1
|
Wan Y, Li G, Cui G, Duan S, Chang S. Reprogramming of Thyroid Cancer Metabolism: from Mechanism to Therapeutic Strategy. Mol Cancer 2025; 24:74. [PMID: 40069775 PMCID: PMC11895238 DOI: 10.1186/s12943-025-02263-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 02/06/2025] [Indexed: 03/15/2025] Open
Abstract
Thyroid cancer as one of the most prevalent malignancies of endocrine system, has raised public concern and more research on its mechanism and treatment. And metabolism-based therapies have advanced rapidly, for the exclusive metabolic profiling of thyroid cancer. In thyroid cancer cells, plenty of metabolic pathways are reprogrammed to accommodate tumor microenvironment. In this review, we initiatively summarize recent progress in the full-scale thyroid cancer metabolic rewiring and the interconnection of various metabolites. We also discuss the efficacy and prospect of metabolic targeted detection as well as therapy. Comprehending metabolic mechanism and characteristics of thyroid cancer roundly will be highly beneficial to managing individual patients.
Collapse
Affiliation(s)
- Yuxuan Wan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Guoqing Li
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Gaoyuan Cui
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Saili Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Department of Cancer Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
2
|
Eilsberger F, Kreissl MC, Luster M, Pfestroff A. [Therapy concepts for thyroid carcinoma]. Laryngorhinootologie 2023. [PMID: 37011888 DOI: 10.1055/a-1861-7379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Theranostics via the sodium iodide symporter (NIS) offer a unique option in differentiated thyroid carcinoma. The diagnostic and therapeutic nuclides have similar uptake and kinetics, making the NIS the most important theranostic target in this disease. Radioiodine refractory thyroid carcinomas (RRTC) are characterised by reduced/absent NIS expression, thus eliminating this structure as a theranostic target. Also due to limited therapeutic options, there are approaches to generate new theranostic targets in RRTC, via the expression of somatostatin receptors (SSTR) or the prostate-specific membrane antigen (PSMA), but the current evidence does not yet allow a final evaluation of the prospects of success.
Collapse
Affiliation(s)
| | - Michael C Kreissl
- Abteilung für Nuklearmedizin, Universitatsklinikum Magdeburg, Magdeburg, Germany
| | - Markus Luster
- Nuclearmedicine, University of Marburg, Marburg, Germany
| | - Andreas Pfestroff
- Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg, Germany
| |
Collapse
|
3
|
Yu ZY, Li HJ, Wang M, Luo WZ, Xue YK. GDNF regulates lipid metabolism and glioma growth through RET/ERK/HIF‑1/SREBP‑1. Int J Oncol 2022; 61:109. [PMID: 35894143 PMCID: PMC9436484 DOI: 10.3892/ijo.2022.5399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/08/2022] [Indexed: 11/08/2022] Open
Abstract
Cancer cells rewire their metabolism to meet the demands of growth and survival and this metabolic reprogramming has been recognized as an emerging hallmark of cancer. However, the respective mechanisms remain elusive and the contribution of aberrant lipid metabolism to the malignant phenotypes of glioma are unclear. The present study demonstrated that glial‑derived neurotrophic factor (GDNF) is highly expressed in glioma and associated with poor clinical outcomes. In addition, there was a significant correlation between GDNF/rearranged during transfection (RET)/ERK signaling and sterol regulatory element‑binding protein‑1 (SREBP‑1) expression in glioma cells. Pharmacological or genetic inhibition of GDNF‑induced RET/ERK activity downregulated SREBP‑1 expression and SREBP‑1‑mediated transcription of lipogenic genes. Additionally, GDNF regulated SREBP‑1 activity by promoting hypoxia‑inducible factor‑1α (HIF‑1α) mediated glucose absorption and hexosamine biosynthetic pathway mediated SREBP cleavage‑activating protein N‑glycosylation. In addition, the inhibition of SREBP‑1 reduced the in vitro GDNF‑induced glioma cell proliferation. The results elucidated the complex relationship between GDNF/RET/ERK signaling and dysregulated glycolipid‑metabolism, which shows great potential to uncover novel metabolic vulnerabilities and improve the efficacy of targeted therapies.
Collapse
Affiliation(s)
- Zhi-Yun Yu
- Correspondence to: Dr Zhi-Yun Yu or Dr Ya-Ke Xue, Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe Dong Road, Zhengzhou, Henan 450000, P.R. China, E-mail: E-mail:
| | | | - Meng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Wen-Zheng Luo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| | - Ya-Ke Xue
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450000, P.R. China
| |
Collapse
|
4
|
Efficacy of Combination Therapy with Lenvatinib and Radioactive Iodine in Thyroid Cancer Preclinical Model. Int J Mol Sci 2022; 23:ijms23179872. [PMID: 36077268 PMCID: PMC9456011 DOI: 10.3390/ijms23179872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Patients with differentiated thyroid cancer (DTC) usually have good prognosis, while those with advanced disease have poor clinical outcomes. This study aimed to investigate the antitumor effects of combination therapy with lenvatinib and 131I (CTLI) using three different types of DTC cell lines with different profiling of sodium iodide symporter (NIS) status. The radioiodine accumulation study revealed a significantly increased radioiodine uptake in K1-NIS cells after lenvatinib treatment, while there was almost no uptake in K1 and FTC-133 cells. However, lenvatinib administration before radioiodine treatment decreased radioiodine uptake of K1-NIS xenograft tumor in the in vivo imaging study. CTLI synergistically inhibited colony formation and DTC cell migration, especially in K1-NIS cells. Finally, 131I treatment followed by lenvatinib administration significantly inhibited tumor growth of the NIS-expressing thyroid cancer xenograft model. These results provide important clinical implications for the combined therapy that lenvatinib should be administered after 131I treatment to maximize the treatment efficacy. Our synergistic treatment effects by CTLI suggested its effectiveness for RAI-avid thyroid cancer, which retains NIS function. This potential combination therapy suggests a powerful and tolerable new therapeutic strategy for advanced thyroid cancer.
