1
|
Gu W, Zhang W, Wu Z, Cai Y. Cabergoline-induced NDFIP1 upregulation in pituitary neuroendocrine tumor cells activates mTOR signaling and contributes to cabergoline resistance. J Neurooncol 2025; 172:587-597. [PMID: 39891847 PMCID: PMC11968467 DOI: 10.1007/s11060-025-04949-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/21/2025] [Indexed: 02/03/2025]
Abstract
PURPOSE To investigate the molecular mechanisms underlying resistance to dopamine agonists (DA). METHODS LC-MS/MS analysis was performed on rat pituitary neuroendocrine tumors (PitNET) cell line GH3 to identify differentially expressed proteins induced by cabergoline (CAB) treatment. A total of 180 human PITNET samples were subjected to transcriptome analysis. Immunohistochemistry (IHC) was conducted on 29 tumor samples to validate NDFIP1 alteration. A xenograft mouse model was established by subcutaneously injecting GH3 cells, with or without NDFIP1 overexpression, into nude mice to investigate tumor growth. PitNET cell lines were treated with CAB. Cell proliferation was assessed using the CCK-8, and protein expression levels were examined through Western blot analysis. RESULTS CAB treatment upregulated FDFT1 and NDFIP1 protein expression in GH3 cells, with NDFIP1 showing a significant positive correlation with tumor size, as confirmed by IHC results. MMQ and GH3 cells overexpressing NDFIP1 exhibited enhanced viability and reduced sensitivity to CAB. In vivo experiments demonstrated that subcutaneous injection of NDFIP1-overexpressing GH3 cells led to enhanced tumor growth compared to parental GH3 cells. Although the total levels of PTEN remained unaltered, NDFIP1 overexpression induced PTEN nuclear translocation, potentially activating the mTOR pathway. This was supported by increased phosphorylation of key mTOR pathway components, including p-AKT and p-4EBP1, in cells overexpressing NDFIP1. CONCLUSION CAB treatment induces the upregulation of NDFIP1 in PitNET cells, which correlates with tumor size and contributes to reduced CAB sensitivity, potentially through activation of the mTOR pathway. NDFIP1 as a potential therapeutic target for overcoming DA resistance in PitNET patients.
Collapse
Affiliation(s)
- Weiting Gu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Weifeng Zhang
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhebao Wu
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu Cai
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
2
|
Yin E, Satou M, Tateno T. Targeting Autophagy for Pituitary Tumors. Cancers (Basel) 2025; 17:1402. [PMID: 40361329 PMCID: PMC12070981 DOI: 10.3390/cancers17091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/17/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Pituitary tumors, arising from the pituitary gland, can be classified as functioning or non-functioning based on their hormone production. Previous studies demonstrated that impairment of cellular processes, such as autophagy, a crucial cellular recycling mechanism, has been implicated in pituitary tumorigenesis and hormone dysregulation. This review comprehensively examines the intricate relationship between autophagy and pituitary tumors. We explore the multifaceted role of autophagy in cancer, highlighting its dual nature as both a tumor suppressor and a promoter depending on the context. We also discuss the specific mechanisms of autophagy, including macroautophagy, mitophagy, crinophagy, and their relevance to pituitary tumorigenesis and hormone regulation. Furthermore, we analyze the current literature regarding the impact of various therapeutic interventions in pituitary tumor cells, with both autophagy-promoting and autophagy-inhibiting strategies. We address the challenges in interpreting autophagy activity and its complex interplay with hormone production. Current evidence suggests the potential of targeting autophagy as a therapeutic approach for pituitary tumors, emphasizing further research and clinical trials to determine the optimal strategy for individual patients and improve long-term outcomes.
Collapse
Affiliation(s)
- Evan Yin
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| | - Motoyasu Satou
- Department of Biochemistry, School of Medicine, Dokkyo Medical University, Tochigi 321-0293, Japan
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada;
| |
Collapse
|
3
|
Satou M, Wang J, Nakano-Tateno T, Teramachi M, Aoki S, Sugimoto H, Chik C, Tateno T. Autophagy inhibition suppresses hormone production and cell growth in pituitary tumor cells: A potential approach to pituitary tumors. Mol Cell Endocrinol 2024; 586:112196. [PMID: 38462123 DOI: 10.1016/j.mce.2024.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Pituitary tumors (PTs) represent about 10% of all intracranial tumors, and most are benign. However, some PTs exhibit continued growth despite multimodal therapies. Although temozolomide (TMZ), an alkylating chemotherapeutic agent, is a first-line medical treatment for aggressive PTs, some PTs are resistant to TMZ. Existing literature indicated the involvement of autophagy in cell growth in several types of tumors, including PTs, and autophagy inhibitors have anti-tumor effects. In this study, the expression of several autophagy-inducible genes, including Atg3, Beclin1, Map1lc3A, Map1lc3b, Ulk1, Wipi2, and Tfe3 in two PT cell lines, the mouse corticotroph AtT-20 cells and the rat mammosomatotroph GH4 cells were identified. Down regulation of Tfe3, a master switch of basal autophagy, using RNA interference, suppressed cell proliferation in AtT-20 cells, suggesting basal autophagy contributes to the maintenance of cellular functions in PT cells. Expectedly, treatment with bafilomycin A1, an autophagy inhibitor, suppressed cell proliferation, increased the cleavage of PARP1, and reduced ACTH production in AtT-20 cells. Treatment with two additional autophagy inhibitors, chloroquine (CQ) and monensin, demonstrated similar effects on cell proliferation, apoptosis, and ACTH production in AtT-20 cells. Also, treatment with CQ suppressed cell proliferation and growth hormone production in GH4 cells. Moreover, the combination of CQ and TMZ had an additive effect on the inhibition of cell proliferation in AtT-20 and GH4 cells. The additive effect of anti-cancer drugs such as CQ alone or in combination with TMZ may represent a novel therapeutic approach for PTs, in particular tumors with resistance to TMZ.
