1
|
Muacevic A, Adler JR, Bansal P, Praveen S. Thyroid Autoimmunity in Vitiligo: A Case-Control Study. Cureus 2023; 15:e34031. [PMID: 36694854 PMCID: PMC9865436 DOI: 10.7759/cureus.34031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2023] [Indexed: 01/22/2023] Open
Abstract
Introduction There is scanty evidence regarding the role of autoimmunity in vitiligo, especially in the Asian population. Moreover, the existing studies reported conflicting results. This prompted the investigators to identify the association of thyroid autoimmunity with vitiligo by employing a case-control design in this setting. Methodology The present study was a hospital-based case-control study conducted in one of the tertiary care hospitals of North India. We recruited 30 subjects aged 16-60 years with vitiligo attending the skin and venereal diseases outpatient department. The subjects attending the general medicine outpatient department without having a diagnosis of vitiligo were considered for the control group. Thyroid hormones (FT3 and FT4), thyroid-stimulating hormones, anti-thyroid peroxidase (anti-TPO) antibodies, and anti-thyroglobulin (anti-TG) antibodies were the primary investigations performed among the study subjects. Results The mean age of the study subjects was 31.3 (SD: 13.3) years. Both the case and control groups were comparable based on selected socio-demographic variables (p > 0.05). There was a statistically significant difference in terms of mean anti-TPO and anti-TG values between the case and control groups in which subjects with vitiligo reported significantly higher values (p < 0.05). Conclusion Our study reported a significant elevation in the mean values of the thyroid antibodies (anti-TG and anti-TPO antibodies) in vitiligo subjects compared to control subjects in this setting. Hence, screening for autoimmune thyroid diseases among patients with vitiligo is suggested for the early detection and the initiation of appropriate intervention.
Collapse
|
2
|
Tibrewal S, Ratna R, Gour A, Agarkar S, Dubey S, Ganesh S, Kekunnaya R, Sangwan V, Liu Y, Vanita V. Clinical and molecular aspects of congenital aniridia - A review of current concepts. Indian J Ophthalmol 2022; 70:2280-2292. [PMID: 35791108 PMCID: PMC9426064 DOI: 10.4103/ijo.ijo_2255_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Congenital aniridia is a pan ocular disorder characterized by partial or total loss of iris tissue as the defining feature. Classic aniridia, however, has a spectrum of ocular findings, including foveal hypoplasia, optic nerve hypoplasia, nystagmus, late-onset cataract, glaucoma, and keratopathy. The latter three are reasons for further visual compromise in such patients. This entity is often due to mutations in the PAX6 (Paired box protein Pax-6) gene. Recently, aniridia-like phenotypes have been reported due to non-PAX6 mutations as in PITX2, FOXC1, FOXD3, TRIM44, and CYP1B1 as well wherein there is an overlap of aniridia, such as iris defects with congenital glaucoma or anterior segment dysgenesis. In this review, we describe the various clinical features of classic aniridia, the comorbidities and their management, the mutation spectrum of the genes involved, genotype-phenotype correlation of PAX6 and non-PAX6 mutations, and the genetic testing plan. The various systemic associations and their implications in screening and genetic testing have been discussed. Finally, the future course of aniridia treatment in the form of drugs (such as ataluren) and targeted gene therapy has been discussed.
