTIVE SCIENCES (THOUSAND OAKS, CALIF.) 2021; 28:3498-3507. [PMID: 33987822 DOI: 10.1007/s43032-021-00604-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 05/03/2021] [Indexed: 02/06/2023]
Abstract
It is suggested that aberrantly expressed microRNAs are involved in the pathogenesis of endometriosis. Our previous study demonstrated that expression of the microRNA hsa-miR-199a-3p is attenuated in human endometriotic cyst stromal cells (ECSCs). The current study aimed to define the roles of hsa-miR-199a-3p in the development of endometriosis. ECSCs and normal endometrial stromal cells (NESCs) were isolated from ovarian endometrioma and normal endometrial tissues, respectively. We evaluated the effect of transfected hsa-miR-199a-3p on the migration, invasion, and contractility of ECSCs using Transwell migration assays, in vitro wound healing assays, Transwell invasion assays, and collagen gel contraction assays. We also examined the downstream target of hsa-miR-199a-3p with an online public database search and luciferase reporter assay. Expression of hsa-miR-199a-3p in ECSCs was significantly lower than that in NESCs, whereas the expression of p21-activated kinase 4 (PAK4) mRNA was significantly higher. Transfection of hsa-miR-199a-3p inhibited the migration, invasion, and contractility of ECSCs via inhibition of PAK4 mRNA expression. PAK4 was confirmed to be the direct target of hsa-miR-199a-3p. Transfection of PAK4 small interfering RNA and the PAK4 inhibitor PF-3758309 also inhibited ECSC migration, invasion, and contractility. These findings suggest that hsa-miR-199a-3p may act as a tumor suppressor in endometriosis development. Attenuation of hsa-miR-199a-3p expression was favorable for ECSCs to acquire the highly invasive, motile, and contractile characteristics of endometriotic cells and is involved in the development of endometriosis. Accordingly, PAK4 inhibitors may be promising for the treatment of endometriosis.
Collapse
Affiliation(s)
- Ruofei Zhu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Kaei Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan.
- Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Oita, Yufu-shi, Japan.
| | - Naoki Hijiya
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Oita, Yufu-shi, Japan
| | - Masato Yoshihashi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Tomoko Hirakawa
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Yoko Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| | - Hisashi Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Idaigaoka 1-1, Hasama-machi, Yufu-shi, Oita, 879-5593, Japan
| |
Collapse
|
8
|
Raja MHR, Farooqui N, Zuberi N, Ashraf M, Azhar A, Baig R, Badar B, Rehman R. Endometriosis, infertility and MicroRNA's: A review. J Gynecol Obstet Hum Reprod 2021; 50:102157. [PMID: 33957270 DOI: 10.1016/j.jogoh.2021.102157] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 04/27/2021] [Indexed: 12/15/2022]
Abstract
The review aims to explore circulating small non- coding regulatory Ribonucleic Acids (miRNA) as biomarkers of endometriosis; a reproductive age group disorder. miRNA are linked with genetic, epigenetic and angiogenic factors, hormones, cytokines, chemokines, oxidative stress (OS) markers, mediators of inflammation, hypoxia, angiogenesis and altered immune system contributing to the pathogenesis of endometriosis. Hormonal imbalance occurs by decreased levels of miRNAs -23a and miRNAs -23b and increase in miRNAs -:135a, 135b, 29c and 194-3p. Angiogenesis by vascular endothelial growth factor is attributed to increased miRNAs -126, miRNAs -210, miRNAs -21, miRNAs -199a-5p and miRNAs 20A. OS upregulates miRNAs -302a by increased levels of Tumor Necrosis factor (TNF)-α, TNF- β and Interleukin -1β. Upregulation of miRNAs -199a and miRNAs -16 promotes inflammation and cell proliferation in the endometriotic lesions. The gold standard to diagnose endometriosis is laparoscopy, yet miRNA can be validated as diagnostic tool for detection, progression and prevention of endometriosis in large, independent cohorts of women, with and without endometriosis.
Collapse
Affiliation(s)
| | - Nida Farooqui
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Nadeem Zuberi
- Obstetrics and Gynecology, Aga Khan University, Karachi, Pakistan.
| | - Mussarat Ashraf
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Arfa Azhar
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Rozeena Baig
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Bisma Badar
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Rehana Rehman
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| |
Collapse
|
9
|
Rossini E, Tamburello M, Abate A, Beretta S, Fragni M, Cominelli M, Cosentini D, Hantel C, Bono F, Grisanti S, Poliani PL, Tiberio GAM, Memo M, Sigala S, Berruti A. Cytotoxic Effect of Progesterone, Tamoxifen and Their Combination in Experimental Cell Models of Human Adrenocortical Cancer. Front Endocrinol (Lausanne) 2021; 12:669426. [PMID: 33981288 PMCID: PMC8108132 DOI: 10.3389/fendo.2021.669426] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Progesterone (Pg) and estrogen (E) receptors (PgRs and ERs) are expressed in normal and neoplastic adrenal cortex, but their role is not fully understood. In literature, Pg demonstrated cytotoxic activity on AdrenoCortical Carcinoma (ACC) cells, while tamoxifen is cytotoxic in NCI-H295R cells. Here, we demonstrated that in ACC cell models, ERs were expressed in NCI-H295R cells with a prevalence of ER-β over the ER-α.Metastasis-derived MUC-1 and ACC115m cells displayed a very weak ER-α/β signal, while PgR cells were expressed, although at low level. Accordingly, these latter were resistant to the SERM tamoxifen and scarcely sensitive to Pg, as we observed a lower potency compared to NCI-H295R cells in cytotoxicity (IC50: MUC-1 cells: 67.58 µM (95%CI: 63.22-73.04), ACC115m cells: 51.76 µM (95%CI: 46.45-57.67) and cell proliferation rate. Exposure of NCI-H295R cells to tamoxifen induced cytotoxicity (IC50: 5.43 µM (95%CI: 5.18-5.69 µM) mainly involving ER-β, as their nuclear localization increased after tamoxifen: Δ A.U. treated vs untreated: 12 h: +27.04% (p < 0.01); 24 h: +36.46% (p < 0.0001). This effect involved the SF-1 protein reduction: Pg: -36.34 ± 9.26%; tamoxifen: -46.25 ± 15.68% (p < 0.01). Finally, in a cohort of 36 ACC samples, immunohistochemistry showed undetectable/low level of ERs, while PgR demonstrated a higher expression. In conclusion, ACC experimental cell models expressed PgR and low levels of ER in line with data obtained in patient tissues, thus limiting the possibility of a clinical approach targeting ER. Interestingly, Pg exerted cytotoxicity also in metastatic ACC cells, although with low potency.
Collapse
Affiliation(s)
- Elisa Rossini
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Mariangela Tamburello
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Andrea Abate
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Silvia Beretta
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Martina Fragni
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Manuela Cominelli
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Deborah Cosentini
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, Dresden, Germany
| | - Federica Bono
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Salvatore Grisanti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Guido A. M. Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Maurizio Memo
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Sandra Sigala
- Department of Molecular and Translational Medicine, Section of Pharmacology, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| | - Alfredo Berruti
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
10
|
Song Y, Joshi NR, Vegter E, Hrbek S, Lessey BA, Fazleabas AT. Establishment of an Immortalized Endometriotic Stromal Cell Line from Human Ovarian Endometrioma. Reprod Sci 2020; 27:2082-2091. [PMID: 32542539 PMCID: PMC7529860 DOI: 10.1007/s43032-020-00228-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/28/2020] [Indexed: 12/18/2022]
Abstract
Endometrial-like stromal cells, one of the main components of endometriotic lesions, are an important in vitro model for studying cellular and molecular mechanisms associated with lesion development in endometriosis. However, the short life span of primary endometriotic stromal cells (Ec-ESCs) limits their use. Human telomerase reverse transcriptase (hTERT) plasmids can be used to develop immortalized cell lines. Here we aimed to establish an endometriotic stromal cell line by hTERT immortalization. Primary Ec-ESCs were obtained from a human ovarian endometriotic cyst. The purity was assessed by morphology and the expression of vimentin, cytokeratin, and human interferon-inducible transmembrane protein 1 (hIFITM1). Cells were infected with hTERT lentiviral vector and selected with hygromycin. hTERT mRNA levels were confirmed by RT-qPCR. Immortalized Ec-ESCs (iEc-ESCs) were characterized by examining the expression of morphological markers and key genes of interest, TP53, estrogen receptor β (ERβ), progesterone receptor (PR), and steroidogenic factor-1 (SF-1). Karyotyping and in vitro decidualization studies were also performed. Ec-ESCs were positive for vimentin and hIFITM1 and negative for cytokeratin, indicating that they were representative of Ec-ESC. The fibroblast-like morphology, expression of TP53, ERβ, PR, and SF-1 did not change before and after hTERT immortalization. iEc-ESCs showed an impaired decidualization response like primary Ec-ESCs when compared to normal eutopic stromal cells. Karyotyping showed that 15/19 cells had normal female karyotype, while 4/19 cells had partial trisomy 11q. Collectively, we successfully established and characterized an immortalized endometriotic stromal cell line. It is potentially useful as an in vitro experimental model to investigate endometriosis biology.