Collapse
Affiliation(s)
- Motoyasu Satou
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Jason Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tae Nakano-Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mariko Teramachi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Constance Chik
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
4
|
Cheng Y, Dai Y, Tang H, Lu X, Xie J, Xie W, Zhang Q, Liu Y, Lin S, Yao H, Shang H, Yang K, Liu H, Wu X, Zhang J, Zhang X, Xue L, Wu ZB. Therapeutic potential of targeting Nrf2 by panobinostat in pituitary neuroendocrine tumors. Acta Neuropathol Commun 2024; 12:61. [PMID: 38637883 PMCID: PMC11025224 DOI: 10.1186/s40478-024-01775-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/05/2024] [Indexed: 04/20/2024] Open
Abstract
We aimed to identify the druggable cell-intrinsic vulnerabilities and target-based drug therapies for PitNETs using the high-throughput drug screening (HTS) and genomic sequencing methods. We examined 9 patient-derived PitNET primary cells in HTS. Based on the screening results, the potential target genes were analyzed with genomic sequencing from a total of 180 PitNETs. We identified and verified one of the most potentially effective drugs, which targeted the Histone deacetylases (HDACs) both in in vitro and in vivo PitNET models. Further RNA sequencing revealed underlying molecular mechanisms following treatment with the representative HDACs inhibitor, Panobinostat. The HTS generated a total of 20,736 single-agent dose responses which were enriched among multiple inhibitors for various oncogenic targets, including HDACs, PI3K, mTOR, and proteasome. Among these drugs, HDAC inhibitors (HDACIs) were, on average, the most potent drug class. Further studies using in vitro, in vivo, and isolated PitNET primary cell models validated HDACIs, especially Panobinostat, as a promising therapeutic agent. Transcriptional surveys revealed substantial alterations to the Nrf2 signaling following Panobinostat treatment. Moreover, Nrf2 is highly expressed in PitNETs. The combination of Panobinostat and Nrf2 inhibitor ML385 had a synergistic effect on PitNET suppression. The current study revealed a class of effective anti-PitNET drugs, HDACIs, based on the HTS and genomic sequencing. One of the representative compounds, Panobinostat, may be a potential drug for PitNET treatment via Nrf2-mediated redox modulation. Combination of Panobinostat and ML385 further enhance the effectiveness for PitNET treatment.
Collapse
Affiliation(s)
- Yijun Cheng
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Yuting Dai
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Xingyu Lu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Jing Xie
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wanqun Xie
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianqian Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Hong Yao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Hanbing Shang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China
| | - Kun Yang
- Department of Neurosurgery, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xuefeng Wu
- Center for Immune-Related DiseasesShanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianming Zhang
- National Research Center for Translational Medicine (Shanghai), State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Zhang
- Neuroendocrine Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Li Xue
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197# Ruijin er road, Shanghai, 200025, China.
- Department of Neurosurgery, Center for Immune-Related Diseases at Shanghai Institute of Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Li Z, Chen L, Zhang D, Huang X, Yang J, Li W, Wang C, Meng X, Huang G. Intranasal 15d-PGJ2 inhibits the growth of rat lactotroph pituitary neuroendocrine tumors by inducing PPARγ-dependent apoptotic and autophagic cell death. Front Neurosci 2023; 17:1109675. [PMID: 37250410 PMCID: PMC10213263 DOI: 10.3389/fnins.2023.1109675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 04/21/2023] [Indexed: 05/31/2023] Open
Abstract
PPARγ agonists have been reported to induce cell death in pituitary neuroendocrine tumor (PitNET) cell cultures. However, the therapeutic effects of PPARγ agonists in vivo remain unclear. In the present study, we found that intranasal 15d-PGJ2, an endogenous PPARγ agonist, resulted in growth suppression of Fischer 344 rat lactotroph PitNETs induced by subcutaneous implantation with a mini-osmotic pump containing estradiol. Intranasal 15d-PGJ2 reduced the volume and weight of the pituitary gland and the level of serum prolactin (PRL) in rat lactotroph PitNETs. 15d-PGJ2 treatment attenuated pathological changes and significantly decreased the ratio of PRL/pituitary-specific transcription factor 1 (Pit-1) and estrogen receptor α (ERα)/Pit-1 double-positive cells. Moreover, 15d-PGJ2 treatment induced apoptosis in the pituitary gland characterized by an increased ratio of TUNEL-positive cells, cleavage of caspase-3, and elevated activity of caspase-3. 15d-PGJ2 treatment decreased the levels of cytokines, including TNF-α, IL-1β, and IL-6. Furthermore, 15d-PGJ2 treatment markedly increased the protein expression of PPARγ and blocked autophagic flux, as evidenced by the accumulation of LC3-II and SQSTM1/p62 and the decrease in LAMP-1 expression. Importantly, all these effects mediated by 15d-PGJ2 were abolished by cotreatment with the PPARγ antagonist GW9662. In conclusion, intranasal 15d-PGJ2 suppressed the growth of rat lactotroph PitNETs by inducing PPARγ-dependent apoptotic and autophagic cell death. Therefore, 15d-PGJ2 may be a potential new drug for lactotroph PitNETs.
Collapse
|
6
|
Stumpf MAM, Pinheiro FMM, Silva GO, Cescato VAS, Musolino NRC, Cunha-Neto MBC, Glezer A. How to manage intolerance to dopamine agonist in patients with prolactinoma. Pituitary 2023:10.1007/s11102-023-01313-8. [PMID: 37027090 DOI: 10.1007/s11102-023-01313-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
PURPOSE Dopamine agonists (DA) are the gold-standard for prolactinoma and hyperprolactinemia treatment. Intolerance to DA leading to drug drop out occurs in 3 to 12% of cases. We provide here a review of published data about DA intolerance and present a case report concerning the use of intravaginal cabergoline. METHODS We review the literature on the definition, the pathogenesis, frequency and management of DA intolerance. In addition, the review provides strategies to enhance tolerability and avoid precocious clinical treatment withdrawal. RESULTS Cabergoline is often cited as the most tolerable DA and its side effects tend to ameliorate within days to weeks. Restarting the same drug at a lower dose or switching to another DA can be used in cases of intolerance. The vaginal route can be tried specifically if there are gastrointestinal side effects in the oral administration. Symptomatic treatment could be attempted, although mainly based on a strategy used in other diseases. CONCLUSIONS Due to limited data, no guidelines have been developed for the management of intolerance in DA treatment. The most frequent management is to perform transsphenoidal surgery. Nevertheless, this manuscript provides data derived from published literature and expert opinion, suggesting new approaches to this clinical issue.
Collapse
Affiliation(s)
- Matheo Augusto Morandi Stumpf
- Unidade de Neuroendocrinologia, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, 05403- 010, SP, Brazil.