Collapse
|
5
|
Eilsberger F, Kreissl MC, Luster M, Pfestroff A. [Therapy concepts for thyroid carcinoma]. Nuklearmedizin 2022; 61:223-230. [PMID: 34644802 DOI: 10.1055/a-1650-9762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Theranostics via the sodium iodide symporter (NIS) offer a unique option in differentiated thyroid carcinoma. The diagnostic and therapeutic nuclides have similar uptake and kinetics, making the NIS the most important theranostic target in this disease. Radioiodine refractory thyroid carcinomas (RRTC) are characterised by reduced/absent NIS expression, thus eliminating this structure as a theranostic target. Also due to limited therapeutic options, there are approaches to generate new theranostic targets in RRTC, via the expression of somatostatin receptors (SSTR) or the prostate-specific membrane antigen (PSMA), but the current evidence does not yet allow a final evaluation of the prospects of success.
Collapse
Affiliation(s)
| | - Michael C Kreissl
- Abteilung für Nuklearmedizin, Universitatsklinikum Magdeburg, Magdeburg, Germany
| | - Markus Luster
- Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg, Germany
| | - Andreas Pfestroff
- Klinik für Nuklearmedizin, Universitätsklinikum Marburg, Marburg, Germany
| |
Collapse
|
6
|
Emberley E, Pan A, Chen J, Dang R, Gross M, Huang T, Li W, MacKinnon A, Singh D, Sotirovska N, Steggerda SM, Wang T, Parlati F. The glutaminase inhibitor telaglenastat enhances the antitumor activity of signal transduction inhibitors everolimus and cabozantinib in models of renal cell carcinoma. PLoS One 2021; 16:e0259241. [PMID: 34731180 PMCID: PMC8565744 DOI: 10.1371/journal.pone.0259241] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/16/2021] [Indexed: 12/26/2022] Open
Abstract
Dysregulated metabolism is a hallmark of cancer that manifests through alterations in bioenergetic and biosynthetic pathways to enable tumor cell proliferation and survival. Tumor cells exhibit high rates of glycolysis, a phenomenon known as the Warburg effect, and an increase in glutamine consumption to support the tricarboxylic acid (TCA) cycle. Renal cell carcinoma (RCC) tumors express high levels of glutaminase (GLS), the enzyme required for the first step in metabolic conversion of glutamine to glutamate and the entry of glutamine into the TCA cycle. We found that RCC cells are highly dependent on glutamine for proliferation, and this dependence strongly correlated with sensitivity to telaglenstat (CB-839), an investigational, first-in-class, selective, orally bioavailable GLS inhibitor. Metabolic profiling of RCC cell lines treated with telaglenastat revealed a decrease in glutamine consumption, which was concomitant with a decrease in the production of glutamate and other glutamine-derived metabolites, consistent with GLS inhibition. Treatment of RCC cells with signal transduction inhibitors everolimus (mTOR inhibitor) or cabozantinib (VEGFR/MET/AXL inhibitor) in combination with telaglenastat resulted in decreased consumption of both glucose and glutamine and synergistic anti-proliferative effects. Treatment of mice bearing Caki-1 RCC xenograft tumors with cabozantinib plus telaglenastat resulted in reduced tumor growth compared to either agent alone. Enhanced anti-tumor activity was also observed with the combination of everolimus plus telaglenastat. Collectively, our results demonstrate potent, synergistic, anti-tumor activity of telaglenastat plus signal transduction inhibitors cabozantinib or everolimus via a mechanism involving dual inhibition of glucose and glutamine consumption.
Collapse
Affiliation(s)
- Ethan Emberley
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Alison Pan
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Jason Chen
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Rosalyn Dang
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Matt Gross
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Tony Huang
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Weiqun Li
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Andrew MacKinnon
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Devansh Singh
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Natalija Sotirovska
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | | | - Tracy Wang
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
| | - Francesco Parlati
- Calithera Biosciences, Inc., South San Francisco, CA, United States of America
- * E-mail:
| |
Collapse
|
7
|
Cai X, Wang R, Tan J, Meng Z, Li N. Mechanisms of regulating NIS transport to the cell membrane and redifferentiation therapy in thyroid cancer. Clin Transl Oncol 2021; 23:2403-2414. [PMID: 34100218 DOI: 10.1007/s12094-021-02655-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/28/2021] [Indexed: 11/29/2022]
Abstract
Iodine is an essential constituent of thyroid hormone. Active iodide accumulation in the thyroid is mediated by the sodium iodide symporter (NIS), comprising the first step in thyroid hormone biosynthesis, which relies on the functional expression of NIS on the cell membrane. The retention of NIS expressed in differentiated thyroid cancer (DTC) cells allows further treatment with post-operative radioactive iodine (RAI) therapy. However, compared with normal thyroid tissue, differentiated thyroid tumors usually show a decrease in the active iodide conveyance and NIS is generally retained within the cells, indicating that posttranslational protein transfer to the plasma membrane is abnormal. In recent years, through in vitro studies and studies of patients with DTC, various methods have been tested to increase the transport rate of NIS to the cell membrane and increase the absorption of iodine. An in-depth understanding of the mechanism of NIS transport to the plasma membrane could lead to improvements in RAI therapy. Therefore, in this review, we discuss the current knowledge concerning the post-translational mechanisms that regulate NIS transport to the cell membrane and the current status of redifferentiation therapy for patients with RAI-refractory (RAIR)-DTC.