Collapse
Affiliation(s)
- Yong Song
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Niraj R Joshi
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Erin Vegter
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Samantha Hrbek
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA
| | - Bruce A Lessey
- Center for Fertility, Endocrinology and Menopause, Wake Forest University, Winston-Salem, NC, 27157, USA
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
11
|
Bjorkman S, Taylor HS. MicroRNAs in endometriosis: biological function and emerging biomarker candidates†. Biol Reprod 2020; 100:1135-1146. [PMID: 30721951 DOI: 10.1093/biolre/ioz014] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 12/21/2018] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNA molecules, have been recognized as key post-transcriptional regulators associated with a multitude of human diseases. Global expression profiling studies have uncovered hundreds of miRNAs that are dysregulated in several diseases, and yielded many candidate biomarkers. This review will focus on miRNAs in endometriosis, a common chronic disease affecting nearly 10% of reproductive-aged women, which can cause pelvic pain, infertility, and a myriad of other symptoms. Endometriosis has delayed time to diagnosis when compared to other chronic diseases, as there is no current accurate, easily accessible, and noninvasive tool for diagnosis. Specific miRNAs have been identified as potential biomarkers for this disease in multiple studies. These and other miRNAs have been linked to target genes and functional pathways in disease-specific pathophysiology. Highlighting investigations into the roles of tissue and circulating miRNAs in endometriosis, published through June 2018, this review summarizes new connections between miRNA expression and the pathophysiology of endometriosis, including impacts on fertility. Future applications of miRNA biomarkers for precision medicine in diagnosing and managing endometriosis treatment are also discussed.
Collapse
Affiliation(s)
- Sarah Bjorkman
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| | - Hugh S Taylor
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
Xiao L, Pei T, Huang W, Zhou M, Fu J, Tan J, Liu T, Song Y, Yang S. MicroRNA22-5p targets ten-eleven translocation and regulates estrogen receptor 2 expression in infertile women with minimal/mild endometriosis during implantation window. PLoS One 2020; 15:e0234086. [PMID: 32658928 PMCID: PMC7357761 DOI: 10.1371/journal.pone.0234086] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 05/18/2020] [Indexed: 11/19/2022] Open
Abstract
Based on microRNA (miR) microarray analysis, we previously found that miR22-5p expression is decreased in the mid-luteal endometrium of women with minimal/mild endometriosis. Bioinformatics analysis predicted that miR22-5p targets ten-eleven translocation (TET2) 3'-untranslated region. This study aimed to determine the regulation and roles of miR22-5p in the pathogenesis of minimal/mild endometriosis-associated infertility. MiR22-5p and TET2 expression in the mid-luteal endometrium from women with or without minimal/mild endometriosis was analyzed. After transfection with miR22-5p mimics or inhibitor, TET2 expression was analyzed by quantitative reverse transcription (RT-q) PCR, western blotting and immunohistochemistry. 5-Hydroxymethylcytosine was determined by immunofluorescence and dot blotting. Expression and promoter methylation of estrogen receptor 2 (ESR2) was measured by RT-qPCR and western blotting, and by bisulfite sequencing, respectively. We first established that miR22-5p expression decreased and TET2 expression increased in minimal/mild endometriosis during implantation window. TET2 was found to be a direct target of miR22-5p. MiR22-5p regulated the expression of ESR2, but did not directly affect methylation of its promoter region (-197/+359). Our results suggest that an imbalance in miR22-5p expression in the mid-luteal endometrium may be involved in minimal/mild endometriosis-associated infertility.
Collapse
Affiliation(s)
- Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Tianjiao Pei
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
- * E-mail:
| | - Min Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Jing Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Yong Song
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| | - Shiyuan Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
13
|
Yilmaz BD, Bulun SE. Endometriosis and nuclear receptors. Hum Reprod Update 2020; 25:473-485. [PMID: 30809650 DOI: 10.1093/humupd/dmz005] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/03/2018] [Accepted: 02/22/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Endometriosis is recognized as a steroid-dependent disorder; however, the precise roles of nuclear receptors (NRs) in steroid responsiveness and other signaling pathways are not well understood. OBJECTIVE AND RATIONALE Over the past several years, a number of paradigm-shifting breakthroughs have occurred in the area of NRs in endometriosis. We review and clarify new information regarding the mechanisms responsible for: (i) excessive estrogen biosynthesis, (ii) estrogen-dependent inflammation, (iii) defective differentiation due to progesterone resistance and (iv) enhanced survival due to deficient retinoid production and action in endometriosis. We emphasize the roles of the relevant NRs critical for these pathological processes in endometriosis. SEARCH METHODS We conducted a comprehensive search using PubMed for human, animal and cellular studies published until 2018 in the following areas: endometriosis; the steroid and orphan NRs, estrogen receptors alpha (ESR1) and beta (ESR2), progesterone receptor (PGR), steroidogenic factor-1 (NR5A1) and chicken ovalbumin upstream promoter-transcription factor II (NR2F2); and retinoids. OUTCOMES Four distinct abnormalities in the intracavitary endometrium and extra-uterine endometriotic tissue underlie endometriosis progression: dysregulated differentiation of endometrial mesenchymal cells, abnormal epigenetic marks, inflammation activated by excess estrogen and the development of progesterone resistance. Endometriotic stromal cells compose the bulk of the lesions and demonstrate widespread epigenetic abnormalities. Endometriotic stromal cells also display a wide range of abnormal NR expression. The orphan NRs NR5A1 and NR2F2 compete to regulate steroid-synthesizing genes in endometriotic stromal cells; NR5A1 dominance gives rise to excessive estrogen formation. Endometriotic stromal cells show an abnormally low ESR1:ESR2 ratio due to excessive levels of ESR2, which mediates an estrogen-driven inflammatory process and prostaglandin formation. These cells are also deficient in PGR, leading to progesterone resistance and defective retinoid synthesis. The pattern of NR expression, involving low ESR1 and PGR and high ESR2, is reminiscent of uterine leiomyoma stem cells. This led us to speculate that endometriotic stromal cells may display stem cell characteristics found in other uterine tissues. The biologic consequences of these abnormalities in endometriotic tissue include intense inflammation, defective differentiation and enhanced survival. WIDER IMPLICATIONS Steroid- and other NR-related abnormalities exert genome-wide biologic effects via interaction with defective epigenetic programming and enhance inflammation in endometriotic stromal cells. New synthetic ligands, targeting PGR, retinoic acid receptors and ESR2, may offer novel treatment options.
Collapse
Affiliation(s)
- Bahar D Yilmaz
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, 250 E. Superior Street, Chicago, IL, USA
| |
Collapse
|
14
|
Zubrzycka A, Zubrzycki M, Perdas E, Zubrzycka M. Genetic, Epigenetic, and Steroidogenic Modulation Mechanisms in Endometriosis. J Clin Med 2020; 9:E1309. [PMID: 32370117 PMCID: PMC7291215 DOI: 10.3390/jcm9051309] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/24/2020] [Accepted: 04/30/2020] [Indexed: 02/06/2023] Open
Abstract
Endometriosis is a chronic gynecological disease, affecting up to 10% of reproductive-age women. The exact cause of the disease is unknown; however, it is a heritable condition affected by multiple genetic, epigenetic, and environmental factors. Previous studies reported variations in the epigenetic patterns of numerous genes known to be involved in the aberrant modulation of cell cycle steroidogenesis, abnormal hormonal, immune and inflammatory status in endometriosis, apoptosis, adhesion, angiogenesis, proliferation, immune and inflammatory processes, response to hypoxia, steroidogenic pathway and hormone signaling are involved in the pathogenesis of endometriosis. Accumulating evidence suggest that various epigenetic aberrations may contribute to the pathogenesis of endometriosis. Among them, DNA methyltransferases, histone deacetylators, and non-coding microRNAs demonstrate differential expression within endometriotic lesions and in the endometrium of patients with endometriosis. It has been indicated that the identification of epigenetic differences within the DNA or histone proteins may contribute to the discovery of a useful prognostic biomarker, which could aid in the future earlier detection, timely diagnosis, and initiation of a new approach to the treatment of endometriosis, as well as inform us about the effectiveness of treatment and the stage of the disease. As the etiology of endometriosis is highly complex and still far from being fully elucidated, the presented review focuses on different approaches to identify the genetic and epigenetic links of endometriosis and its pathogenesis.