Collapse
Affiliation(s)
- Shailja Tibrewal
- Department of Ocular Genetics; Department of Pediatric Ophthalmology, Strabismus and Neuro-ophthalmology, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Ria Ratna
- Department of Ocular Genetics, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Abha Gour
- Department of Cornea and Anterior Segment, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Sumita Agarkar
- Department of Pediatric Ophthalmology and Strabismus, Medical Research Foundation, Sankara Netralaya, Chennai, Tamil Nadu, India
| | - Suneeta Dubey
- Department of Glaucoma, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Suma Ganesh
- Department of Pediatric Ophthalmology, Strabismus and Neuro-ophthalmology, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Ramesh Kekunnaya
- Child Sight Institute, Jasti V Ramanamma Children's Eye Care Centre, L V Prasad Eye Institute, KAR Campus, Hyderabad, Telangana, India
| | - Virender Sangwan
- Department of Cornea and Anterior Segment, Dr Shroff's Charity Eye Hospital, Daryaganj, New Delhi, India
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, USA
| | - Vanita Vanita
- Department of Human Genetics, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
3
|
The Genetics of Pediatric Cutaneous Autoimmunity: The Sister Diseases Vitiligo and Alopecia Areata. Clin Dermatol 2022; 40:363-373. [DOI: 10.1016/j.clindermatol.2022.02.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
4
|
Said-Fernandez SL, Sanchez-Domínguez CN, Salinas-Santander MA, Martinez-Rodriguez HG, Kubelis-Lopez DE, Zapata-Salazar NA, Vazquez-Martinez OT, Wollina U, Lotti T, Ocampo-Candiani J. Novel immunological and genetic factors associated with vitiligo: A review. Exp Ther Med 2021; 21:312. [PMID: 33717255 PMCID: PMC7885061 DOI: 10.3892/etm.2021.9743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 09/15/2020] [Indexed: 12/18/2022] Open
Abstract
Vitiligo is a skin disorder characterized by depigmentation of the skin due to a lack of melanin. This condition affects men and woman of all ages and its incidence is not restricted by ethnicity or region. Vitiligo is a multifactorial disease, in which melanocytes, which serve important functions in skin pigmentation and immune processes, are impaired. There is sufficient evidence that immunological and genetic factors are primarily responsible for the destruction and dysfunction of melanocytes. Therefore, genetic DNA sequence variants that participate in skin homeostasis, pigmentation and immune response regulation, as well as altered expression patterns, may contribute to the risk of developing vitiligo. The current review presented an overview of the mechanism of pigmentation and of currently known factors involved in depigmentation, as well as the classification, epidemiology, associated comorbidities, risk factors, immunopathogenesis and several genetic and molecular changes associated with vitiligo.
Collapse
Affiliation(s)
- Salvador Luis Said-Fernandez
- Department of Biochemistry and Molecular Medicine, Jose Eleuterio Gonzalez Medicine School and University Hospital, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Celia Nohemi Sanchez-Domínguez
- Department of Biochemistry and Molecular Medicine, Jose Eleuterio Gonzalez Medicine School and University Hospital, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | | | - Herminia Guadalupe Martinez-Rodriguez
- Department of Biochemistry and Molecular Medicine, Jose Eleuterio Gonzalez Medicine School and University Hospital, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - David Emmanuel Kubelis-Lopez
- Dermatology Service, Jose Eleuterio Gonzalez Medicine School and University Hospital, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Natalia Aranza Zapata-Salazar
- Dermatology Service, Jose Eleuterio Gonzalez Medicine School and University Hospital, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Osvaldo Tomas Vazquez-Martinez
- Dermatology Service, Jose Eleuterio Gonzalez Medicine School and University Hospital, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| | - Uwe Wollina
- Department of Dermatology and Allergology, Skin Cancer Center, Städtisches Klinikum, D-01067 Dresden, Germany
| | - Torello Lotti
- Department of Dermatology and Venereology, University Guglielmo Marconi of Rome, I-00193 Rome, Italy
| | - Jorge Ocampo-Candiani
- Dermatology Service, Jose Eleuterio Gonzalez Medicine School and University Hospital, Autonomous University of Nuevo León, Monterrey, Nuevo León 64460, Mexico