| | - Felipe Moura Maia Pinheiro
- Unidade de Neuroendocrinologia, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, 05403- 010, SP, Brazil
| | - Gilberto Ochman Silva
- Grupo de Neuroendocrinologia, Divisão de Neurocirurgia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| | - Valter Angelo Sperling Cescato
- Grupo de Neuroendocrinologia, Divisão de Neurocirurgia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| | - Nina Rosa Castro Musolino
- Grupo de Neuroendocrinologia, Divisão de Neurocirurgia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| | - Malebranche Berardo Carneiro Cunha-Neto
- Grupo de Neuroendocrinologia, Divisão de Neurocirurgia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP, Brasil
| | - Andrea Glezer
- Unidade de Neuroendocrinologia, Disciplina de Endocrinologia e Metabologia, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), Ovídio Pires de Campos, 225 - Cerqueira César, São Paulo, 05403- 010, SP, Brazil
| |
Collapse
|
7
|
Wu N, Zhu D, Li J, Li X, Zhu Z, Rao Q, Hu B, Wang H, Zhu Y. CircOMA1 modulates cabergoline resistance by downregulating ferroptosis in prolactinoma. J Endocrinol Invest 2023:10.1007/s40618-023-02010-w. [PMID: 36853491 DOI: 10.1007/s40618-023-02010-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/09/2023] [Indexed: 03/01/2023]
Abstract
PURPOSE Prolactinomas are one of the most common pituitary neuroendocrine tumors (PitNETs), accounting for approximately 50% of all pituitary tumors. Dopamine agonists are the main treatment for prolactinoma, but a small number of patients are still resistant to pharmacotherapy. Recent discoveries have revealed that ferroptosis is involved in regulating tumor drug resistance. However, the role of ferroptosis in prolactinoma has not been reported. In this study, we aimed to explore the mechanism of a circRNA in ferroptosis in prolactinoma. METHODS The expression of circOMA1 in prolactinoma tissues was examined by quantitative reverse transcription PCR (qRT-PCR). The biological function of circOMA1 was evaluated in vitro and in vivo. To explore the role of ferroptosis in prolactinoma, we used qRT-PCR and western blotting. Glutamate-cysteine ligase, modifier subunit (GCLM) was predicted to be a direct target gene of miR-145-5p by bioinformatics analysis, which was confirmed by luciferase reporter assays. RESULTS circOMA1 was overexpressed in drug-resistant prolactinoma tissues compared with sensitive prolactinoma samples. We further found that circOMA1 promoted MMQ cells growth in vivo and in vitro. In addition, GCLM was directly targeted by miR-145-5p and indirectly regulated by circOMA1. Importantly, circOMA1 induced ferroptosis resistance through the increased expression of Nrf2, GPX4, and xCT, and circOMA1 attenuated CAB-induced ferroptosis in MMQ cells in vivo and in vitro. CONCLUSION The present study demonstrates that circOMA1 attenuates CAB efficacy through ferroptosis resistance and may be a new therapeutic target for the individualized treatment of DA-resistant prolactinoma patients.
Collapse
Affiliation(s)
- N Wu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - D Zhu
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - J Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - X Li
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Z Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Q Rao
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - B Hu
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - H Wang
- Center for Pituitary Tumor Surgery, Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Y Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Effects of chloroquine and hydroxychloroquine on the sensitivity of pancreatic cancer cells to targeted therapies. Adv Biol Regul 2023; 87:100917. [PMID: 36243652 DOI: 10.1016/j.jbior.2022.100917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/20/2022]
Abstract
Approaches to improve pancreatic cancer therapy are essential as this disease has a very bleak outcome. Approximately 80% of pancreatic cancers are pancreatic ductal adenocarcinomas (PDAC). PDAC is a cancer which is difficult to effectively treat as it is often detected late in the disease process. Almost all PDACs (over 90%) have activating mutations in the GTPase gene KRAS. These mutations result in constitutive KRas activation and the mobilization of downstream pathways such as the Raf/MEK/ERK pathway. Small molecule inhibitors of key components of the KRas/Raf/MEK/ERK pathways as well as monoclonal antibodies (MoAbs) specific for upstream growth factor receptors such insulin like growth factor-1 receptor (IGF1-R) and epidermal growth factor receptors (EGFRs) have been developed and have been evaluated in clinical trials. An additional key regulatory gene frequently mutated (∼75%) in PDAC is the TP53 tumor suppressor gene which controls the transcription of multiple genes involved in cell cycle progression, apoptosis, metabolism, cancer progression and other growth regulatory processes. Small molecule mutant TP53 reactivators have been developed which alter the structure of mutant TP53 protein and restore some of its antiproliferative activities. Some mutant TP53 reactivators have been examined in clinical trials with patients with mutant TP53 genes. Inhibitors to the TP53 negative regulator Mouse Double Minute 2 (MDM2) have been developed and analyzed in clinical trials. Chloroquine and hydroxychloroquine are established anti-malarial and anti-inflammatory drugs that also prevent the induction of autophagy which can have effects on cancer survival. Chloroquine and hydroxychloroquine have also been examined in various clinical trials. Recent studies are suggesting effective treatment of PDAC patients may require chemotherapy as well as targeting multiple pathways and biochemical processes.
Collapse
|
9
|
Lin S, Han C, Lou X, Wu ZB. Hydroxychloroquine overcomes cabergoline resistance in a patient with Lactotroph Pituitary neuroendocrine tumor: a case report. Front Endocrinol (Lausanne) 2022; 13:955100. [PMID: 35983516 PMCID: PMC9379538 DOI: 10.3389/fendo.2022.955100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE A 22-year-old man complaining erectile dysfunction underwent transsphenoidal surgery for a 2.7 cm sellar mass with total resection and was confirmed at pathology to have a lactotroph pituitary neuroendocrine tumor (PiNET). Postoperatively, the patient's PRL remained at high level and therefore accepted high-dose dopamine receptor agonist (DA) therapy. After over 3 months of bromocriptine (BRC) (15mg/day) and over 3 years of cabergoline (CAB) (3mg/week) therapy, the patient's prolactin (PRL) never achieved long-term normalization. He was diagnosed with DA-resistant lactotroph PitNET. METHOD In this study, the patient was given hydroxychloroquine (HCQ) (200 mg/d) and CAB (3 mg/w) in combination for four months. His PRL level was tested by blood test every month. RESULTS Taking the combination therapy of HCQ and CAB, the patient's uncontrolled PRL level was normalized within one month and was maintained at the normal level thereafter. Pituitary magnetic resonance imaging (MRI) images with enhancement showed no recurrence. The patient also regained normal sexual function. DISCUSSION This is the first report on the combination of HCQ with CAB for the effective treatment of DA-resistant lactotroph pituitary neuroendocrine tumor in a patient, which might provide a novel treatment strategy for clinical management.