Collapse
Affiliation(s)
- Anna Zubrzycka
- Department of Biomedicine and Genetics, Medical University of Lodz, Pomorska 251, 92-213 Lodz, Poland; Poland;
- Department of Operative and Conservative Gynecology, K. Jonscher Memorial Hospital, Milionowa 14, 93-113 Lodz, Poland
| | - Marek Zubrzycki
- Department of Cardiac Surgery and Transplantology, The Cardinal Stefan Wyszynski Institute of Cardiology, Alpejska 42, 04-628 Warsaw, Poland;
| | - Ewelina Perdas
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| | - Maria Zubrzycka
- Department of Cardiovascular Physiology, Faculty of Medicine, Medical University of Lodz, Mazowiecka 6/8, 92-215 Lodz, Poland;
| |
Collapse
|
15
|
Nisenblat V, Sharkey DJ, Wang Z, Evans SF, Healey M, Ohlsson Teague EMC, Print CG, Robertson SA, Hull ML. Plasma miRNAs Display Limited Potential as Diagnostic Tools for Endometriosis. J Clin Endocrinol Metab 2019; 104:1999-2022. [PMID: 30608536 DOI: 10.1210/jc.2018-01464] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 12/28/2018] [Indexed: 12/12/2022]
Abstract
CONTEXT Despite extensive searches for novel noninvasive diagnostics, laparoscopy remains the reference test for endometriosis. Circulating miRNAs are purported endometriosis biomarkers; however, the miRNA species and their diagnostic accuracy differ between studies and have not been validated in independent cohorts. OBJECTIVE Identify endometriosis-specific plasma miRNAs and determine their diagnostic test accuracy. SETTING Two university-based, public hospitals and a private gynecology practice in Australia. DESIGN AND PARTICIPANTS Four phases: (i) Explorative phase. Plasma miRNA menstrual cycle fluctuations were evaluated in women with endometriosis and asymptomatic controls (n = 16). (ii) Biomarker discovery. Endometriosis-specific plasma miRNAs were identified in (a) women with endometriosis and asymptomatic controls (n = 16) and (b) women with and without surgically defined endometriosis (n = 20). (iii) Biomarker selection. Plasma miRNAs with the best diagnostic potential for endometriosis were selected in a surgically defined selection cohort (n = 78). (iv) Biomarker validation. The diagnostic test accuracy of these miRNAs was calculated in an independent, surgically defined validation cohort (n = 119). RESULTS Forty-nine miRNAs were differentially expressed in women with endometriosis. Nine maintained dysregulation in the selection cohort, but only three (miR-155, miR574-3p and miR139-3p) did so in the validation cohort. Combined, these three miRNAs demonstrated a sensitivity and specificity of 83% and 51%, respectively. CONCLUSION Plasma miRNAs demonstrated modest sensitivity and specificity as diagnostic tests or triage tools for endometriosis. Other groups' findings were not replicated and accorded poorly with our results. Circulating miRNAs demonstrate diagnostic potential, but stringent, standardized methodological approaches are required for the development of a clinically applicable tool.
Collapse
Affiliation(s)
- Victoria Nisenblat
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - David J Sharkey
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Zhao Wang
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Susan F Evans
- School of Medicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Martin Healey
- Department of Obstetrics and Gynaecology, Royal Women's Hospital, University of Melbourne, Parkville, Victoria, Australia
| | - E Maria C Ohlsson Teague
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Cristin G Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
- New Zealand Bioinformatics Institute, University of Auckland, Auckland, New Zealand
| | - Sarah A Robertson
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - M Louise Hull
- Robinson Research Institute, University of Adelaide, Adelaide, South Australia, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
- Department of Obstetrics and Gynaecology, Women's and Children's Hospital, North Adelaide, South Australia, Australia
| |
Collapse
|
16
|
Panir K, Schjenken JE, Robertson SA, Hull ML. Non-coding RNAs in endometriosis: a narrative review. Hum Reprod Update 2019; 24:497-515. [PMID: 29697794 DOI: 10.1093/humupd/dmy014] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/05/2018] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Endometriosis is a benign gynaecological disorder, which affects 10% of reproductive-aged women and is characterized by endometrial cells from the lining of the uterus being found outside the uterine cavity. However, the pathophysiological mechanisms causing the development of this heterogeneous disease remain enigmatic, and a lack of effective biomarkers necessitates surgical intervention for diagnosis. There is international recognition that accurate non-invasive diagnostic tests and more effective therapies are urgently needed. Non-coding RNA (ncRNA) molecules, which are important regulators of cellular function, have been implicated in many chronic conditions. In endometriosis, transcriptome profiling of tissue samples and functional in vivo and in vitro studies demonstrate that ncRNAs are key contributors to the disease process. OBJECTIVE AND RATIONALE In this review, we outline the biogenesis of various ncRNAs relevant to endometriosis and then summarize the evidence indicating their roles in regulatory pathways that govern disease establishment and progression. SEARCH METHODS Articles from 2000 to 2016 were selected for relevance, validity and quality, from results obtained in PubMed, MEDLINE and Google Scholar using the following search terms: ncRNA and reproduction; ncRNA and endometriosis; miRNA and endometriosis; lncRNA and endometriosis; siRNA and endometriosis; endometriosis; endometrial; cervical; ovary; uterus; reproductive tract. All articles were independently screened for eligibility by the authors. OUTCOMES This review integrates extensive information from all relevant published studies focusing on microRNAs, long ncRNAs and short inhibitory RNAs in endometriosis. We outline the biological function and synthesis of microRNAs, long ncRNAs and short inhibitory RNAs and provide detailed findings from human research as well as functional studies carried out both in vitro and in vivo, including animal models. Although variability in findings between individual studies exists, collectively, the extant literature justifies the conclusion that dysregulated ncRNAs are a significant element of the endometriosis condition. WIDER IMPLICATIONS There is a compelling case that microRNAs, long non-coding RNAs and short inhibitory RNAs have the potential to influence endometriosis development and persistence through modulating inflammation, proliferation, angiogenesis and tissue remodelling. Rapid advances in ncRNA biomarker discovery and therapeutics relevant to endometriosis are emerging. Unravelling the significance of ncRNAs in endometriosis will pave the way for new diagnostic tests and identify new therapeutic targets and treatment approaches that have the potential to improve clinical options for women with this disabling condition.
Collapse
Affiliation(s)
- Kavita Panir
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - John E Schjenken
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - Sarah A Robertson
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
| | - M Louise Hull
- The Robinson Research Institute and Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia.,Fertility SA, Adelaide, South Australia, Australia.,Department of Obstetrics and Gynaecology, Women's and Children's Hospital Adelaide, South Australia, Australia
| |
Collapse
|
17
|
Zhang H, Li G, Sheng X, Zhang S. Upregulation of miR‑33b promotes endometriosis via inhibition of Wnt/β‑catenin signaling and ZEB1 expression. Mol Med Rep 2019; 19:2144-2152. [PMID: 30664209 PMCID: PMC6390049 DOI: 10.3892/mmr.2019.9870] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 07/30/2018] [Indexed: 12/14/2022] Open
Abstract
The present study aimed to investigate the role and mechanisms of microRNA (miR)‑33b in endometriosis (Ems). Reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), MTT assays, flow cytometry, caspase‑3/9 activity assays and western blotting were performed in the present study. Initially, miR‑33b expression in an Ems rat model was investigated by RT‑qPCR and was demonstrated to be upregulated in Ems tissue samples of rats compared with the control group. In addition, miR‑33b upregulation inhibited cell growth and enhanced apoptosis in an Ems model (primary cell cultures) compared with the control group. In addition, miR‑33b up‑regulation reduced Wnt/β‑catenin signaling pathway and suppressed zinc finger E‑box‑binding homeobox 1 (ZEB1) protein expression in the in vitro Ems model (primary cell cultures) compared with the control group. Furthermore, small interfering‑ZEB1 ameliorated the effects of miR‑33b downregulation on Ems cell growth in the in vitro Ems model. Additionally, a Wnt agonist reduced the effects of miR‑33b upregulation on Ems cell growth in the in vitro Ems model. In conclusion, the present study demonstrated that upregulation of miR‑33b may promote Ems through Wnt/β‑catenin by ZEB1 expression.