| |
Collapse
|
5
|
Sandru F, Carsote M, Albu SE, Dumitrascu MC, Valea A. Vitiligo and chronic autoimmune thyroiditis. J Med Life 2021; 14:127-130. [PMID: 34104234 PMCID: PMC8169145 DOI: 10.25122/jml-2019-0134] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/23/2021] [Indexed: 01/02/2023] Open
Abstract
Vitiligo, the discoloration of the skin, has different autoimmune mechanisms reflected by many biomarkers as shown by skin histology, staining for CD4 and CD8 T lymphocytes, chemokine ligand 9 or circulating cytokines such as interleukin (IL)-1 beta, interferon (IFN)-gamma, transforming growth factor (TGF)-beta, antibodies, markers of oxidative stress, chemokines, and others. In this narrative review, we aim to overview vitiligo in relationship with chronic autoimmune thyroiditis. Regarding vitiligo, more than 50 different genetic loci have been associated with this disease, and the heritability is high. There is a 20% risk of an environmental connection which may also act as a trigger; moreover, the association with human leukocyte antigen (HLA) expression is well recognized. The specific lesions display CD8+ tissue-resident memory T cells as continuous key activators of melanocytes. The association with chronic thyroiditis is based on common autoimmune background and excessive reactive oxygen species that destroy melanocytes and thyrocytes (oxidative stress hypothesis) with thyroxine and melanin as target molecules, thus sharing a common origin: tyrosine. Moreover, common epigenetic anomalies or mutations of the Forkhead transcription factor D3 (FOXD3) have been described. Since vitiligo affects up to 1-2% of the population worldwide and 34% of patients have positive thyroid antibodies, apart from common autoimmunity background and oxidative stress toxicity, the association is clinically relevant for different practitioners.
Collapse
Affiliation(s)
- Florica Sandru
- Department of Dermatology, Elias Emergency University Hospital, Bucharest, Romania
- Department of Dermatology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mara Carsote
- Department of Endocrinology, C. I. Parhon National Institute of Endocrinology, Bucharest, Romania
- Department of Endocrinology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Simona Elena Albu
- Department of Obstetrics and Gynecology, Emergency University Hospital, Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Cristian Dumitrascu
- Department of Obstetrics and Gynecology, Emergency University Hospital, Bucharest, Romania
- Department of Obstetrics and Gynecology, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana Valea
- Department of Endocrinology, Clinical County Hospital, Cluj-Napoca, Romania
- Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
6
|
Weigele J, Bohnsack BL. Genetics Underlying the Interactions between Neural Crest Cells and Eye Development. J Dev Biol 2020; 8:jdb8040026. [PMID: 33182738 PMCID: PMC7712190 DOI: 10.3390/jdb8040026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/03/2020] [Accepted: 11/07/2020] [Indexed: 12/14/2022] Open
Abstract
The neural crest is a unique, transient stem cell population that is critical for craniofacial and ocular development. Understanding the genetics underlying the steps of neural crest development is essential for gaining insight into the pathogenesis of congenital eye diseases. The neural crest cells play an under-appreciated key role in patterning the neural epithelial-derived optic cup. These interactions between neural crest cells within the periocular mesenchyme and the optic cup, while not well-studied, are critical for optic cup morphogenesis and ocular fissure closure. As a result, microphthalmia and coloboma are common phenotypes in human disease and animal models in which neural crest cell specification and early migration are disrupted. In addition, neural crest cells directly contribute to numerous ocular structures including the cornea, iris, sclera, ciliary body, trabecular meshwork, and aqueous outflow tracts. Defects in later neural crest cell migration and differentiation cause a constellation of well-recognized ocular anterior segment anomalies such as Axenfeld–Rieger Syndrome and Peters Anomaly. This review will focus on the genetics of the neural crest cells within the context of how these complex processes specifically affect overall ocular development and can lead to congenital eye diseases.