Collapse
Affiliation(s)
- X Cai
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - R Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| | - J Tan
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Z Meng
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - N Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, China
| |
Collapse
|
8
|
Oh JM, Ahn BC. Molecular mechanisms of radioactive iodine refractoriness in differentiated thyroid cancer: Impaired sodium iodide symporter (NIS) expression owing to altered signaling pathway activity and intracellular localization of NIS. Theranostics 2021; 11:6251-6277. [PMID: 33995657 PMCID: PMC8120202 DOI: 10.7150/thno.57689] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
The advanced, metastatic differentiated thyroid cancers (DTCs) have a poor prognosis mainly owing to radioactive iodine (RAI) refractoriness caused by decreased expression of sodium iodide symporter (NIS), diminished targeting of NIS to the cell membrane, or both, thereby decreasing the efficacy of RAI therapy. Genetic aberrations (such as BRAF, RAS, and RET/PTC rearrangements) have been reported to be prominently responsible for the onset, progression, and dedifferentiation of DTCs, mainly through the activation of mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K)/AKT signaling pathways. Eventually, these alterations result in a lack of NIS and disabling of RAI uptake, leading to the development of resistance to RAI therapy. Over the past decade, promising approaches with various targets have been reported to restore NIS expression and RAI uptake in preclinical studies. In this review, we summarized comprehensive molecular mechanisms underlying the dedifferentiation in RAI-refractory DTCs and reviews strategies for restoring RAI avidity by tackling the mechanisms.
Collapse
|
9
|
Luo Q, Guo F, Fu Q, Sui G. hsa_circ_0001018 promotes papillary thyroid cancer by facilitating cell survival, invasion, G 1/S cell cycle progression, and repressing cell apoptosis via crosstalk with miR-338-3p and SOX4. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 24:591-609. [PMID: 33898108 PMCID: PMC8054110 DOI: 10.1016/j.omtn.2021.02.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/19/2021] [Indexed: 11/26/2022]
Abstract
We identified a novel interactome, circ_0001018/miR-338-3p/SOX4, in papillary thyroid cancer (PTC), and we intended to confirm the regulatory relationship between the three and to study the effects of the three in PTC. The bioinformatics method was used to screen out the circular RNA and mRNA of interest. A cellular fractionation assay and fluorescence in situ hybridization (FISH) assay were conducted to prove that circ_0001018 and CCT4 (the host gene of circ_0001018) mRNA primarily localized in the cytoplasm of PTC cell lines. By qRT-PCR analysis, the expression of circ_0001018 and SOX4 mRNA was found upregulated while the expression of miR-338-3p was found downregulated in PTC tissues and cells. circ_0001018 silence significantly inhibited the tumor growth in xenografted nude mice. A series of cytological experiments such as a Cell Counting Kit-8 (CCK-8) assay, a 5-ethynyl-2′-deoxyuridine (EdU) assay, cell cycle profiling, wound healing, a transwell assay, and cell apoptosis were conducted and showed that circ_0001018 and SOX4 promoted cell proliferation, migration, and invasion, inhibited cell apoptosis, and reduced the cell cycle arrest at the G1 phase in PTC cells. Compared with circ_0001018 and SOX4, miR-338-3p held the opposite function. The regulatory relationship between circ_0001018 and miR-338-3p, and between miR-338-3p and SOX4 mRNA, was validated using a luciferase reporter gene assay and/or RNA immunoprecipitation (RIP assay). Our findings showed that circ_0001018 acted as the tumor promoter via sponging miR-338-3p to elevate SOX4 expression level in PTC. Importantly, this novel circ_0001018/miR-338-3p/SOX4 axis has the potential to be considered as a therapy target for PTC.