Collapse
Affiliation(s)
- Haiyan Zhang
- Department of Gynecology, Affiliated Qilu Hospital of Shandong University, Jinan, Shandong 250002, P.R. China
| | - Guang Li
- Department of Gynecology Ward 1, Linyi City People's Hospital, Linyi, Shandong 276000, P.R. China
| | - Xiugui Sheng
- Department of Gynecology, Chinese Academy of Medical Sciences Tumor Hospital, Beijing 100021, P.R. China
| | - Shiqian Zhang
- Department of Gynecology, Affiliated Qilu Hospital of Shandong University, Jinan, Shandong 250002, P.R. China
| |
Collapse
|
18
|
Yang P, Wu Z, Ma C, Pan N, Wang Y, Yan L. Endometrial miR-543 Is Downregulated During the Implantation Window in Women With Endometriosis-Related Infertility. Reprod Sci 2018; 26:900-908. [PMID: 30231774 DOI: 10.1177/1933719118799199] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Differentially expressed microRNAs (miRNAs) and their target mRNAs may lead to alterations in normal physiological status of the tissues and initiate pathological processes. The aim of this study was to investigate the expression of the most relevant miRNAs in the eutopic endometrial tissue during the window of implantation in women with endometriosis-related infertility. METHODS In the study, 76 infertile women with a regular menstrual cycle were recruited from the Center for Reproductive Medicine, Peking University Third Hospital between January 2014 and June 2016. We performed a combined messenger RNA and miRNA microarray and bioinformatics analysis of eutopic endometrium in 6 women with and without endometriosis-related infertility at the time of implantation window. Quantitative real-time polymerase chain reaction arrays were utilized to examine the expression levels of selected miRNAs (from 35 patients with endometriosis and 35 disease-free individuals at different menstrual stages). RESULTS Five differentially expressed miRNAs (miR-142-5p, miR-146a-5p, miR-1281, miR-940, and miR-4634) were significantly upregulated, whereas miR-543 was significantly downregulated in the eutopic endometrium during the window of implantation in patients with endometriosis. Further analysis showed that miR-543 was significantly upregulated at the peri-implantation phase compared with that at proliferative phase in the endometrium of disease-free patients (P < .05). However, the expression level of miR-543 was significantly decreased in patients with endometriosis (P < .05), especially downregulated at the window of implantation phase (P < .05). CONCLUSIONS miR-543 plays an important role during embryo implantation process and is associated with endometrial receptivity. Downregulation of miR-543 may affect embryo implantation, resulting in the pathogenesis of endometriosis-related infertility.
Collapse
Affiliation(s)
- Puyu Yang
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China
| | - Zhangxin Wu
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China
| | - Caihong Ma
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China.
| | - Ningning Pan
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China
| | - Yang Wang
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China
| | - Liying Yan
- Center for Reproductive Medicine, Reproductive Medicine Center Department of Obstetrics and Gynecology, Peking University Third Hospital, Haidian District, North Garden Road, No. 49, Beijing, 100191, People's Republic of China
| |
Collapse
|
19
|
Piccinato CA, Malvezzi H, Gibson DA, Saunders PTK. SULFATION PATHWAYS: Contribution of intracrine oestrogens to the aetiology of endometriosis. J Mol Endocrinol 2018; 61:T253-T270. [PMID: 30030390 DOI: 10.1530/jme-17-0297] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/03/2018] [Indexed: 12/16/2022]
Abstract
Endometriosis is an incurable hormone-dependent inflammatory disease that causes chronic pelvic pain and infertility characterized by implantation and growth of endometrial tissue outside the uterine cavity. Symptoms have a major impact on the quality of life of patients resulting in socioeconomic, physical and psychological burdens. Although the immune system and environmental factors may play a role in the aetiology of endometriosis, oestrogen dependency is still considered a hallmark of the disorder. The impact of oestrogens such as oestrone and particularly, oestradiol, on the endometrium or endometriotic lesions may be mediated by steroids originating from ovarian steroidogenesis or local intra-tissue production (intracrinology) dependent upon the expression and activity of enzymes that regulate oestrogen biosynthesis and metabolism. Two key pathways have been implicated: while there is contradictory data on the participation of the aromatase enzyme (encoded by CYP19A1), there is increasing evidence that the steroid sulphatase pathway plays a role in both the aetiology and pathology of endometriosis. In this review, we consider the evidence related to the pathways leading to oestrogen accumulation in endometriotic lesions and how this might inform the development of new therapeutic strategies to treat endometriosis without causing the undesirable side effects of current regimes that suppress ovarian hormone production.
Collapse
Affiliation(s)
| | - Helena Malvezzi
- Hospital Israelita Albert Einstein, São Paulo, São Paulo, Brazil
| | - Douglas A Gibson
- MRC Centre for Inflammation Research, The University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
20
|
Pei T, Liu C, Liu T, Xiao L, Luo B, Tan J, Li X, Zhou G, Duan C, Huang W. miR-194-3p Represses the Progesterone Receptor and Decidualization in Eutopic Endometrium From Women With Endometriosis. Endocrinology 2018; 159:2554-2562. [PMID: 29762665 DOI: 10.1210/en.2018-00374] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 12/17/2022]
Abstract
Progesterone resistance in the eutopic endometrium (EuE) is suggested to be a critical factor for decreased endometrial receptivity and implantation failure in reproductive-aged women with endometriosis. Altered expression of miRNAs has been reported to play an important role in the pathophysiology of endometriosis-associated infertility. However, the underlying mechanisms of aberrant progesterone receptor (PR) and deficient decidualization regulated by miRNAs in endometriosis have not been thoroughly elucidated. The goal of this study was to explore the regulation and roles of miR-194-3p in aberrant PR expression and impaired decidualization in endometrial stromal cells (ESCs) from the EuE of women with mild or minimal endometriosis. Using a series of studies, we observed decreased PR mRNA expression and an increasing PR-A/PR-B mRNA ratio trend in the midsecretory phase of the EuE of women with minimal or mild endometriosis (n = 19) compared with controls (n = 14); the increased expression of miR-194-3p in the endometriosis group was consistent with previous microarray analysis. We also found that PR protein levels were inhibited by the transfection of ESCs with an miR-194-3p mimic and upregulated by miR-194-3p inhibition. As predicted by the bioinformatic analysis, the 3'-untranslated region luciferase assay indicated the direct regulation of PR expression by miR-194-3p. Furthermore, miR-194-3p overexpression inhibited the in vitro decidualization of ESCs via both cellular morphological changes and prolactin levels. Therefore, our study demonstrated that miR-194-3p contributes to progesterone resistance in endometriosis, which hinders fertility by repressing the levels of PR and decidualization in the EuE. Thus, miR-194-3p regulation is a future therapeutic strategy for endometriosis.
Collapse
Affiliation(s)
- Tianjiao Pei
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chang Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tingting Liu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Li Xiao
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Bin Luo
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Jing Tan
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Xueying Li
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Guojun Zhou
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Changling Duan
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Sichuan University, Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, Sichuan, People's Republic of China
| |
Collapse
|
21
|
Haikalis ME, Wessels JM, Leyland NA, Agarwal SK, Foster WG. MicroRNA expression pattern differs depending on endometriosis lesion type†. Biol Reprod 2018; 98:623-633. [DOI: 10.1093/biolre/ioy019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/23/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Maria E Haikalis
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Jocelyn M Wessels
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Nicholas A Leyland
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
| | - Sanjay K Agarwal
- Center for Endometriosis Research and Treatment, University of California, San Diego, La Jolla, California, USA
| | - Warren G Foster
- Department of Obstetrics & Gynecology, McMaster University, Hamilton, Ontario, Canada
- Center for Endometriosis Research and Treatment, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
22
|
Shen L, Zhang Y, Zhou W, Peng Z, Hong X, Zhang Y. Circular RNA expression in ovarian endometriosis. Epigenomics 2018; 10:559-572. [PMID: 29334789 DOI: 10.2217/epi-2017-0079] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIM Circular RNAs (circRNAs) with miRNA response elements (MREs) could function as competing endogenous RNA (ceRNA) in regulating gene expression. This study was carried out to identify the expression profile and role of circRNAs in endometriosis. MATERIALS & METHODS Microarray assay was performed in four paired ovarian endometriomas and eutopic endometrium, followed by quantitative real-time RT-PCR in 24 paired samples. Bioinformatical algorithms were used to predict MREs, as well as ceRNA and KEGG pathway analysis. RESULTS We identified 262 upregulated and 291 downregulated circRNAs, binding with 1225 MREs. The ceRNA network included 122 miRNAs and 137 mRNAs, which are involed in nine pathways. CONCLUSION CircRNAs are differentially expressed in endometriosis, which might be related with pathogenesis of endometriosis.