Collapse
Affiliation(s)
- Shaojian Lin
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Changxi Han
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaohui Lou
- Department of Neurosurgery, Ruian People’s Hospital, The Third Affiliated Hospital of Wenzhou Medical University, Ruian, China
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Zhe Bao Wu,
| |
Collapse
|
10
|
Wang M, Zeng L, Su P, Ma L, Zhang M, Zhang YZ. Autophagy: a multifaceted player in the fate of sperm. Hum Reprod Update 2021; 28:200-231. [PMID: 34967891 PMCID: PMC8889000 DOI: 10.1093/humupd/dmab043] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Autophagy is an intracellular catabolic process of degrading and recycling proteins and organelles to modulate various physiological and pathological events, including cell differentiation and development. Emerging data indicate that autophagy is closely associated with male reproduction, especially the biosynthetic and catabolic processes of sperm. Throughout the fate of sperm, a series of highly specialized cellular events occur, involving pre-testicular, testicular and post-testicular events. Nonetheless, the most fundamental question of whether autophagy plays a protective or harmful role in male reproduction, especially in sperm, remains unclear. OBJECTIVE AND RATIONALE We summarize the functional roles of autophagy in the pre-testicular (hypothalamic–pituitary–testis (HPG) axis), testicular (spermatocytogenesis, spermatidogenesis, spermiogenesis, spermiation) and post-testicular (sperm maturation and fertilization) processes according to the timeline of sperm fate. Additionally, critical mechanisms of the action and clinical impacts of autophagy on sperm are identified, laying the foundation for the treatment of male infertility. SEARCH METHODS In this narrative review, the PubMed database was used to search peer-reviewed publications for summarizing the functional roles of autophagy in the fate of sperm using the following terms: ‘autophagy’, ‘sperm’, ‘hypothalamic–pituitary–testis axis’, ‘spermatogenesis’, ‘spermatocytogenesis’, ‘spermatidogenesis’, ‘spermiogenesis’, ‘spermiation’, ‘sperm maturation’, ‘fertilization’, ‘capacitation’ and ‘acrosome’ in combination with autophagy-related proteins. We also performed a bibliographic search for the clinical impact of the autophagy process using the keywords of autophagy inhibitors such as ‘bafilomycin A1’, ‘chloroquine’, ‘hydroxychloroquine’, ‘3-Methyl Adenine (3-MA)’, ‘lucanthone’, ‘wortmannin’ and autophagy activators such as ‘rapamycin’, ‘perifosine’, ‘metformin’ in combination with ‘disease’, ‘treatment’, ‘therapy’, ‘male infertility’ and equivalent terms. In addition, reference lists of primary and review articles were reviewed for additional relevant publications. All relevant publications until August 2021 were critically evaluated and discussed on the basis of relevance, quality and timelines. OUTCOMES (i) In pre-testicular processes, autophagy-related genes are involved in the regulation of the HPG axis; and (ii) in testicular processes, mTORC1, the main gate to autophagy, is crucial for spermatogonia stem cell (SCCs) proliferation, differentiation, meiotic progression, inactivation of sex chromosomes and spermiogenesis. During spermatidogenesis, autophagy maintains haploid round spermatid chromatoid body homeostasis for differentiation. During spermiogenesis, autophagy participates in acrosome biogenesis, flagella assembly, head shaping and the removal of cytoplasm from elongating spermatid. After spermatogenesis, through PDLIM1, autophagy orchestrates apical ectoplasmic specialization and basal ectoplasmic specialization to handle cytoskeleton assembly, governing spermatid movement and release during spermiation. In post-testicular processes, there is no direct evidence that autophagy participates in the process of capacitation. However, autophagy modulates the acrosome reaction, paternal mitochondria elimination and clearance of membranous organelles during fertilization. WIDER IMPLICATIONS Deciphering the roles of autophagy in the entire fate of sperm will provide valuable insights into therapies for diseases, especially male infertility.
Collapse
Affiliation(s)
- Mei Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Harvard Reproductive Endocrine Science Center and Reproductive Endocrine Unit, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ling Zeng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ping Su
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, P.R. China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| | - Yuan Zhen Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P.R. China.,Clinical Medicine Research Center of Prenatal Diagnosis and Birth Health in Hubei Province, Wuhan, Hubei, P.R. China
| |
Collapse
|
11
|
Chen C, Zhang H, Yu Y, Huang Q, Wang W, Niu J, Lou J, Ren T, Huang Y, Guo W. Chloroquine suppresses proliferation and invasion and induces apoptosis of osteosarcoma cells associated with inhibition of phosphorylation of STAT3. Aging (Albany NY) 2021; 13:17901-17913. [PMID: 34170850 PMCID: PMC8312460 DOI: 10.18632/aging.203196] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 05/31/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Osteosarcoma (OS) is characterized by a high rate of metastasis. It has been found that tumor cells can bypass apoptosis which leads to an uncontrolled proliferation, but chloroquine (CQ) can have an effect on the tumors by inducing apoptosis. We aimed to explore the effects and the hypothetical mechanism of CQ effects on OS. METHODS We first estimated the CQ effects on proliferation, apoptosis, migration, invasion, and lamellipodia formation of OS cells. Mice bearing xenograft model were used to test the anti-tumor growth and lung metastasis effects of CQ in OS. Western blot and immunohistochemistry were used to explore the mechanism of CQ effects and the association between p-STAT3 expression and lung metastasis of OS patients. RESULTS CQ induces the apoptosis and suppressed the viability, proliferation, migration, invasion, and lamellipodia formation of OS cells in vitro. In vivo experiments demonstrated that CQ inhibited tumor growth and lung metastasis. CQ induced apoptosis was dependent on the lysosomal inhibition and inhibition of protein turnover. The lung metastasis was associated with the p-STAT3 expression in OS patients. CONCLUSION CQ inhibited progression of OS cells in vitro, and suppressed tumor growth and lung metastasis in vivo. p-STAT3 can be a predictive biomarker for lung metastasis in osteosarcoma patients.
Collapse
Affiliation(s)
- Chenglong Chen
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Hongliang Zhang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yiyang Yu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Qingshan Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Wei Wang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Jianfang Niu
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Jingbing Lou
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Tingting Ren
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Yi Huang
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| | - Wei Guo
- Musculoskeletal Tumor Center, Peking University People's Hospital, Beijing, People's Republic of China.,Beijing Key Laboratory of Musculoskeletal Tumor, Beijing, People's Republic of China
| |
Collapse
|
12
|
Brusatol Inhibits Tumor Growth and Increases the Efficacy of Cabergoline against Pituitary Adenomas. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6696015. [PMID: 34221237 PMCID: PMC8221873 DOI: 10.1155/2021/6696015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 05/15/2021] [Indexed: 12/03/2022]
Abstract
Cabergoline (CAB) is the first choice for treatment of prolactinoma and the most common subtype of pituitary adenoma. However, drug resistance and lack of effectiveness in other pituitary tumor types remain clinical challenges to this treatment. Brusatol (BT) is known to inhibit cell growth and promote apoptosis in a variety of cancer cells. In our present studies, we investigate the effects of BT on pituitary tumor cell proliferation in vitro and in vivo. BT treatment resulted in an increase in Annexin V-expressing cells and promoted the expression of apoptosis-related proteins in rat and human pituitary tumor cells. Investigation of the mechanism underlying this effect revealed that BT increased the production of reactive oxygen species (ROS) and inhibited the phosphorylation of 4EBP1 and S6K1. Furthermore, treatment with a combination of BT and CAB resulted in greater antitumor effects than either treatment alone in nude mice and pituitary tumor cells. Collectively, our results suggest that the BT-induced ROS accumulation and inhibition of mTORC1 signaling pathway leads to inhibition of tumor growth. Combined use of CAB and BT may increase the clinical effectiveness of treatment for human pituitary adenomas.