Collapse
Affiliation(s)
- Qiang Luo
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| | - Feng Guo
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| | - Qingfeng Fu
- Jilin Provincial Key Laboratory of Surgical Translational Medicine, Division of Thyroid Surgery, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| | - Guoqing Sui
- Department of Ultrasound, China-Japan Union Hospital of Jilin University, No. 126 Xiantai Street, Changchun 130033, Jilin, China
| |
Collapse
|
10
|
Choi YJ, Lee JE, Ji HD, Lee BR, Lee SB, Kim KS, Lee IK, Chin J, Cho SJ, Lee J, Lee SW, Ha JH, Jeon YH. Tunicamycin as a Novel Redifferentiation Agent in Radioiodine Therapy for Anaplastic Thyroid Cancer. Int J Mol Sci 2021; 22:ijms22031077. [PMID: 33499100 PMCID: PMC7865976 DOI: 10.3390/ijms22031077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
The silencing of thyroid-related genes presents difficulties in radioiodine therapy for anaplastic thyroid cancers (ATCs). Tunicamycin (TM), an N-linked glycosylation inhibitor, is an anticancer drug. Herein, we investigated TM-induced restoration of responsiveness to radioiodine therapy in radioiodine refractory ATCs. 125I uptake increased in TM-treated ATC cell lines, including BHT101 and CAL62, which was inhibited by KClO4, a sodium-iodide symporter (NIS) inhibitor. TM upregulated the mRNA expression of iodide-handling genes and the protein expression of NIS. TM blocked pERK1/2 phosphorylation in both cell lines, but AKT (protein kinase B) phosphorylation was only observed in CAL62 cells. The downregulation of glucose transporter 1 protein was confirmed in TM-treated cells, with a significant reduction in 18F-fluorodeoxyglucose (FDG) uptake. A significant reduction in colony-forming ability and marked tumor growth inhibition were observed in the combination group. TM was revealed to possess a novel function as a redifferentiation inducer in ATC as it induces the restoration of iodide-handling gene expression and radioiodine avidity, thereby facilitating effective radioiodine therapy.
Collapse
Affiliation(s)
- Yoon Ju Choi
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41566, Korea; (Y.J.C.); (H.D.J.); (J.L.)
- Department of pharmacology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| | - Jae-Eon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41404, Korea; (J.-E.L.); (B.-R.L.); (K.S.K.)
| | - Hyun Dong Ji
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41566, Korea; (Y.J.C.); (H.D.J.); (J.L.)
- Department of pharmacology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
| | - Bo-Ra Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41404, Korea; (J.-E.L.); (B.-R.L.); (K.S.K.)
| | - Sang Bong Lee
- Vaccine Commerialization Center, Gyeongbuk Institute for Bioindustry, 88, Saneodanjigil, Pungsan-eup, Andong-si, Gyeongbuk 36618, Korea;
| | - Kil Soo Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41404, Korea; (J.-E.L.); (B.-R.L.); (K.S.K.)
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea
| | - In-Kyu Lee
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea
- Research Institute of Aging and Metabolism, Kyungpook National University, Daegu 41404, Korea
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41404, Korea; (J.C.); (S.J.C.)
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41404, Korea; (J.C.); (S.J.C.)
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41566, Korea; (Y.J.C.); (H.D.J.); (J.L.)
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41566, Korea; (Y.J.C.); (H.D.J.); (J.L.)
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea
- Correspondence: (S.-W.L.); (J.-H.H.); (Y.H.J.); Tel.: +82-53-200-2851 (S.-W.L.); +82-53-950-4232 (J.-H.H.); +82-10-2455-6046 or +82-53-200-3149 (Y.H.J.)
| | - Jeoung-Hee Ha
- Department of pharmacology, School of Medicine, Kyungpook National University, Daegu 41405, Korea
- Correspondence: (S.-W.L.); (J.-H.H.); (Y.H.J.); Tel.: +82-53-200-2851 (S.-W.L.); +82-53-950-4232 (J.-H.H.); +82-10-2455-6046 or +82-53-200-3149 (Y.H.J.)
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41404, Korea; (J.-E.L.); (B.-R.L.); (K.S.K.)
- Leading-Edge Research Center for Drug Discovery and Development for Diabetes and Metabolic Disease, Kyungpook National University Hospital, Daegu 41404, Korea
- Correspondence: (S.-W.L.); (J.-H.H.); (Y.H.J.); Tel.: +82-53-200-2851 (S.-W.L.); +82-53-950-4232 (J.-H.H.); +82-10-2455-6046 or +82-53-200-3149 (Y.H.J.)
| |
Collapse
|
11
|
Suzuki K, Iwai H, Utsunomiya K, Kono Y, Kobayashi Y, Van Bui D, Sawada S, Yun Y, Mitani A, Kondo N, Katano T, Tanigawa N, Akama T, Kanda A. Combination therapy with lenvatinib and radiation significantly inhibits thyroid cancer growth by uptake of tyrosine kinase inhibitor. Exp Cell Res 2020; 398:112390. [PMID: 33227314 DOI: 10.1016/j.yexcr.2020.112390] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 01/07/2023]
Abstract
Although surgical treatment cures >90% of differentiated thyroid cancer (DTC) patients, the remaining patients, including advanced DTC cases, have poor clinical outcomes. These patients with inoperable disease have only two choices of radioactive iodine therapy and tyrosine kinase inhibitors such as lenvatinib, which have a high incidence of treatment-related adverse events and can only prolong progression free survival by approximately 5-15 months. In this study, we investigated the antitumor effects of combination therapy with lenvatinib and radiation (CTLR) for DTC. CTLR synergistically inhibited cell replication and colony formation in vitro and tumor growth in nude mice without apparent toxicities and suppressed the expression of proliferation marker (Ki-67). CTLR also induced apoptosis and G2/M phase cell cycle arrest. Moreover, quantitative analysis of the intracellular uptake of lenvatinib using liquid chromatography and mass spectrometry demonstrated that intracellular uptake of lenvatinib was significantly increased 48 h following irradiation. These data suggest that increased membrane permeability caused by irradiation increases the intracellular concentration of levatinib, contributing to the synergistic effect. This mechanism-based potential of combination therapy suggests a powerful new therapeutic strategy for advanced thyroid cancer with fewer side effects and might be a milestone for developing a regimen in clinical practice.