Collapse
Affiliation(s)
- Licong Shen
- Department of Obstetrics & Gynecology, Xiangya Hospital, Central South University, No 87 Xiangya Road, Changsha Hunan 410008, PR China
| | - Yu Zhang
- Department of Obstetrics & Gynecology, Xiangya Hospital, Central South University, No 87 Xiangya Road, Changsha Hunan 410008, PR China
| | - Wenjun Zhou
- Department of Obstetrics & Gynecology, Xiangya Hospital, Central South University, No 87 Xiangya Road, Changsha Hunan 410008, PR China
| | - Zheng Peng
- Department of Obstetrics & Gynecology, Xiangya Hospital, Central South University, No 87 Xiangya Road, Changsha Hunan 410008, PR China
| | - Xiaxia Hong
- Department of Obstetrics & Gynecology, Xiangya Hospital, Central South University, No 87 Xiangya Road, Changsha Hunan 410008, PR China
| | - Yi Zhang
- Department of Obstetrics & Gynecology, Xiangya Hospital, Central South University, No 87 Xiangya Road, Changsha Hunan 410008, PR China
| |
Collapse
|
23
|
Nothnick WB, Marsh C, Alali Z. Future Directions in Endometriosis Research and Therapeutics. CURRENT WOMENS HEALTH REVIEWS 2018; 14:189-194. [PMID: 31435203 DOI: 10.2174/1573404813666161221164810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background Endometriosis is a disease common among women of reproductive age characterized by pain, anxiety and infertility. Defined as the growth of endometrial tissue in ectopic locations, endometriosis remains an enigmatic disease for which current treatments are less than ideal. Much of these shortcomings to current therapy stem from our incomplete understanding on the pathogenesis of the disease. It is generally accepted that endometriosis is an estrogen-dependent disease and, as such, the majority of treatment approaches aim at reducing estrogen action and/or production. Unfortunately, this approach is not effective in all women with endometriosis and in those women where success is achieved with their use, there is potential for health-comprising side effects. Objective The objective of this review is to summarize current approaches for treatment of endometriosis, discuss their limitations and potential reasons for lack of progress towards better therapeutics for this disease. Results In this review we summarize the current approaches for treatment of endometriosis, discuss their limitations and potential reasons for lack of progress towards better therapeutics for this disease. Conclusion Based upon the current state of knowledge, there is a strong necessity for through assessment at the level of the genome, miRNAome and proteome as well as the importance of integrating clinically-relevant endpoints in future studies which evaluate potential endometriosis therapies in experimental models of endometriosis.
Collapse
Affiliation(s)
- Warren B Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, USA.,Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Courtney Marsh
- Department of Obstetrics and Gynecology, University of Kansas Medical Center, Kansas City, USA.,Center for Reproductive Sciences, Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, USA
| | - Zahraa Alali
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, USA
| |
Collapse
|
24
|
Hsiao KY, Wu MH, Tsai SJ. Epigenetic regulation of the pathological process in endometriosis. Reprod Med Biol 2017; 16:314-319. [PMID: 29259483 PMCID: PMC5715896 DOI: 10.1002/rmb2.12047] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 06/27/2017] [Indexed: 12/24/2022] Open
Abstract
Background Endometriosis is one of the most common gynecological diseases that greatly compromises the quality of life in affected individuals. A growing body of evidence shows that the remodeling of retrograde endometrial tissues to the ectopic endometriotic lesions involves multiple epigenetic alterations, such as DNA methylation, histone modification, and microRNA expression. Methods This article retrospectively reviewed the studies that were related to the epigenetic regulatory factors that contribute to the development and maintenance of endometriosis. A literature search was performed in order to collect scientific articles that were written in English by using the key words of "endometriosis," "epigenetics," "DNA methylation," "histone modification," and "microRNA." Results Epigenetic modifications, including DNA methylation, histone modification, and microRNA expression, are involved in the pathogenesis of endometriosis. These epigenetic players are regulated or tuned by microenvironmental cues, such as locally produced estradiol, proinflammatory cytokines, and hypoxic stress, and reciprocally regulate the process or response to those stimuli. Conclusion Understanding the molecular mechanisms that underlie these epigenetic regulatory processes would shed light on the etiology and/or progression of endometriosis and facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Kuei-Yang Hsiao
- Department of Physiology College of Medicine National Cheng Kung University Tainan Taiwan
| | - Meng-Hsing Wu
- Department of Obstetrics and Gynecology College of Medicine National Cheng Kung University Tainan Taiwan
| | - Shaw-Jenq Tsai
- Department of Physiology College of Medicine National Cheng Kung University Tainan Taiwan
| |
Collapse
|
25
|
Chen H, Song Y, Yang S, Fu J, Feng X, Huang W. YAP mediates human decidualization of the uterine endometrial stromal cells. Placenta 2017; 53:30-35. [PMID: 28487017 DOI: 10.1016/j.placenta.2017.03.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 01/19/2023]
Abstract
INTRODUCTION The decidualization of uterine endometrial stromal cells (ESCs) is critical for the successful establishment and maintenance of pregnancy and involves extensive cell proliferation and differentiation. A newly established signaling pathway, the Hippo/Yes-associated protein (YAP) pathway, plays a critical role in these proliferation processes. Our previous study demonstrated that YAP is expressed in human ESCs. However, its role in decidualization remains unclear. The objective of the present study was to explore the role of YAP in the decidualization of human ESCs. METHODS The expression of YAP was first investigated in the endometrium of non-pregnant women and in the decidua of pregnant women. The role of YAP was investigated by transfecting ESCs with mRNA silencing constructs and observing the negative effects of this action upon decidualization induced in vitro. RESULTS Our results revealed that the expression of YAP was higher in decidual cells from early pregnant decidua compared with ESCs from non-pregnant endometrium. The expression levels of YAP and TEA domain 1 (TEAD1) were both increased in ESCs during in vitro decidualization and the knockdown of YAP in ESCs caused negative effects upon decidualization in vitro. DISCUSSION Our study suggests that YAP is upregulated in human decidual cells compared with ESCs and influences the decidualization of ESCs.
Collapse
Affiliation(s)
- Hengxi Chen
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Yong Song
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Shiyuan Yang
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, People's Republic of China
| | - Jing Fu
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China
| | - Xue Feng
- Department of Obstetrics and Gynecology, Chongqing Obstetrics and Gynecology Hospital, Chongqing, People's Republic of China
| | - Wei Huang
- Department of Obstetrics and Gynecology, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China; Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital of Sichuan University, Chengdu, People's Republic of China.
| |
Collapse
|
26
|
Nothnick WB. MicroRNAs and Endometriosis: Distinguishing Drivers from Passengers in Disease Pathogenesis. Semin Reprod Med 2017; 35:173-180. [PMID: 28212593 DOI: 10.1055/s-0037-1599089] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Endometriosis is a disease common in women of reproductive age, characterized by pelvic pain and infertility. Despite its prevalence, the factors and mechanisms which contribute to the development and survival of ectopic lesions remain uncertain. MicroRNAs (miRNAs) are small RNA molecules that regulate posttranscriptional gene regulation which have been proposed to contribute to the pathogenesis of many diseases including that of endometriosis. This review summarizes the results of initial studies describing differentially expressed miRNAs between endometriotic lesion tissue and eutopic endometrium. Focus then moves toward discussion of studies on examining function of differentially expressed miRNAs to determine if they play a permissive role (driver of the disease) in events conducive to endometriosis progression/survival. Included in this discussion are the potential targets of these miRNAs and how their mis-expression may contribute to the disease. Limitations and challenges faced in studying miRNAs and endometriosis pathogenesis and recommendations to overcome these hurdles are presented at the end.
Collapse
Affiliation(s)
- Warren B Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
27
|
Xu X, Li Z, Liu J, Yu S, Wei Z. MicroRNA expression profiling in endometriosis-associated infertility and its relationship with endometrial receptivity evaluated by ultrasound. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2017; 25:523-532. [PMID: 28506024 DOI: 10.3233/xst-17286] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
OBJECTIVE To investigate the microRNA expression profiling in endometriosis-associate infertility, and relationship between the microRNA expression and endometrial receptivity evaluated by ultrasound. METHODS First, miRNA expression profiling difference of ectopic endometrium between 8 endometriosis patients and 6 endometriosis-free patients were compared. Bioinformatics analyses detected 61 differentially expressed (DE) known miRNAs and 57 DE novel miRNAs. Next, other 24 patients were selected for checking the microRNAs in differential expression by RT-PCR. Among them, case and control groups include 14 endometriosis and 10 endometriosis-free infertility patients, respectively. Last, endometrial receptivity of other 20 endometriosis patients was evaluated by ultrasound. In this group of patients, 12 had high endometrial receptivity, in which infertility is caused by fallopian tube occlusion, and 8 had low endometrial receptivity. The study compared endometrial miRNAs expression between two groups, and also evaluated the relationship between the endometrial miRNAs expression and the endometrial receptivity. RESULTS First, study indicated that "proteinaceous extracellular matrix," "laminin binding" and "extracellular matrix binding" were enriched in 6 up-regulated miRNA targets, while "cell proliferation" was enriched in the 4 down-regulated miRNA targets. Second, 10 miRNAs in different expression (miR-1304- 3p, miR-544b, miR-3684, miR-494-5p, miR-4683, miR-6747-3p; miR-3935, miR-4427, miR-652-5p, miR-205-5p) were detected by RT-PCR, and the results showed statistically significant differences between 2 groups in all 10 miRNAs. Third, the expression levels of miR-1304-3p, miR-494-5p, and miR-4427 were different between the two groups with different endometrial receptivity. But for the miR-544b, there was no statistically significant difference between two groups. CONCLUSIONS The study provided a comprehensive understanding to the current knowledge in the field of miRNAs in endometriosis and the relationship between them and the endometrial receptivity. miRNAs could be used as diagnostic biomarkers and therapeutic agents for this disease. The combination of ultrasound and miRNAs detection could be a better choice for the diagnosis of infertility in the future.