Collapse
|
13
|
Tulipano G, Giustina A. Autophagy in normal pituitary and pituitary tumor cells and its potential role in the actions of somatostatin receptor ligands in acromegaly. Rev Endocr Metab Disord 2021; 22:147-160. [PMID: 33821422 DOI: 10.1007/s11154-021-09649-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/14/2022]
Abstract
Autophagy is an evolutionary conserved process for the self-degradation and recycling of cellular components in the cytoplasm. It is involved in both physiological and pathological conditions. In detail, the term "autophagy" refers to intracellular degradative pathways that lead to packaging and deliver of cellular components to lysosomes or to plant and yeast vacuoles. Autophagy is triggered by a variety of stimuli like nutrient deprivation, hypoxia, mitochondrial dysfunction, endoplasmic reticulum stress, and is regulated by immune- and hormonal factors. The role of autophagy in tumor cells is complex. Indeed, autophagy may act as a tumor suppressor as well as a tumor survival factor, in a context-dependent manner. The research into autophagy in normal pituitary and pituitary tumors has not gained great consideration, yet. Nevertheless, some recent articles joint to previous case studies, suggest that this process plays a role in the modulation and fluctuation of normal pituitary cell functions and in the response of pituitary tumor cells to drug therapy, including the response to somatostatin receptor ligand (SRLs), the first-line medical therapy of acromegaly. Although it is not possible to draw any conclusion, the aim of this review was to highlight some considerations and perspectives in this research field. Reports on the effects of octreotide on autophagy induction and autophagic flux in extra-pituitary target tissues, have also been discussed.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
| | - Andrea Giustina
- Institute of Endocrine and Metabolic Sciences, Division of Endocrinology IRCCS, Vita Salute San Raffaele University, San Raffaele Hospital, Milan, Italy
| |
Collapse
|
14
|
Gu WT, Zhou F, Xie WQ, Wang S, Yao H, Liu YT, Gao L, Wu ZB. A potential impact of SARS-CoV-2 on pituitary glands and pituitary neuroendocrine tumors. Endocrine 2021; 72:340-348. [PMID: 33786714 PMCID: PMC8009460 DOI: 10.1007/s12020-021-02697-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/12/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Angiotensin-converting enzyme 2 (ACE2) is the receptor of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The effects of SARS-CoV-2 on normal pituitary glands function or pituitary neuroendocrine tumors (PitNETs) have not yet been elucidated. Thus, the present study aimed to investigate the potential risks of SARS-CoV-2 infection on the impairment of pituitary glands and the development of PitNETs. METHODS PitNETs tissues were obtained from 114 patients, and normal pituitary gland tissues were obtained from the autopsy. The mRNA levels of ACE2 and angiotensin II receptor type 1 (AGTR1) were examined by quantitative real-time PCR. Immunohistochemical staining was performed for ACE2 in 69 PitNETs and 3 normal pituitary glands. The primary tumor cells and pituitary cell lines (MMQ, GH3 and AtT-20/D16v-F2) were treated with diminazene aceturate (DIZE), an ACE2 agonist, with various dose regimens. The pituitary hormones between 43 patients with SARS-CoV-2 infection were compared with 45 healthy controls. RESULTS Pituitary glands and the majority of PitNET tissues showed low/negative ACE2 expression at both the mRNA and protein levels, while AGTR1 showed high expression in normal pituitary and corticotroph adenomas. ACE2 agonist increased the secretion of ACTH in AtT-20/D16v-F2 cells through downregulating AGTR1. The level of serum adrenocorticotropic hormone (ACTH) was significantly increased in COVID-19 patients compared to normal controls (p < 0.001), but was dramatically decreased in critical cases compared to non-critical patients (p = 0.003). CONCLUSIONS This study revealed a potential impact of SARS-CoV-2 infection on corticotroph cells and adenomas.
Collapse
Affiliation(s)
- Wei Ting Gu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Fen Zhou
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Wan Qun Xie
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Shuo Wang
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, 430060, Wuhan, China
| | - Hong Yao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Yan Ting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, 430060, Wuhan, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| |
Collapse
|
15
|
Jian F, Sun Y, Sun Q, Zhang B, Bian L. NEK2 regulates cellular proliferation and cabergoline sensitivity in pituitary adenomas. J Cancer 2021; 12:2083-2091. [PMID: 33754007 PMCID: PMC7974539 DOI: 10.7150/jca.52937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/06/2021] [Indexed: 12/28/2022] Open
Abstract
Objective: To identify critical roles played by NEK2 in prolactinomas and to clarify the corresponding underlying mechanisms. Methods: We performed RNA-seq on MMQ cell lines treated with the dopamine receptor agonist cabergoline (CAB) to identify genes involved in prolactinoma progression and dopamine receptor-agonist (DA) sensitivity. NEK2 was then selected for further study. The expression of NEK2 was examined using quantitative real-time PCR, western immunoblotting, and immunohistochemistry - both in pituitary adenomas (PA) and in normal pituitary tissue. We used gain-of-function and loss-of-function assays to explore the biologic roles of NEK2 in cell growth in vivo and in vitro. Co-immunoprecipitation was also used to detect the binding between NEK2 and USP7. Results: Herein, we reported that NEK2 was upregulated in prolactinomas, particularly dopamine-resistant prolactinomas. NEK2 overexpression significantly promoted pituitary tumor GH3 and MMQ cell proliferation, and it impaired cellular sensitivity to CAB. Conversely, knockdown of NEK2 inhibited GH3 and MMQ cell growth, and sensitized the cells to CAB. Mechanistically, NEK2 regulated cell proliferation via the Wnt-signaling pathway; and in addition, we demonstrated that USP7 interacted with, deubiquitylated, and stabilized NEK2. Conclusions: Collectively, our results suggest that NEK2 might be a potential therapeutic target for prolactinoma.
Collapse
Affiliation(s)
- Fangfang Jian
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhao Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfang Sun
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Benyan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liuguan Bian
- Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Lin S, Xu H, Zhang A, Ni Y, Xu Y, Meng T, Wang M, Lou M. Prognosis Analysis and Validation of m 6A Signature and Tumor Immune Microenvironment in Glioma. Front Oncol 2020; 10:541401. [PMID: 33123464 PMCID: PMC7571468 DOI: 10.3389/fonc.2020.541401] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
Glioma is one of the most typical intracranial tumors, comprising about 80% of all brain malignancies. Several key molecular signatures have emerged as prognostic biomarkers, which indicate room for improvement in the current approach to glioma classification. In order to construct a more veracious prediction model and identify the potential prognosis-biomarker, we explore the differential expressed m6A RNA methylation regulators in 665 gliomas from TCGA-GBM and TCGA-LGG. Consensus clustering was applied to the m6A RNA methylation regulators, and two glioma subgroups were identified with a poorer prognosis and a higher grade of WHO classification in cluster 1. The further chi-squared test indicated that the immune infiltration was significantly enriched in cluster 1, indicating a close relation between m6A regulators and immune infiltration. In order to explore the potential biomarkers, the weighted gene co-expression network analysis (WGCNA), along with Least absolute shrinkage and selection operator (LASSO), between high/low immune infiltration and m6A cluster 1/2 groups were utilized for the hub genes, and four genes (TAGLN2, PDPN, TIMP1, EMP3) were identified as prognostic biomarkers. Besides, a prognostic model was constructed based on the four genes with a good prediction and applicability for the overall survival (OS) of glioma patients (the area under the curve of ROC achieved 0.80 (0.76-0.83) and 0.72 (0.68-0.76) in TCGA and Chinese Glioma Genome Atlas (CGGA), respectively). Moreover, we also found PDPN and TIMP1 were highly expressed in high-grade glioma from The Human Protein Atlas database and both of them were correlated with m6A and immune cell marker in glioma tissue samples. In conclusion, we construct a novel prognostic model which provides new insights into glioma prognosis. The PDPN and TIMP1 may serve as potential biomarkers for prognosis of glioma.