Collapse
Affiliation(s)
- Kensuke Suzuki
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Hiroshi Iwai
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan.
| | - Keita Utsunomiya
- Department of Radiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Yumiko Kono
- Department of Radiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Yoshiki Kobayashi
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Dan Van Bui
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Shunsuke Sawada
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Yasutaka Yun
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Akitoshi Mitani
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Naoyuki Kondo
- Department of Molecular Genetics, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Tayo Katano
- Department of Medical Chemistry, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Noboru Tanigawa
- Department of Radiology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Tomoya Akama
- Department of Pharmacology, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| | - Akira Kanda
- Department of Otolaryngology, Head and Neck Surgery, Kansai Medical University, 2-5-1 Shin-machi, Hirakata, Osaka, 573-1010, Japan
| |
Collapse
|
12
|
Fu H, Cheng L, Sa R, Jin Y, Chen L. Combined tazemetostat and MAPKi enhances differentiation of papillary thyroid cancer cells harbouring BRAF V600E by synergistically decreasing global trimethylation of H3K27. J Cell Mol Med 2020; 24:3336-3345. [PMID: 31970877 PMCID: PMC7131946 DOI: 10.1111/jcmm.15007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 01/16/2023] Open
Abstract
Clinical efficacy of differentiation therapy with mitogen-activated protein kinase inhibitors (MAPKi) for lethal radioiodine-refractory papillary thyroid cancer (RR-PTC) urgently needs to be improved and the aberrant trimethylation of histone H3 lysine 27 (H3K27) plays a vital role in BRAFV600E -MAPK-induced cancer dedifferentiation and drug resistance. Therefore, dual inhibition of MAPK and histone methyltransferase (EZH2) may produce more favourable treatment effects. In this study, BRAFV600E -mutant (BCPAP and K1) and BRAF-wild-type (TPC-1) PTC cells were treated with MAPKi (dabrafenib or selumetinib) or EZH2 inhibitor (tazemetostat), or in combination, and the expression of iodine-metabolizing genes, radioiodine uptake, and toxicity were tested. We found that tazemetostat alone slightly increased iodine-metabolizing gene expression and promoted radioiodine uptake and toxicity, irrespective of the BRAF status. However, MAPKi induced these effects preferentially in BRAFV600E mutant cells, which was robustly strengthened by tazemetostat incorporation. Mechanically, MAPKi-induced decrease of trimethylation of H3K27 was evidently intensified by tazemetostat in BRAFV600E -mutant cells. In conclusion, tazemetostat combined with MAPKi enhances differentiation of PTC cells harbouring BRAFV600E through synergistically decreasing global trimethylation of H3K27, representing a novel differentiation strategy.
Collapse
Affiliation(s)
- Hao Fu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ri Sa
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
13
|
Son SH, Gangadaran P, Ahn BC. A novel strategy of transferring NIS protein to cells using extracellular vesicles leads to increase in iodine uptake and cytotoxicity. Int J Nanomedicine 2019; 14:1779-1787. [PMID: 30880979 PMCID: PMC6413815 DOI: 10.2147/ijn.s189738] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND This study was designed to explore a novel approach for transferring NIS protein to cells using extracellular vesicle (EV) and enhancing iodine avidity in hepatocellular carcinoma (HCC) cells. METHODS We transfected the HCC cells (Huh7) with NIS gene, designated as Huh7/NIS, and isolated the EVs from them. Presence of NIS protein in EVs and EV-mediated transport of NIS protein to recipient Huh7 cells were tested using Western blotting. We also examined radioiodine uptake in Huh7 cells treated with EV-Huh7/NIS. RESULTS Successful transfer of NIS protein into Huh7 cells was confirmed by WB and microscopy. EVs showed high levels of NIS protein in them. Treatment of Huh7 cells with EV-Huh7/NIS increased the NIS protein level and enhanced 125I uptake in recipient Huh7 cells. In addition, EV-huh7/NIS pre-treatment enhanced the cytotoxicity of 131I therapy against Huh7 cells by inducing increased DNA damage/increased γH2A.X foci formation. CONCLUSION This is the first-of-its-kind demonstration of successful transportation of the NIS protein to cells via EVs, which increased radioiodine uptake. This approach can revert radioiodine-resistant cancers into radioiodine-sensitive cancers.