Collapse
Affiliation(s)
- Xianfeng Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
- Department of Obstetrics and Gynecology, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, P. R. China
| | - Zhenzhou Li
- Department of Ultrasound, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, P. R. China
| | - Jin Liu
- Department of Obstetrics and Gynecology, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, P. R. China
| | - Sha Yu
- Department of Obstetrics and Gynecology, The Second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, P. R. China
| | - Zhaolian Wei
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| |
Collapse
|
28
|
Borghese B, Zondervan K, Abrao M, Chapron C, Vaiman D. Recent insights on the genetics and epigenetics of endometriosis. Clin Genet 2016; 91:254-264. [DOI: 10.1111/cge.12897] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/25/2016] [Accepted: 10/14/2016] [Indexed: 12/21/2022]
Affiliation(s)
- B. Borghese
- Cochin Institute, U1016 INSERM, CNRS 8104; Université Paris Descartes; Paris France
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest; Centre Hospitalier Universitaire Paris Centre; Paris France
| | - K.T. Zondervan
- Nuffield Department of Obstetrics and Gynaecology, Endometriosis Care Centre; University of Oxford; Oxford UK
| | - M.S. Abrao
- Endometriosis Division, Obstetrics and Gynecology Department; Sao Paulo University; Sao Paulo Brazil
- Reproductive Clinic; Sirio Libanes Hospital; Sao Paulo Brazil
| | - C. Chapron
- Cochin Institute, U1016 INSERM, CNRS 8104; Université Paris Descartes; Paris France
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest; Centre Hospitalier Universitaire Paris Centre; Paris France
| | - D. Vaiman
- Cochin Institute, U1016 INSERM, CNRS 8104; Université Paris Descartes; Paris France
- Department of Gynecology Obstetrics II and Reproductive Medicine, Faculté de Médecine, AP-HP, Groupe Hospitalier Ouest; Centre Hospitalier Universitaire Paris Centre; Paris France
| |
Collapse
|
29
|
Miao N, Wang X, Hou Y, Feng Y, Gong Y. Identification of male-biased microRNA-107 as a direct regulator for nuclear receptor subfamily 5 group A member 1 based on sexually dimorphic microRNA expression profiling from chicken embryonic gonads. Mol Cell Endocrinol 2016; 429:29-40. [PMID: 27036932 DOI: 10.1016/j.mce.2016.03.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/08/2016] [Accepted: 03/27/2016] [Indexed: 12/15/2022]
Abstract
Several studies indicate that sexual dimorphic microRNAs (miRNAs) in chicken gonads are likely to have important roles in sexual development, but a more global understanding of the roles of miRNAs in sexual differentiation is still needed. To this end, we performed miRNA expression profiling in chicken gonads at embryonic day 5.5 (E5.5). Among the sex-biased miRNAs validated by qRT-PCR, twelve male-biased and six female-biased miRNAs were consistent with the sequencing results. Bioinformatics analysis revealed that some sex-biased miRNAs were potentially involved in gonadal development. Further functional analysis found that over-expression of miR-107 directly inhibited nuclear receptor subfamily 5 group A member 1 (NR5a1), and its downstream cytochrome P450 family 19 subfamily A, polypeptide 1 (CYP19A1). However, anti-Mullerian hormone (AMH) was not directly or indirectly regulated by miR-107. Overall results indicate that miR-107 may specifically mediate avian ovary-development by post-transcriptional regulation of NR5a1 and CYP19A1 in estrogen signaling pathways.
Collapse
Affiliation(s)
- Nan Miao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xin Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yue Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yanping Feng
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
30
|
Gupta D, Hull ML, Fraser I, Miller L, Bossuyt PMM, Johnson N, Nisenblat V. Endometrial biomarkers for the non-invasive diagnosis of endometriosis. Cochrane Database Syst Rev 2016; 4:CD012165. [PMID: 27094925 PMCID: PMC6953323 DOI: 10.1002/14651858.cd012165] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND About 10% of reproductive-aged women suffer from endometriosis, which is a costly, chronic disease that causes pelvic pain and subfertility. Laparoscopy is the gold standard diagnostic test for endometriosis, but it is expensive and carries surgical risks. Currently, there are no non-invasive tests available in clinical practice that accurately diagnose endometriosis. This is the first diagnostic test accuracy review of endometrial biomarkers for endometriosis that utilises Cochrane methodologies, providing an update on the rapidly expanding literature in this field. OBJECTIVES To determine the diagnostic accuracy of the endometrial biomarkers for pelvic endometriosis, using a surgical diagnosis as the reference standard. We evaluated the tests as replacement tests for diagnostic surgery and as triage tests to inform decisions to undertake surgery for endometriosis. SEARCH METHODS We did not restrict the searches to particular study designs, language or publication dates. To identify trials, we searched the following databases: CENTRAL (2015, July), MEDLINE (inception to May 2015), EMBASE (inception to May 2015), CINAHL (inception to April 2015), PsycINFO (inception to April 2015), Web of Science (inception to April 2015), LILACS (inception to April 2015), OAIster (inception to April 2015), TRIP (inception to April 2015) and ClinicalTrials.gov (inception to April 2015). We searched DARE and PubMed databases up to April 2015 to identify reviews and guidelines as sources of references to potentially relevant studies. We also performed searches for papers recently published and not yet indexed in the major databases. The search strategies incorporated words in the title, abstract, text words across the record and the medical subject headings (MeSH). SELECTION CRITERIA We considered published peer-reviewed, randomised controlled or cross-sectional studies of any size that included prospectively collected samples from any population of reproductive-aged women suspected of having one or more of the following target conditions: ovarian, peritoneal or deep infiltrating endometriosis (DIE). DATA COLLECTION AND ANALYSIS Two authors independently extracted data from each study and performed a quality assessment. For each endometrial diagnostic test, we classified the data as positive or negative for the surgical detection of endometriosis and calculated the estimates of sensitivity and specificity. We considered two or more tests evaluated in the same cohort as separate data sets. We used the bivariate model to obtain pooled estimates of sensitivity and specificity whenever sufficient data were available. The predetermined criteria for a clinically useful test to replace diagnostic surgery was one with a sensitivity of 94% and a specificity of 79%. The criteria for triage tests were set at sensitivity at or above 95% and specificity at or above 50%, which in case of negative results rules out the diagnosis (SnOUT test) or sensitivity at or above 50% with specificity at or above 95%, which in case of positive result rules in the diagnosis (SpIN test). MAIN RESULTS We included 54 studies involving 2729 participants, most of which were of poor methodological quality. The studies evaluated endometrial biomarkers either in specific phases of the menstrual cycle or outside of it, and the studies tested the biomarkers either in menstrual fluid, in whole endometrial tissue or in separate endometrial components. Twenty-seven studies evaluated the diagnostic performance of 22 endometrial biomarkers for endometriosis. These were angiogenesis and growth factors (PROK-1), cell-adhesion molecules (integrins α3β1, α4β1, β1 and α6), DNA-repair molecules (hTERT), endometrial and mitochondrial proteome, hormonal markers (CYP19, 17βHSD2, ER-α, ER-β), inflammatory markers (IL-1R2), myogenic markers (caldesmon, CALD-1), neural markers (PGP 9.5, VIP, CGRP, SP, NPY, NF) and tumour markers (CA-125). Most of these biomarkers were assessed in single studies, whilst only data for PGP 9.5 and CYP19 were available for meta-analysis. These two biomarkers demonstrated significant diversity for the diagnostic estimates between the studies; however, the data were too limited to reliably determine the sources of heterogeneity. The mean sensitivities and specificities of PGP 9.5 (7 studies, 361 women) were 0.96 (95% confidence interval (CI) 0.91 to 1.00) and 0.86 (95% CI 0.70 to 1.00), after excluding one outlier study, and for CYP19 (8 studies, 444 women), they were were 0.77 (95% CI 0.70 to 0.85) and 0.74 (95% CI 0.65 to 84), respectively. We could not statistically evaluate other biomarkers in a meaningful way. An additional 31 studies evaluated 77 biomarkers that showed no evidence of differences in expression levels between the groups of women with and without endometriosis. AUTHORS' CONCLUSIONS We could not statistically evaluate most of the biomarkers assessed in this review in a meaningful way. In view of the low quality of most of the included studies, the findings of this review should be interpreted with caution. Although PGP 9.5 met the criteria for a replacement test, it demonstrated considerable inter study heterogeneity in diagnostic estimates, the source of which could not be determined. Several endometrial biomarkers, such as endometrial proteome, 17βHSD2, IL-1R2, caldesmon and other neural markers (VIP, CGRP, SP, NPY and combination of VIP, PGP 9.5 and SP) showed promising evidence of diagnostic accuracy, but there was insufficient or poor quality evidence for any clinical recommendations. Laparoscopy remains the gold standard for the diagnosis of endometriosis, and using any non-invasive tests should only be undertaken in a research setting. We have also identified a number of biomarkers that demonstrated no diagnostic value for endometriosis. We recommend that researchers direct future studies towards biomarkers with high diagnostic potential in good quality diagnostic studies.