Collapse
Affiliation(s)
- Shaojian Lin
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,School of Medicine, Tongji University, Shanghai, China
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunjia Ni
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Xu
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Meng
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mingjie Wang
- Department of Digestive Diseases, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meiqing Lou
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Zhou W, Wang H, Yang Y, Chen ZS, Zou C, Zhang J. Chloroquine against malaria, cancers and viral diseases. Drug Discov Today 2020; 25:2012-2022. [PMID: 32947043 PMCID: PMC7492153 DOI: 10.1016/j.drudis.2020.09.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/13/2020] [Accepted: 09/10/2020] [Indexed: 02/08/2023]
Abstract
Quinoline (QN) derivatives are often used for the prophylaxis and treatment of malaria. Chloroquine (CQ), a protonated, weakly basic drug, exerts its antimalarial effect mainly by increasing pH and accumulating in the food vacuole of the parasites. Repurposing CQ is an emerging strategy for new indications. Given the inhibition of autophagy and its immunomodulatory action, CQ shows positive efficacy against cancer and viral diseases, including Coronavirus 2019 (COVID-19). Here, we review the underlying mechanisms behind the antimalarial, anticancer and antiviral effects of CQ. We also discuss the clinical evidence for the use of CQ and hydroxychloroquine (HCQ) against COVID-19.
Collapse
Affiliation(s)
- Wenmin Zhou
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Hui Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China; The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China
| | - Yuqi Yang
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, NY 11439, USA.
| | - Chang Zou
- The Second Clinical Medical College of Jinan University, Shenzhen, 518020, PR China.
| | - Jianye Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China; Guangzhou Institute of Pediatrics/Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, PR China; The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, PR China.
| |
Collapse
|
18
|
Wu Z, Gu W. Autophagy and Pituitary Adenoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:183-194. [PMID: 32671747 DOI: 10.1007/978-981-15-4272-5_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pituitary adenomas (PAs) are common, benign intracranial tumors that are usually effectively controlled with surgery, pharmacotherapy or radiotherapy. Some PAs against which conventional treatment is ineffective are great clinical challenges at present. Autophagy is a widespread physiological process in cells. Through autophagy, cells can degrade damaged or redundant proteins and organelles and achieve the recycling of intracellular substances to maintain the homeostasis of the intracellular environment. An increasing number of studies have demonstrated the importance of autophagy in tumor therapy. Both radiotherapy and chemotherapy can induce autophagy, which plays different roles in the course of therapy. In recent years, there has been growing interest in the role of autophagy during the treatment of PAs. This chapter reviews the recent progress of research on autophagy in PA and the autophagic mechanisms in the treatment of PA.
Collapse
Affiliation(s)
- Zhebao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Weiting Gu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Hou X, Jiang J, Tian Z, Wei L. Autophagy and Tumour Chemotherapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1207:351-374. [PMID: 32671759 DOI: 10.1007/978-981-15-4272-5_24] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Chemotherapy is an important means of treating malignant tumours. The main role of chemotherapy drugs is to induce cell death. However, the apoptotic pathways of many tumour cells are often severely impaired, leading to failure of chemotherapy-induced apoptosis. With the in-depth study of autophagy in recent years, this process has been found to play an important role in the chemoresistance of tumours. Autophagy may have different effects on tumour cells depending on the specific environment. In addition, tumour stem cells and the tumour microenvironment are closely related to tumour recurrence and metastasis. It is also important to study the role of autophagy in tumour stem cells and the microenvironment to investigate chemotherapy resistance.
Collapse
Affiliation(s)
- Xiaojuan Hou
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Jinghua Jiang
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China
| | - Zhiqiang Tian
- Department of General Surgery, Wuxi People's Hospital Affiliated Nanjing Medical University, Wuxi, China
| | - Lixin Wei
- Tumor Immunology and Gene Therapy Center, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, Shanghai, China.
| |
Collapse
|
20
|
Somasundaram NP, Ranathunga I, Ratnasamy V, Wijewickrama PSA, Dissanayake HA, Yogendranathan N, Gamage KKK, de Silva NL, Sumanatilleke M, Katulanda P, Grossman AB. The Impact of SARS-Cov-2 Virus Infection on the Endocrine System. J Endocr Soc 2020; 4:bvaa082. [PMID: 32728654 PMCID: PMC7337839 DOI: 10.1210/jendso/bvaa082] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has spread across the globe rapidly causing an unprecedented pandemic. Because of the novelty of the disease, the possible impact on the endocrine system is not clear. To compile a mini-review describing possible endocrine consequences of SARS-CoV-2 infection, we performed a literature survey using the key words Covid-19, Coronavirus, SARS CoV-1, SARS Cov-2, Endocrine, and related terms in medical databases including PubMed, Google Scholar, and MedARXiv from the year 2000. Additional references were identified through manual screening of bibliographies and via citations in the selected articles. The literature review is current until April 28, 2020. In light of the literature, we discuss SARS-CoV-2 and explore the endocrine consequences based on the experience with structurally-similar SARS-CoV-1. Studies from the SARS -CoV-1 epidemic have reported variable changes in the endocrine organs. SARS-CoV-2 attaches to the ACE2 system in the pancreas causing perturbation of insulin production resulting in hyperglycemic emergencies. In patients with preexisting endocrine disorders who develop COVID-19, several factors warrant management decisions. Hydrocortisone dose adjustments are required in patients with adrenal insufficiency. Identification and management of critical illness-related corticosteroid insufficiency is crucial. Patients with Cushing syndrome may have poorer outcomes because of the associated immunodeficiency and coagulopathy. Vitamin D deficiency appears to be associated with increased susceptibility or severity to SARS-CoV-2 infection, and replacement may improve outcomes. Robust strategies required for the optimal management of endocrinopathies in COVID-19 are discussed extensively in this mini-review.