Collapse
Affiliation(s)
- Seung Hyun Son
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea,
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea,
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu, Republic of Korea,
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu, Republic of Korea,
| |
Collapse
|
14
|
MAPK Inhibitors Enhance HDAC Inhibitor-Induced Redifferentiation in Papillary Thyroid Cancer Cells Harboring BRAF V600E: An In Vitro Study. MOLECULAR THERAPY-ONCOLYTICS 2019; 12:235-245. [PMID: 30847387 PMCID: PMC6389779 DOI: 10.1016/j.omto.2019.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/28/2019] [Indexed: 12/18/2022]
Abstract
Clinical efficacy of redifferentiation therapy with histone deacetylase inhibitor (HDACi) for lethal radioiodine-refractory papillary thyroid cancer (RR-PTC) is urgently needed to be improved. Given that the impairment of histone acetylation is a mechanism in BRAFV600E-mitogen-activated protein kinase (MAPK)-induced aberrant silencing of thyroid iodine-metabolizing genes, dual inhibition of HDAC and MAPK may produce a more favorable effect. In this study, we treated BRAFV600E-mutant (BCPAP and K1) and BRAF-wild-type (BHP 2-7) cells with HDACi (panobinostat) and MAPK inhibitor (dabrafenib or selumetinib), alone or in combination, and we tested the expression of iodine- and glucose-metabolizing genes, radioiodine uptake and efflux, and toxicity. We found that panobinostat alone increased iodine-metabolizing gene expression, promoted radioiodine uptake and toxicity, and suppressed GLUT1 expression in all the cells. However, MAPKi (dabrafenib or selumetinib) induced these effects only in BRAFV600E-mutant cells. Combined treatment with panobinostat and MAPKi (dabrafenib or selumetinib) displayed a more robust BRAFV600E-dependent redifferentiation effect than panobinostat alone via further improving the acetylation level of histone at the sodium-iodide symporter (NIS) promoter. In conclusion, MAPK inhibitors enhance HDACi-induced redifferentiation in PTC cells harboring BRAFV600E, warranting animal and clinical trials.
Collapse
|
15
|
Jin Y, Van Nostrand D, Cheng L, Liu M, Chen L. Radioiodine refractory differentiated thyroid cancer. Crit Rev Oncol Hematol 2018; 125:111-120. [PMID: 29650270 DOI: 10.1016/j.critrevonc.2018.03.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 01/22/2018] [Accepted: 03/21/2018] [Indexed: 12/17/2022] Open
Abstract
Differentiated thyroid cancer (DTC) is usually curable with surgery, radioactive iodine (RAI), and thyroid-stimulating hormone (TSH) suppression. However, local recurrence and/or distant metastases occur in approximately 15% of cases during follow-up, and nearly two-thirds of these patients will become RAI-refractory (RR-DTC) with a poor prognosis. This review focuses on the most challenging and rapidly evolving aspects of RR-DTC, and we discuss the considerable improvement in more accurately defining RR-DTC, more effective therapeutic strategies, and describe the diagnosis, pathogenesis, and future prospects of RR-DTC. Along with the detection of serum thyroglobulin and anatomic imaging modalities, such as ultrasound and computer tomography, radionuclide molecular imaging plays a vital role in the evaluation of RR-DTC. In addition, continual progress has been made in the management of RR-DTC, including watchful waiting under appropriate TSH suppression, local treatment approaches, and systemic therapies (molecular targeted therapy, redifferentiation therapy, gene therapy, and cancer immunotherapy). These all hold promise to change the natural history of RR-DTC.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Douglas Van Nostrand
- MedStar Health Research Institute and Washington Hospital Center, Washington, DC, 20010, United States.
| | - Lingxiao Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, People's Republic of China.
| |
Collapse
|
16
|
Predicting 131I-avidity of metastases from differentiated thyroid cancer using 18F-FDG PET/CT in postoperative patients with elevated thyroglobulin. Sci Rep 2018. [PMID: 29531251 PMCID: PMC5847528 DOI: 10.1038/s41598-018-22656-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The quantitative relationship between iodine and glucose metabolism in metastases from differentiated thyroid cancer (DTC) remains unknown. Aim of the prospective study was to establish the value of 18F-FDG PET/CT in predicting 131I-avidity of metastases from DTC before the first radioiodine therapy. A total of 121 postoperative DTC patients with elevated stimulated serum thyroglobulin (ssTg) who underwent 131I adjuvant therapy or therapy after 18F-FDG PET/CT scan were enrolled. The Receiver operating characteristic curve was established to create an optimal cut-off point and evaluate the value of SUVmax for predicting 131I-avidity. In our study, the median SUVmax in 131I-nonavid metastatic target lesions was also significantly higher than that in 131I-avid metastatic target lesions (5.37 vs. 3.30; P = 0.000). At a cut-off value of 4.0 in SUVmax, the area under curve was 0.62 with the sensitivity, specificity, positive predictive value and negative predictive value of 75.3%, 56.7%, 76.1%, and 54.8%, respectively. These results suggest that 18F-FDG PET/CT may be of great value in identifying metastases in postoperative DTC patients with elevated ssTg before 131I administration, leading to an improved management of disease. 18F-FDG positive metastatic DTC with SUVmax of greater than 4.0 possesses higher probability of non-avidity to radioiodine.