Collapse
Affiliation(s)
| | - M Louise Hull
- The University of AdelaideDiscipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research InstituteKing William RoadAdelaideSouth AustrailaAustralia
| | - Ian Fraser
- University of New South WalesSchool of Women's and Children's Health, Royal Hospital for WomenBarker StSydneyNSWAustralia2131
| | - Laura Miller
- Fertility PlusDepartment of Obstetrics and GynaecologyAuckland District Health BoardAucklandNew Zealand1142
| | - Patrick MM Bossuyt
- Academic Medical Center, University of AmsterdamDepartment of Clinical Epidemiology, Biostatistics and BioinformaticsRoom J1b‐217, PO Box 22700AmsterdamNetherlands1100 DE
| | - Neil Johnson
- The University of AdelaideDiscipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research InstituteKing William RoadAdelaideSouth AustrailaAustralia
| | - Vicki Nisenblat
- The University of AdelaideDiscipline of Obstetrics and Gynaecology, School of Medicine, Robinson Research InstituteKing William RoadAdelaideSouth AustrailaAustralia
| | | |
Collapse
|
31
|
Nothnick WB. Non-coding RNAs in Uterine Development, Function and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 886:171-189. [PMID: 26659492 DOI: 10.1007/978-94-017-7417-8_9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The major function of the uterus is to accept and provide a suitable environment for an embryo, ultimately leading the birth of offspring and successful propagation of the species. For this occur, there must be precise coordination of hormonal signalling within both the endometrial and myometrial components of this organ. Non-coding RNAs, specifically, microRNAs (miRNAs) have been shown to be essential for normal uterine development and function. Within this organ, miRNAs are proposed to fine-tune the actions of the female steroid hormones estradiol and progesterone. Not surprising, mis-expression of miRNAs has been documented in diseases of the endometrium and myometrium such as endometriosis and leiomyomas, respectively. In this chapter, I will review the current understanding on the role, regulation and function of non-coding RNAs focusing on miRNAs in both the normal physiology of the endometrium and myometrium as well as in pathologies of these tissues, namely endometriosis and leiomyomas.
Collapse
Affiliation(s)
- Warren B Nothnick
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, USA.
| |
Collapse
|
32
|
Wang L, Li C, Li R, Deng Y, Tan Y, Tong C, Qi H. MicroRNA-764-3p regulates 17β-estradiol synthesis of mouse ovarian granulosa cells by targeting steroidogenic factor-1. In Vitro Cell Dev Biol Anim 2015; 52:365-373. [PMID: 26676955 DOI: 10.1007/s11626-015-9977-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 11/05/2015] [Indexed: 12/18/2022]
Abstract
Previous studies have reported that microRNA-764-3p (miR-764-3p) is one of the most up-regulated microRNAs (miRNAs) in TGF-β1-stimulated mouse ovarian granulosa cells. However, little is known about the roles and mechanisms of miR-764-3p in granulosa cell function during follicular development. In this study, we found that overexpression of miR-764-3p inhibited 17β-estradiol (E2) synthesis of granulosa cells through directly targeting steroidogenic factor-1 (SF-1). MiR-764-3p inhibited SF-1 by affecting its messenger RNA (mRNA) stability, which subsequently suppressed the expression levels of Cyp19a1 gene (aromatase, a downstream target of SF-1). In addition, SF-1 was involved in regulation of miR-764-3p-mediated Cyp19a1 expression in granulosa cells which contributed, at least partially, to the effects of miR-764-3p on granulosa cell E2 release. These results suggest that miR-764-3p functions to decrease steroidogenesis by targeting SF-1, at least in part, through inactivation of Cyp19a1. Taken together, our data provide mechanistic insights into the roles of miR-764-3p on E2 synthesis. Understanding of potential miRNAs affecting estrogen synthesis will help to diagnose and treat steroid-related diseases.
Collapse
Affiliation(s)
- Lianlian Wang
- Department of Reproduction Health and Infertility, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Cong Li
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Rong Li
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Youlin Deng
- Department of Gynecology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yixin Tan
- Department of Medical Records, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China.,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Hongbo Qi
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, People's Republic of China. .,China-Canada-New Zealand Joint Laboratory of Maternal and Fetal Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
33
|
Laudanski P, Charkiewicz R, Tolwinska A, Szamatowicz J, Charkiewicz A, Niklinski J. Profiling of Selected MicroRNAs in Proliferative Eutopic Endometrium of Women with Ovarian Endometriosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:760698. [PMID: 26366419 PMCID: PMC4558423 DOI: 10.1155/2015/760698] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 04/02/2015] [Accepted: 04/20/2015] [Indexed: 12/14/2022]
Abstract
It has been well documented that aberrant expression of selected microRNAs (miRNAs) might contribute to the pathogenesis of disease. The aim of the present study is to compare miRNA expression by the most comprehensive locked-nucleic acid (LNA) miRNA microarray in eutopic endometrium of patients with endometriosis and control. In the study we recruited 21 patients with endometriosis and 25 were disease-free women. The miRNA expression profiles were determined using the LNA miRNA microarray and validated for selected molecules by real-time PCR. We identified 1198 human miRNAs significantly differentially altered in endometriosis versus control samples using false discovery rate of <5%. However only 136 miRNAs showed differential regulation by fold change of at least 1.3. By the use of selected statistical analysis we obtained 45 potential pathways that might play a role in the pathogenesis of endometriosis. We also found that natural killer cell mediated cytotoxicity pathway was found to be inhibited which is consistent with previous studies. There are several pathways that may be potentially dysregulated, due to abnormal miRNA expression, in eutopic endometrium of patients with endometriosis and in this way contribute to its pathogenesis.
Collapse
Affiliation(s)
- P. Laudanski
- Department of Perinatology, Medical University of Bialystok, Ulica Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - R. Charkiewicz
- Department of Clinical Molecular Biology, Medical University of Bialystok, Ul. Waszyngtona 13, 15-269 Bialystok, Poland
| | - A. Tolwinska
- Clinic “EDMED” Białystok, Ul. Piasta 14, 15-044 Bialystok, Poland
| | - J. Szamatowicz
- Department of Gynecology and Gynecological Oncology, Medical University of Bialystok, Ulica Marii Sklodowskiej-Curie 24a, 15-276 Bialystok, Poland
| | - A. Charkiewicz
- Department of Medical Pathomorphology, Medical University of Bialystok, Ul. Waszyngtona 13, 15-269 Bialystok, Poland
| | - J. Niklinski
- Department of Clinical Molecular Biology, Medical University of Bialystok, Ul. Waszyngtona 13, 15-269 Bialystok, Poland
| |
Collapse
|
34
|
Update on Biomarkers for the Detection of Endometriosis. BIOMED RESEARCH INTERNATIONAL 2015; 2015:130854. [PMID: 26240814 PMCID: PMC4512573 DOI: 10.1155/2015/130854] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/14/2015] [Indexed: 02/07/2023]
Abstract
Endometriosis is histologically characterized by the displacement of endometrial tissue to extrauterine locations including the pelvic peritoneum, ovaries, and bowel. An important cause of infertility and pelvic pain, the individual and global socioeconomic burden of endometriosis is significant. Laparoscopy remains the gold standard for the diagnosis of the condition. However, the invasive nature of surgery, coupled with the lack of a laboratory biomarker for the disease, results in a mean latency of 7–11 years from onset of symptoms to definitive diagnosis. Unfortunately, the delay in diagnosis may have significant consequences in terms of disease progression. The discovery of a sufficiently sensitive and specific biomarker for the nonsurgical detection of endometriosis promises earlier diagnosis and prevention of deleterious sequelae and represents a clear research priority. In this review, we describe and discuss the current status of biomarkers of endometriosis in plasma, urine, and endometrium.
Collapse
|
35
|
The Impact of Endometriosis across the Lifespan of Women: Foreseeable Research and Therapeutic Prospects. BIOMED RESEARCH INTERNATIONAL 2015; 2015:158490. [PMID: 26064879 PMCID: PMC4438168 DOI: 10.1155/2015/158490] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 01/12/2015] [Indexed: 12/21/2022]
Abstract
In addition to estrogen dependence, endometriosis is characterized by chronic pelvic inflammation. The impact of the chronic pelvic inflammatory state on other organ systems and women's health is unclear. Endometriosis associated chronic inflammation and potential adverse health effects across the lifespan render it imperative for renewed research vigor into the identification of novel biomarkers of disease and therapeutic options. Herein we propose a number of opportunities for research and development of new therapeutics to address the unmet needs in the treatment of endometriosis per se and its ancillary risks for other diseases in women across the lifespan.