Collapse
Affiliation(s)
- Jochen Weigele
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
| | - Brenda L. Bohnsack
- Division of Ophthalmology, Ann & Robert H. Lurie Children’s Hospital of Chicago, 225 E. Chicago Ave, Chicago, IL 60611, USA;
- Department of Ophthalmology, Northwestern University Feinberg School of Medicine, 645 N. Michigan Ave, Chicago, IL 60611, USA
- Correspondence: ; Tel.: +1-312-227-6180; Fax: +1-312-227-9411
| |
Collapse
|
7
|
Xu W, Li J, Li L, Hou T, Cai X, Liu T, Yang X, Wei H, Jiang C, Xiao J. FOXD3 Suppresses Tumor-Initiating Features in Lung Cancer via Transcriptional Repression of WDR5. Stem Cells 2019; 37:582-592. [PMID: 30703266 DOI: 10.1002/stem.2984] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/13/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Wei Xu
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Jialin Li
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Lei Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences; East China Normal University; Shanghai People's Republic of China
| | - Tianhui Hou
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
- The School of Sports and Health; East China Normal University; Shanghai People's Republic of China
| | - Xiaopan Cai
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Tielong Liu
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Xinghai Yang
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Haifeng Wei
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Cong Jiang
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| | - Jianru Xiao
- Department of Orthopedic Oncology; Changzheng Hospital, Second Military Medical University; Shanghai People's Republic of China
| |
Collapse
|
8
|
Baldini E, Odorisio T, Tuccilli C, Persechino S, Sorrenti S, Catania A, Pironi D, Carbotta G, Giacomelli L, Arcieri S, Vergine M, Monti M, Ulisse S. Thyroid diseases and skin autoimmunity. Rev Endocr Metab Disord 2018; 19:311-323. [PMID: 29948572 DOI: 10.1007/s11154-018-9450-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The skin is the largest organ of the body, at the boundary with the outside environment. Primarily, it provides a physical and chemical barrier against external insults, but it can act also as immune organ because it contains a whole host of immune-competent cells of both the innate and the adaptive immune systems, which cooperate in eliminating invading pathogens following tissue injury. On the other hand, improper skin immune responses lead to autoimmune skin diseases (AISD), such as pemphigus, bullous pemphigoid, vitiligo, and alopecia. Although the interplay among genetic, epigenetic, and environmental factors has been shown to play a major role in AISD etiology and progression, the molecular mechanisms underlying disease development are far from being fully elucidated. In this context, epidemiological studies aimed at defining the association of different AISD with other autoimmune pathologies revealed possible shared molecular mechanism(s) responsible for disease progression. In particular, over the last decades, a number of reports have highlighted a significant association between thyroid diseases (TD), mainly autoimmune ones (AITD), and AISD. Here, we will recapitulate the epidemiology, clinical manifestations, and pathogenesis of the main AISD, and we will summarize the epidemiological evidence showing the associations with TD as well as possible molecular mechanism(s) underlying TD and AISD pathological manifestations.
Collapse
Affiliation(s)
- Enke Baldini
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell'Immacolata-IRCCS, Rome, Italy
| | - Chiara Tuccilli
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | | | - Salvatore Sorrenti
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Antonio Catania
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Daniele Pironi
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Giovanni Carbotta
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Laura Giacomelli
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Stefano Arcieri
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Massimo Vergine
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Massimo Monti
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy
| | - Salvatore Ulisse
- Department of Surgical Sciences, "Sapienza" University of Rome, Viale Regina Elena, 324, 00161, Rome, Italy.