Collapse
|
17
|
Oh JM, Kalimuthu S, Gangadaran P, Baek SH, Zhu L, Lee HW, Rajendran RL, Hong CM, Jeong SY, Lee SW, Lee J, Ahn BC. Reverting iodine avidity of radioactive-iodine refractory thyroid cancer with a new tyrosine kinase inhibitor (K905-0266) excavated by high-throughput NIS (sodium iodide symporter) enhancer screening platform using dual reporter gene system. Oncotarget 2018; 9:7075-7087. [PMID: 29467951 PMCID: PMC5805537 DOI: 10.18632/oncotarget.24159] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/21/2017] [Indexed: 11/25/2022] Open
Abstract
Radioactive-iodine (RAI) therapy is typically unprevailing as anaplastic thyroid cancer (ATC) management, owing to the decrease in the endogenous sodium iodide symporter (NIS) expression. Therefore, new strategies for NIS re-induction are required to improve the efficacy of RAI therapy in ATC. In this study, we developed a novel high-throughput NIS enhancer screening platform using a dual reporter gene system to identify a potent tyrosine kinase inhibitor (TKI) and selected a new hit compound, K905-0266 TKI. The effects of K905-0266 TKI treatment was validated as RAI accumulation, changes in signalling pathway related to thyroid pathogenesis, and cytotoxicity of RAI depending on re-induction of endogenous NIS expression in ATC. Furthermore, we evaluated enhancement of NIS promoter and therapeutic efficacy of RAI in ATC tumour xenograft mice. After K905-0266 TKI treatment, the expression of endogenous NIS was significantly increased, while phosphorylated-ERK was decreased. In addition, the thyroid-metabolising protein expressions were upregulated and increased of RAI accumulation and its therapeutic effects in ATC. Moreover, K905-0266 TKI increased therapeutic efficacy of RAI in ATC tumour in vivo. In conclusion, we successfully established a novel high-throughput NIS enhancer screening platform to excavate a NIS enhancer and identified K905-0266 TKI among TKI candidates and it's proven to increase the endogenous NIS expression and therapeutic efficacy of RAI in ATC. These findings suggest that a novel high-throughput NIS enhancer screening platform is useful for selecting of NIS promoter enhancers. In addition, K905-0266 TKI can be used to re-induce endogenous NIS expression and recover RAI therapy in ATC.
Collapse
Affiliation(s)
- Ji Min Oh
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| | - Senthilkumar Kalimuthu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| | - Se Hwan Baek
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| | - Liya Zhu
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| | - Ho Won Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| | - Chae Moon Hong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| | - Shin Young Jeong
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| | - Sang-Woo Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University School of Medicine and Hospital, Daegu 41944, Republic of Korea
| |
Collapse
|
18
|
Cheng L, Jin Y, Liu M, Ruan M, Chen L. HER inhibitor promotes BRAF/MEK inhibitor-induced redifferentiation in papillary thyroid cancer harboring BRAFV600E. Oncotarget 2017; 8:19843-19854. [PMID: 28423638 PMCID: PMC5386727 DOI: 10.18632/oncotarget.15773] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/24/2017] [Indexed: 01/07/2023] Open
Abstract
Redifferentiation therapy with BRAF/MEK inhibitors to facilitate treatment with radioiodine represents a good choice for radioiodine-refractory differentiated thyroid carcinoma, but recent initial clinical outcomes were modest. MAPK rebound caused by BRAF/MEK inhibitors-induced activation of HER2/HER3 is a resistance mechanism, and combination with HER inhibitor to prevent MAPK rebound may sensitize BRAFV600E-mutant thyroid cancer cells to redifferentiation therapy. To evaluate if inhibiting both BRAF/MEK and HER can produce stronger redifferetiation effect, we tested the effects of BRAF/MEK inhibitor dabrafenib/selumetinib alone or in combination with HER inhibitor lapatinib on the expression and function of iodine- and glucose-handling genes in BRAFV600E-positive BCPAP and K1 cells, using BHP 2-7 cells harboring RET/PTC1 rearrangement as control. Herein, we showed that lapatinib prevented MAPK rebound and sensitized BRAFV600E-positive papillary thyroid cancer cells to BRAF/MEK inhibitors. Dabrafenib/selumetinib alone increased iodine-uptake and toxicity and suppressed glucose-metablism in BRAFV600E-positive papillary thyroid cancer cells. When lapatinib was added, more significant effects on iodine- and glucose-handling gene expression, cell membrane location of sodium/iodine symporter as well as radioiodine uptake and toxicity were observed. Thus, combined therapy using HER inhibitor and BRAF/MEK inhibitor presented more significant redifferentiation effect on papillary thyroid cancer cells harboring BRAFV600E than BRAF/MEK inhibitor alone. In vivo and clinical studies assessing such combined targeted redifferentiation strategy were warranted.