Collapse
Affiliation(s)
| | - Ishara Ranathunga
- Diabetes and Endocrine Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | - Vithiya Ratnasamy
- University Medical Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka
| | | | | | | | | | - Nipun Lakshitha de Silva
- Diabetes and Endocrine Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka.,Department of Clinical Sciences, Faculty of Medicine, General Sir John Kotelawala Defence University, Sri Lanka, Rathmalana, Sri Lanka
| | | | - Prasad Katulanda
- University Medical Unit, National Hospital of Sri Lanka, Colombo, Sri Lanka.,Diabetes Research Unit, Department of Clinical Medicine, Faculty of Medicine, University of Colombo, Sri Lanka, Colombo, Sri Lanka
| | - Ashley Barry Grossman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, University of Oxford, London, UK.,Centre for Endocrinology, Barts and the London School of Medicine, Queen Mary University of London, Oxford, UK
| |
Collapse
|
21
|
Zhang W, Du Q, Bian P, Xiao Z, Wang X, Feng Y, Feng H, Zhu Z, Gao N, Zhu D, Fan X, Zhu Y. Artesunate exerts anti-prolactinoma activity by inhibiting mitochondrial metabolism and inducing apoptosis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:858. [PMID: 32793702 PMCID: PMC7396798 DOI: 10.21037/atm-20-1113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Prolactinoma is the most common hormone-secreting pituitary adenoma. Dopamine receptor agonists (DAs) are effective in reducing prolactin levels and tumor mass, but some prolactinoma patients are resistant to DAs. Treating patients with DA-resistant prolactinoma is challenging. In this study, we examined the anti-prolactinoma effect of artesunate (ART), a potential new treatment option for prolactinoma, and its mechanism of action. METHODS Cell Counting Kit-8 (CCK8) and flow cytometry were used to detect the effect of ART on the proliferation, cycle, and apoptosis of rat pituitary adenoma cell line MMQ. The subcellular localization of ART was observed using confocal fluorescence microscopy. The JC-1 mitochondrial membrane potential (MMP) detection and Seahorse assays were used to detect the effect of ART on mitochondrial function. Real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot analysis were used to detect the effect of ART on the expression of prolactin (PRL) and apoptosis-related proteins. A mouse xenograft model of prolactinoma was used to detect the inhibitory effect of ART on MMQ in vivo. RESULTS ART specifically inhibited MMQ proliferation and PRL synthesis, induced G0/G1 phase arrest and apoptosis in vitro. ART accumulated in the mitochondria of MMQ cells, inhibiting mitochondrial respiratory function and mediating apoptosis through the mitochondrial pathway. ART also inhibited proliferation and activated the apoptosis of MMQ cells in vivo. CONCLUSIONS ART has a strong inhibitory effect on prolactinoma both in vitro and in vivo, and its effects rely on high MMP to inhibit mitochondrial metabolism and induce apoptosis. Our results provide evidence for ART as a candidate drug for the treatment of prolactinoma.
Collapse
Affiliation(s)
- Weiyu Zhang
- Department of Neurosurgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Qiu Du
- Department of Neurosurgery, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Piaopiao Bian
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zheng Xiao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xin Wang
- Department of Histology and Embryology, Guangdong Pharmaceutical University, Guangzhou, China
| | - Yajuan Feng
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hou Feng
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyan Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Nailin Gao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Diming Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiang Fan
- Department of Neurosurgery, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Yonghong Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Abstract
PURPOSE Pituitary tumor is the common primary brain tumor in humans. For further studying the pathogenesis and new therapeutic targets of pituitary adenoma, cell lines and primary cells are necessary tools. Different from primary cells that have short survival time and hormone secretion maintenance time, cell lines would be endowed with immortal characteristics under the help of gene modification. This review is to explore whether these cell lines still have similar pathophysiological changes in pituitary adenoma cells and methods to prolong the lifespan of pituitary adenoma primary cells. RESULTS In the cell lines summarized in the review, HP75, PDFS, HPA and GX were derived from human pituitary adenomas. It was found that the cell lines commonly used in articles published between January 2014 and July 2019 were GH3, AtT20, MMQ, GH4C1, HP75 and TtT/GF. Besides, it was glad that many methods had been used to prolong the lifespan and maintain characteristics of pituitary adenoma primary cells. CONCLUSION The paper reviews most of pituitary adenoma cell lines that have been successfully established since 1968 and the relevant situation of primary culture of pituitary adenoma cells. Obviously, it requires us to make more efforts to obtain human pituitary adenoma cell lines and prolong the lifespan of pituitary adenoma primary cells with maintaining their morphology and ability to secret hormones.
Collapse
Affiliation(s)
- Ziyan Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Weiwei Cui
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dimin Zhu
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Nailin Gao
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yonghong Zhu
- Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
23
|
Abstract
Consensus guidelines recommend dopamine agonists (DAs) as the mainstay treatment for prolactinomas. In most patients, DAs achieve tumor shrinkage and normoprolactinemia at well tolerated doses. However, primary or, less often, secondary resistance to DAs may be also encountered representing challenging clinical scenarios. This is particularly true for aggressive prolactinomas in which surgery and radiotherapy may not achieve tumor control. In these cases, alternative medical treatments have been considered but data on their efficacy should be interpreted within the constraints of publication bias and of lack of relevant clinical trials. The limited reports on somatostatin analogues have shown conflicting results, but cases with optimal outcomes have been documented. Data on estrogen modulators and metformin are scarce and their usefulness remains to be evaluated. In many aggressive lactotroph tumors, temozolomide has demonstrated optimal outcomes, whereas for other cytotoxic agents, tyrosine kinase inhibitors and for inhibitors of mammalian target of rapamycin (mTOR), higher quality evidence is needed. Finally, promising preliminary results from in vitro and animal reports need to be further assessed and, if appropriate, translated in human studies.
Collapse
Affiliation(s)
- P Souteiro
- Department of Endocrinology, Diabetes and Metabolism, Centro Hospitalar Universitário de São João, Porto, Portugal
- Faculty of Medicine of University of Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, Portugal
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, IBR Tower, Level 2, Birmingham, B15 2TT, UK
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - N Karavitaki
- Institute of Metabolism and Systems Research (IMSR), College of Medical and Dental Sciences, University of Birmingham, IBR Tower, Level 2, Birmingham, B15 2TT, UK.
- Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.
- Department of Endocrinology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
24
|
Lin S, Zhang A, Zhang X, Wu ZB. Treatment of Pituitary and Other Tumours with Cabergoline: New Mechanisms and Potential Broader Applications. Neuroendocrinology 2020; 110:477-488. [PMID: 31597135 DOI: 10.1159/000504000] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022]
Abstract
Cabergoline is a dopamine agonist that has been used as the first-line treatment option for prolactin-secreting pituitary adenomas for several decades. It not only suppresses hormone production from these prolactinomas, but also causes tumour shrinkage. Recent studies revealed some novel mechanisms by which cabergoline suppresses tumour cell proliferation and induces cell death. In this article, we review the most recent findings in cabergoline studies, focusing on its anti-tumour function. These studies suggest the potential broader clinical use of cabergoline in the treatment of other tumours such as breast cancer, pancreatic neuroendocrine tumours, and lung cancer.