| |
Collapse
|
9
|
Yuan J, Sun C, Jiang S, Lu Y, Zhang Y, Gao XH, Wu Y, Chen HD. The Prevalence of Thyroid Disorders in Patients With Vitiligo: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2018; 9:803. [PMID: 30697190 PMCID: PMC6340922 DOI: 10.3389/fendo.2018.00803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/20/2018] [Indexed: 11/24/2022] Open
Abstract
Background: Associations between vitiligo and thyroid disorders have been suggested, However, the prevalence of thyroid disorders in vitiligo vary widely. Purpose: To conduct a systematic review and meta-analysis assessing the prevalence of thyroid disorders in patients with vitiligo. Method: The PubMed, Cochrane Library, EMBASE, CNKI (China National Knowledge Infrastructure), Chongqing VIP database, and Wanfang database from inception to August 2, 2018 were systematically searched. The pooled prevalence and its 95% confidence interval (CI) were calculated. Results: A total of 77 eligible studies were identified and included, published from 1968 to 2018. Six thyroid disorders including subclinical hyperthyroidism, overt hyperthyroidism, subclinical hypothyroidism, overt hypothyroidism, Graves disease, and Hashimoto thyroiditis were described. The numbers of relative studies were 54 in overt hypothyroidism, 50 in overt hyperthyroidism, 25 in subclinical hypothyroidism, 19 in Hashimoto thyroiditis, 16 in Graves disease, and 10 in subclinical hyperthyroidism. The highest prevalence was 0.06 (95% CI: 0.04-0.07) in subclinical hypothyroidism, and the lowest was 0.01 in subclinical hyperthyroidism (95% CI: 0.00-0.01) or Graves disease (95% CI: 0.01-0.02). Conclusion: Six thyroid disorders showed various prevalence in vitiligo. The highest prevalence was in subclinical hypothyroidism, and the lowest was in subclinical hyperthyroidism or Graves disease. Screening vitiligo patients for thyroid disorders seem plausible, in an effort to detect potential thyroid diseases or to assess the risk of future onset.
Collapse
|
10
|
Abstract
Vitiligo reflects simultaneous contributions of multiple genetic risk factors and environmental triggers. Genomewide association studies have discovered approximately 50 genetic loci contributing to vitiligo risk. At many vitiligo susceptibility loci, the relevant genes and DNA sequence variants are identified. Many encode proteins involved in immune regulation, several play roles in cellular apoptosis, and others regulate functions of melanocytes. Although many of the specific biologic mechanisms need elucidation, it is clear that vitiligo is an autoimmune disease involving a complex relationship between immune system programming and function, aspects of the melanocyte autoimmune target, and dysregulation of the immune response.
Collapse
Affiliation(s)
- Richard A Spritz
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 East 19th Avenue, Room 3100, MS8300, Aurora, CO 80045, USA.
| | - Genevieve H L Andersen
- Human Medical Genetics and Genomics Program, University of Colorado School of Medicine, 12800 East 19th Avenue, Room 3100, MS8300, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Liu M, Murphy E, Amerson EH. Rethinking screening for thyroid autoimmunity in vitiligo. J Am Acad Dermatol 2017; 75:1278-1280. [PMID: 27846959 DOI: 10.1016/j.jaad.2016.04.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 04/04/2016] [Accepted: 04/11/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Michael Liu
- School of Medicine, University of California, San Francisco, California
| | - Elizabeth Murphy
- Department of Medicine, Division of Endocrinology, University of California, San Francisco, California
| | - Erin Huiras Amerson
- Department of Dermatology, University of California, San Francisco, California.
| |
Collapse
|
12
|
Abstract
Autoimmune thyroid diseases (AIT) are common in children and may present with a variety of signs and symptoms including: euthyroid goiter, hypothyroidism, or hyperthyroidism. The natural history of AIT may be different in children but in all age groups, there appear to be genetic risk factors and environmental triggers that initiate thyroid autoimmunity. Areas covered: In this review, we summarize recent studies that investigate the genetics and environmental triggers believed to be involved in thyroid autoimmunity. We also discuss the approach and controversies in the treatment of children with AIT. Expert commentary: Much has been learned about the major roles for genetics, cytokines, regulatory lymphocytes, and environmental triggers in CLT but controversies remain.