Collapse
Affiliation(s)
- Lingxiao Cheng
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yuchen Jin
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Min Liu
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Maomei Ruan
- Department of Nuclear Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Libo Chen
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
19
|
Wei WJ, Sun ZK, Shen CT, Song HJ, Zhang XY, Qiu ZL, Luo QY. Obatoclax and LY3009120 Efficiently Overcome Vemurafenib Resistance in Differentiated Thyroid Cancer. Am J Cancer Res 2017; 7:987-1001. [PMID: 28382170 PMCID: PMC5381260 DOI: 10.7150/thno.17322] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/31/2016] [Indexed: 12/11/2022] Open
Abstract
Although the prognosis of differentiated thyroid cancer (DTC) is relatively good, 30-40% of patients with distant metastases develop resistance to radioactive iodine therapy due to tumor dedifferentiation. For DTC patients harboring BRAFV600E mutation, Vemurafenib, a BRAF kinase inhibitor, has dramatically changed the therapeutic landscape, but side effects and drug resistance often lead to termination of the single agent treatment. In the present study, we showed that either LY3009120 or Obatoclax (GX15-070) efficiently inhibited cell cycle progression and induced massive death of DTC cells. We established that BRAF/CRAF dimerization was an underlying mechanism for Vemurafenib resistance. LY3009120, the newly discovered pan-RAF inhibitor, successfully overcame Vemurafenib resistance and suppressed the growth of DTC cells in vitro and in vivo. We also observed that expression of anti-apoptotic Bcl-2 increased substantially following BRAF inhibitor treatment in Vemurafenib-resistant K1 cells, and both Obatoclax and LY3009120 efficiently induced apoptosis of these resistant cells. Specifically, Obatoclax exerted its anti-cancer activity by inducing loss of mitochondrial membrane potential (ΔΨm), dysfunction of mitochondrial respiration, reduction of cellular glycolysis, autophagy, neutralization of lysosomes, and caspase-related apoptosis. Furthermore, the cancer killing effects of LY3009120 and Obatoclax extended to two more Vemurafenib-resistant DTC cell lines, KTC-1 and BCPAP. Taken together, our results highlighted the potential value of LY3009120 for both Vemurafenib-sensitive and -resistant DTC and provided evidence for the combination therapy using Vemurafenib and Obatoclax for radioiodine-refractory DTC.
Collapse
|
20
|
Ferrari SM, Politti U, Spisni R, Materazzi G, Baldini E, Ulisse S, Miccoli P, Antonelli A, Fallahi P. Sorafenib in the treatment of thyroid cancer. Expert Rev Anticancer Ther 2015; 15:863-74. [PMID: 26152651 DOI: 10.1586/14737140.2015.1064770] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sorafenib has been evaluated in several Phase II and III studies in patients with locally advanced/metastatic radioactive iodine-refractory differentiated thyroid carcinomas (DTCs), reporting partial responses, stabilization of the disease and improvement of progression-free survival. Best responses were observed in lung metastases and minimal responses in bone lesions. On the basis of these studies, sorafenib was approved for the treatment of metastatic DTC in November 2013. Few studies suggested that reduction of thyroglobulin levels, or of average standardized uptake value at the fluorodeoxyglucose-PET, could be helpful for the identification of responding patients; but further studies are needed to confirm these results. Tumor genetic marker levels did not have any prognostic or predictive role in DTC patients.The most common adverse events observed included skin toxicity and gastrointestinal and constitutional symptoms. Encouraging results have also been observed in patients with medullary thyroid cancer. Many studies are ongoing to evaluate the long-term efficacy and tolerability of sorafenib in DTC patients.
Collapse
Affiliation(s)
- Silvia Martina Ferrari
- Department of Clinical and Experimental Medicine, University of Pisa, Via Savi, 10, 56126, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ferrari SM, Fallahi P, Politti U, Materazzi G, Baldini E, Ulisse S, Miccoli P, Antonelli A. Molecular Targeted Therapies of Aggressive Thyroid Cancer. Front Endocrinol (Lausanne) 2015; 6:176. [PMID: 26635725 PMCID: PMC4653714 DOI: 10.3389/fendo.2015.00176] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022] Open
Abstract
Differentiated thyroid carcinomas (DTCs) that arise from follicular cells account >90% of thyroid cancer (TC) [papillary thyroid cancer (PTC) 90%, follicular thyroid cancer (FTC) 10%], while medullary thyroid cancer (MTC) accounts <5%. Complete total thyroidectomy is the treatment of choice for PTC, FTC, and MTC. Radioiodine is routinely recommended in high-risk patients and considered in intermediate risk DTC patients. DTC cancer cells, during tumor progression, may lose the iodide uptake ability, becoming resistant to radioiodine, with a significant worsening of the prognosis. The lack of specific and effective drugs for aggressive and metastatic DTC and MTC leads to additional efforts toward the development of new drugs. Several genetic alterations in different molecular pathways in TC have been shown in the past few decades, associated with TC development and progression. Rearranged during transfection (RET)/PTC gene rearrangements, RET mutations, BRAF mutations, RAS mutations, and vascular endothelial growth factor receptor 2 angiogenesis pathways are some of the known pathways determinant in the development of TC. Tyrosine kinase inhibitors (TKIs) are small organic compounds inhibiting tyrosine kinases auto-phosphorylation and activation, most of them are multikinase inhibitors. TKIs act on the aforementioned molecular pathways involved in growth, angiogenesis, local, and distant spread of TC. TKIs are emerging as new therapies of aggressive TC, including DTC, MTC, and anaplastic thyroid cancer, being capable of inducing clinical responses and stabilization of disease. Vandetanib and cabozantinib have been approved for the treatment of MTC, while sorafenib and lenvatinib for DTC refractory to radioiodine. These drugs prolong median progression-free survival, but until now no significant increase has been observed on overall survival; side effects are common. New efforts are made to find new more effective and safe compounds and to personalize the therapy in each TC patient.
Collapse
Affiliation(s)
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Ugo Politti
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Enke Baldini
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Salvatore Ulisse
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Paolo Miccoli
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- *Correspondence: Alessandro Antonelli,
| |
Collapse
|