Collapse
|
36
|
Okamoto M, Nasu K, Abe W, Aoyagi Y, Kawano Y, Kai K, Moriyama M, Narahara H. Enhanced miR-210 expression promotes the pathogenesis of endometriosis through activation of signal transducer and activator of transcription 3. Hum Reprod 2014; 30:632-41. [PMID: 25516558 DOI: 10.1093/humrep/deu332] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
STUDY QUESTION What are the roles of the microRNA miR-210-an miRNA that is up-regulated in endometriotic cyst stromal cells (ECSCs)-in the pathogenesis of endometriosis? SUMMARY ANSWER Up-regulated miR-210 expression in ECSCs is involved in their proliferation, resistance to apoptosis and angiogenesis through signal transducer and activator of transcription (STAT) 3. WHAT IS KNOWN ALREADY In the pathogenesis of endometriosis, a number of roles for microRNAs (miRNAs) are becoming apparent. STUDY DESIGN, SIZE, DURATION ECSCs and normal endometrial stromal cells (NESCs) were isolated from ovarian endometriotic tissues (patients aged 24-40 years undergoing salpingo-oophorectomy or evisceration for the treatment of ovarian endometriotic cysts, n = 10) and the eutopic endometrial tissues without endometriosis (premenopausal patients aged 35-45 years undergoing hysterectomies for subserousal leiomyoma, n = 13), respectively. PARTICIPANTS/MATERIALS, SETTING, METHODS We used a global gene expression microarray technique to identify downstream targets of miR-210, and we assessed the functions of miR-210 in the pathogenesis of endometriosis by using the miR-210-transfected NESCs. MAIN RESULTS AND THE ROLE OF CHANCE Gene expression microarray analysis revealed that one of the key target molecules of miR-210 is STAT3. In the NESCs, in comparison to the control, miR-210 transfection resulted in the induction of cell proliferation (P < 0.0005), the production of vascular endothelial cell growth factor (VEGF) (P < 0.0005) and the inhibition of apoptosis (P < 0.05) through STAT3 activation [increased levels of mRNA (P < 0.0005), and protein (P < 0.005)]. In the ECSCs, inhibitors of STAT3 inhibited the cell proliferation and VEGF production (P < 0.05), and induced the apoptosis of these cells (P < 0.05). LIMITATIONS, REASONS FOR CAUTION The roles of aberrant miR-210 expression were investigated only in the stromal component of ectopic and eutopic endometrium. Control endometrial tissues were obtained from premenopausal patients who had subserosal leiomyoma and NESC gene expression patterns may be altered in these women. Furthermore, the effects of STAT3 inhibitors were evaluated only in ECSCs and not in NESCs. WIDER IMPLICATIONS OF THE FINDINGS The present findings indicate that miR-210 induces NESCs to differentiate into the endometriotic phenotype and we speculate that up-regulated miR-210 expression in ECSCs is involved in the creation of the endometriosis-specific cellular dysfunctions through epigenetic mechanisms. The data indicate that STAT3 inhibitors may be promising candidates for the treatment of endometriosis. STUDY FUNDING/COMPETING INTERESTS This work was supported in part by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (no. 13237327 to K.N., no. 25861500 to Y.K. and no. 23592407 to H.N.). There are no conflicts of interest to declare.
Collapse
Affiliation(s)
- M Okamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - K Nasu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Hasama-machi, Yufu-shi, Oita 879-5593, Japan Division of Obstetrics and Gynecology, Support System for Community Medicine, Faculty of Medicine, Oita University, Yufu-shi, Oita 879-5593, Japan
| | - W Abe
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Y Aoyagi
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - Y Kawano
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - K Kai
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| | - M Moriyama
- Department of Molecular Pathology, Faculty of Medicine, Oita University, Yufu-shi, Oita 879-5593, Japan
| | - H Narahara
- Department of Obstetrics and Gynecology, Faculty of Medicine, Oita University, Hasama-machi, Yufu-shi, Oita 879-5593, Japan
| |
Collapse
|
37
|
Small RNA molecules in endometriosis: pathogenesis and therapeutic aspects. Eur J Obstet Gynecol Reprod Biol 2014; 183:83-8. [DOI: 10.1016/j.ejogrb.2014.10.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/06/2014] [Accepted: 10/22/2014] [Indexed: 12/28/2022]
|
38
|
Yin M, Wang X, Yao G, Lü M, Liang M, Sun Y, Sun F. Transactivation of micrornA-320 by microRNA-383 regulates granulosa cell functions by targeting E2F1 and SF-1 proteins. J Biol Chem 2014; 289:18239-57. [PMID: 24828505 DOI: 10.1074/jbc.m113.546044] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Our previous studies have shown that microRNA-320 (miR-320) is one of the most down-regulated microRNAs (miRNA) in mouse ovarian granulosa cells (GCs) after TGF-β1 treatment. However, the underlying mechanisms of miR-320 involved in GC function during follicular development remain unknown. In this study, we found that pregnant mare serum gonadotropin treatment resulted in the suppression of miR-320 expression in a time-dependent manner. miR-320 was mainly expressed in GCs and oocytes of mouse ovarian follicles in follicular development. Overexpression of miR-320 inhibited estradiol synthesis and proliferation of GCs through targeting E2F1 and SF-1. E2F1/SF-1 mediated miR-320-induced suppression of GC proliferation and of GC steroidogenesis. FSH down-regulated the expression of miR-320 and regulated the function of miR-320 in mouse GCs. miR-383 promoted the expression of miR-320 and enhanced miR-320-mediated suppression of GC proliferation. Injection of miR-320 into the ovaries of mice partially promoted the production of testosterone and progesterone but inhibited estradiol release in vivo. Moreover, the expression of miR-320 and miR-383 was up-regulated in the follicular fluid of polycystic ovarian syndrome patients, although the expression of E2F1 and SF-1 was down-regulated in GCs. These data demonstrated that miR-320 regulates the proliferation and steroid production by targeting E2F1 and SF-1 in the follicular development. Understanding the regulation of miRNA biogenesis and function in the follicular development will potentiate the usefulness of miRNA in the treatment of reproduction and some steroid-related disorders.
Collapse
Affiliation(s)
- Mianmian Yin
- From the Institute of Immunology and Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Biology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, the Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, and
| | - Xiaorong Wang
- From the Institute of Immunology and Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Biology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, the Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, and
| | - Guidong Yao
- the Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Mingrong Lü
- From the Institute of Immunology and Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Biology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, the Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, and
| | - Meng Liang
- From the Institute of Immunology and Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Biology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, the Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, and
| | - Yingpu Sun
- the Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Fei Sun
- From the Institute of Immunology and Chinese Academy of Sciences Key Laboratory of Innate Immunity and Chronic Disease, Innovation Center for Cell Biology, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei, Anhui 230027, the Hefei National Laboratory for Physical Sciences at Microscale, Hefei, Anhui 230027, and
| |
Collapse
|
39
|
Han SJ, O'Malley BW. The dynamics of nuclear receptors and nuclear receptor coregulators in the pathogenesis of endometriosis. Hum Reprod Update 2014; 20:467-84. [PMID: 24634322 DOI: 10.1093/humupd/dmu002] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Endometriosis is defined as the colonization and growth of endometrial tissue at anatomic sites outside the uterine cavity. Up to 15% of reproductive-aged women in the USA suffer from painful symptoms of endometriosis, such as infertility, pelvic pain, menstrual cycle abnormalities and increased risk of certain cancers. However, many of the current clinical treatments for endometriosis are not sufficiently effective and yield unacceptable side effects. There is clearly an urgent need to identify new molecular mechanisms that critically underpin the initiation and progression of endometriosis in order to develop more specific and effective therapeutics which lack the side effects of current therapies. The aim of this review is to discuss how nuclear receptors (NRs) and their coregulators promote the progression of endometriosis. Understanding the pathogenic molecular mechanisms for the genesis and maintenance of endometriosis as modulated by NRs and coregulators can reveal new therapeutic targets for alternative endometriosis treatments. METHODS This review was prepared using published gene expression microarray data sets obtained from patients with endometriosis and published literature on NRs and their coregulators that deal with endometriosis progression. Using the above observations, our current understanding of how NRs and NR coregulators are involved in the progression of endometriosis is summarized. RESULTS Aberrant levels of NRs and NR coregulators in ectopic endometriosis lesions are associated with the progression of endometriosis. As an example, endometriotic cell-specific alterations in gene expression are correlated with a differential methylation status of the genome compared with the normal endometrium. These differential epigenetic regulations can generate favorable cell-specific NR and coregulator milieus for endometriosis progression. Genetic alterations, such as single nucleotide polymorphisms and insertion/deletion polymorphisms of NR and coregulator genes, are frequently detected in ectopic lesions compared with the normal endometrium. These genetic variations impart new molecular properties to NRs and coregulators to increase their capacity to stimulate progression of endometriosis. Finally, post-translational modifications of NR coregulators, such as proteolytic processing, generate endometriosis-specific isoforms. Compared with the unmodified coregulators, these coregulator isoforms have unique functions that enhance the pathogenesis of endometriosis. CONCLUSIONS Epigenetic/genetic variations and posttranslational modifications of NRs and coregulators alter their original function so that they become potent 'drivers' of endometriosis progression.
Collapse
Affiliation(s)
- Sang Jun Han
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|