Collapse
Affiliation(s)
- Prasanthi Pasala
- a Pediatric Endocrinology and Metabolism, Department of Pediatrics , Children's Hospital of Richmond at Virginia Commonwealth University , Richmond , VA , USA
| | - Gary L Francis
- a Pediatric Endocrinology and Metabolism, Department of Pediatrics , Children's Hospital of Richmond at Virginia Commonwealth University , Richmond , VA , USA
| |
Collapse
|
13
|
Baldini E, Odorisio T, Sorrenti S, Catania A, Tartaglia F, Carbotta G, Pironi D, Rendina R, D’Armiento E, Persechino S, Ulisse S. Vitiligo and Autoimmune Thyroid Disorders. Front Endocrinol (Lausanne) 2017; 8:290. [PMID: 29163360 PMCID: PMC5663726 DOI: 10.3389/fendo.2017.00290] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
Vitiligo represents the most common cause of acquired skin, hair, and oral depigmentation, affecting 0.5-1% of the population worldwide. It is clinically characterized by the appearance of disfiguring circumscribed skin macules following melanocyte destruction by autoreactive cytotoxic T lymphocytes. Patients affected by vitiligo usually show a poorer quality of life and are more likely to suffer from depressive symptoms, particularly evident in dark-skinned individuals. Although vitiligo is a non-fatal disease, exposure of affected skin to UV light increases the chance of skin irritation and predisposes to skin cancer. In addition, vitiligo has been associated with other rare systemic disorders due to the presence of melanocytes in other body districts, such as in eyes, auditory, nervous, and cardiac tissues, where melanocytes are thought to have roles different from that played in the skin. Several pathogenetic models have been proposed to explain vitiligo onset and progression, but clinical and experimental findings point mainly to the autoimmune hypothesis as the most qualified one. In this context, it is of relevance the strong association of vitiligo with other autoimmune diseases, in particular with autoimmune thyroid disorders, such as Hashimoto thyroiditis and Graves' disease. In this review, after a brief overview of vitiligo and its pathogenesis, we will describe the clinical association between vitiligo and autoimmune thyroid disorders and discuss the possible underlying molecular mechanism(s).
Collapse
Affiliation(s)
- Enke Baldini
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata-IRCCS, Rome, Italy
| | - Salvatore Sorrenti
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Antonio Catania
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | | | - Giovanni Carbotta
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Daniele Pironi
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
| | - Roberta Rendina
- Department of Internal Medicine and Medical Specialties, “Sapienza” University of Rome, Rome, Italy
| | - Eleonora D’Armiento
- Department of Internal Medicine and Medical Specialties, “Sapienza” University of Rome, Rome, Italy
| | | | - Salvatore Ulisse
- Department of Surgical Sciences, “Sapienza” University of Rome, Rome, Italy
- *Correspondence: Salvatore Ulisse,
| |
Collapse
|
14
|
Samant M, Chauhan BK, Lathrop KL, Nischal KK. Congenital aniridia: etiology, manifestations and management. EXPERT REVIEW OF OPHTHALMOLOGY 2016; 11:135-144. [PMID: 30100922 DOI: 10.1586/17469899.2016.1152182] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Congenital aniridia manifests as total or partial absence of the iris caused most commonly by mutations in PAX6, FOXC1, PITX2, and CYP1B1. Recently two new genes, FOXD3 and TRIM44, have also been implicated in isolated studies. We discuss the genotype-phenotype correlations for the main implicated genes. Classic aniridia is a panocular condition, which includes aniridia, cataract, corneal pannus, foveal, and optic nerve hypoplasia associated with mutations in the PAX6 gene. Classical aniridia is due to PAX6 mutations, while other genes contribute to aniridia-like phenotypes. We review the challenges involved in the management of aniridia, and discuss various surgical interventions. The clinical importance of defining the genotype in cases of congenital aniridia has become acutely apparent with the advent of possible therapies for classical aniridia, which are discussed.
Collapse
Affiliation(s)
- Monica Samant
- Children's Eye Center of UPMC, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | - Bharesh K Chauhan
- Children's Eye Center of UPMC, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA.,Department of Engineering. University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania 15213, USA
| | - Ken K Nischal
- Children's Eye Center of UPMC, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA.,Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|