Collapse
Affiliation(s)
- Shaojian Lin
- Center of Pituitary Tumour, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Zhang
- Neuroendocrine Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zhe Bao Wu
- Center of Pituitary Tumour, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| |
Collapse
|
25
|
Yao H, Tang H, Zhang Y, Zhang QF, Liu XY, Liu YT, Gu WT, Zheng YZ, Shang HB, Wang Y, Huang JY, Wei YX, Zhang X, Zhang J, Wu ZB. DEPTOR inhibits cell proliferation and confers sensitivity to dopamine agonist in pituitary adenoma. Cancer Lett 2019; 459:135-144. [PMID: 31176743 DOI: 10.1016/j.canlet.2019.05.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/23/2019] [Accepted: 05/31/2019] [Indexed: 01/20/2023]
Abstract
DEP domain-containing mechanistic target of rapamycin (mTOR)-interacting protein (DEPTOR) is an important modulator of mTOR, a highly conserved kinase whose hyperactivation is critically involved in a variety of human tumors. The role of DEPTOR playing in pituitary adenoma (PA) is largely unknown. Here, we reported that DEPTOR was downregulated in PA tissues, especially dopamine-resistant prolactinomas. Consistently, overexpression of DEPTOR inhibited pituitary tumor GH3 and MMQ cells proliferation in vitro and in vivo, and sensitized GH3 and MMQ cells to cabergoline (CAB), a dopamine agonist (DA). Conversely, knockdown of DEPTOR promoted GH3 and MMQ cells proliferation, and conferred cells resistance to CAB. Mechanistically, DEPTOR inhibited both mTOR Complex 1 (mTORC1) and 2 (mTORC2) activities in PA cells. In addition, DEPTOR expression level was increased to suppress mTOR kinase activity via decreasing E3 ubiquitin ligase, βTrCP1, in response to CAB. Furthermore, DEPTOR enhanced autophagy-dependent cell death to confer cells sensitivity to CAB. Taken together, our results suggest that DEPTOR may be a potential target for the treatment of PAs.
Collapse
Affiliation(s)
- Hong Yao
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Tang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiu Fen Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xin Yi Liu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Ting Liu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wei Ting Gu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Zhi Zheng
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Han Bing Shang
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Wang
- Department of Neurosurgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Yan Huang
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yong Xu Wei
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Zhang
- Neuroendocrine Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Medicinal Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhe Bao Wu
- Department of Neurosurgery, Center of Pituitary Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
26
|
Herrera-Martínez AD, van den Dungen R, Dogan-Oruc F, van Koetsveld PM, Culler MD, de Herder WW, Luque RM, Feelders RA, Hofland LJ. Effects of novel somatostatin-dopamine chimeric drugs in 2D and 3D cell culture models of neuroendocrine tumors. Endocr Relat Cancer 2019; 26:585-599. [PMID: 30939452 DOI: 10.1530/erc-19-0086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 04/02/2019] [Indexed: 12/14/2022]
Abstract
Control of symptoms related to hormonal hypersecretion by functioning neuroendocrine tumors (NETs) is challenging. New therapeutic options are required. Since novel in vitro tumor models seem to better mimic the tumor in vivo conditions, we aimed to study the effect of somatostatin and dopamine receptor agonists (octreotide and cabergoline, respectively) and novel somatostatin-dopamine chimeric multi-receptor drugs (BIM-065, BIM-23A760) using 2D (monolayer) and 3D (spheroids) cultures. Dose-response studies in 2D and 3D human pancreatic NET cell cultures (BON-1 and QGP-1) were performed under serum-containing and serum-deprived conditions. Cell proliferation, somatostatin and dopamine receptor expression (SSTs and D2R), apoptosis, lactate dehydrogenase, as well as serotonin and chromogranin A (CgA) release were assessed. The following results were obtained. 3D cultures of BON-1/QGP-1 allowed better cell survival than 2D cultures in serum-deprived conditions. SSTs and D2R mRNA levels were higher in the 3D model vs 2D model. Octreotide/cabergoline/BIM-065/BIM-23A760 treatment did not affect cell growth or spheroid size. In BON-1 2D-cultures, only BIM-23A760 significantly inhibited CgA release -this effect being more pronounced in 3D cultures. In BON-1 2D cultures, cabergoline/BIM-065/BIM-23A760 treatment decreased serotonin release (maximal effect up to 40%), being this effect again more potent in 3D cultures (up to 67% inhibition; with BIM-23A760 having the most potent effects). In QGP-1, cabergoline/BIM-065 treatment decreased serotonin release only in the 3D model. In conclusion, cultures of NET 3D spheroids represent a promising method for evaluating cell proliferation and secretion in NET cell-line models. Compared to 2D models, 3D models grow relatively serum independent. In 3D model, SST-D2R multi-receptor targeting drugs inhibit CgA and serotonin secretion, but not NET cell growth.
Collapse
Affiliation(s)
- Aura D Herrera-Martínez
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
| | - Rosanna van den Dungen
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Fadime Dogan-Oruc
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Peter M van Koetsveld
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Wouter W de Herder
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Raúl M Luque
- Maimonides Institute for Biomedical Research of Cordoba (IMIBIC), Córdoba, Spain
- Reina Sofia University Hospital, Córdoba, Spain
- Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBERobn), Córdoba, Spain
| | - Richard A Feelders
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Division of Endocrinology, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
27
|
Maiter D. Management of Dopamine Agonist-Resistant Prolactinoma. Neuroendocrinology 2019; 109:42-50. [PMID: 30481756 DOI: 10.1159/000495775] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/25/2018] [Indexed: 11/19/2022]
Abstract
Dopamine agonists are usually very effective in the treatment of prolactinomas. Nonetheless, a subset of individuals does not respond satisfactorily to these agents, and this resistance is characterized by failure to achieve normoprolactinemia and a 30% or more reduction in maximal tumor diameter (in the case of macroprolactinoma) under maximally tolerated doses. The overall prevalence of dopamine agonist resistance is 20-30% for bromocriptine (BRC) and around 10% for cabergoline (CAB). The 2 main predictive factors are male gender and tumor invasiveness. The management of drug-resistant prolactinomas includes several options. Any BRC-resistant patient should be switched to CAB which will normalize prolactin in 80% of patients. As long as adverse effects do not develop, dose escalation of CAB is reasonable, with the expectation that subsequent dose reduction will be possible. Echocardiographic monitoring is advised in such patients because of the potential association with cardiac valvular fibrosis. Also, maintaining maximal CAB doses at 3.5 mg/week may lead to progressive hormonal control in a significant proportion of patients. Complete resistance to CAB is infrequent. In a study of 122 patients with a macroprolactinoma, only 7 (6%) could not achieve control despite maximal CAB doses for > 12 months. A large resistant prolactinoma is also an indication for transsphenoidal neurosurgery, aiming at a debulking which may improve postoperative medical control. For patients who harbor aggressive prolactinomas, radiotherapy may be considered. However, normal prolactinemia will eventually occur in only one-third of patients after many years. Finally, temozolomide may be a therapeutic option in malignant/aggressive prolactinomas.
Collapse
Affiliation(s)
- Dominique Maiter
- Division of Endocrinology and Nutrition, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium,
| |
Collapse
|
28
|
Gahete MD, Jimenez-Vacas JM, Alors-Perez E, Herrero-Aguayo V, Fuentes-Fayos AC, Pedraza-Arevalo S, Castaño JP, Luque RM. Mouse models in endocrine tumors. J Endocrinol 2018; 240:JOE-18-0571.R1. [PMID: 30475226 DOI: 10.1530/joe-18-0571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/26/2018] [Indexed: 12/14/2022]
Abstract
Endocrine and neuroendocrine tumors comprise a highly heterogeneous group of neoplasms that can arise from (neuro)endocrine cells, either from endocrine glands or from the widespread diffuse neuroendocrine system, and, consequently, are widely distributed throughout the body. Due to their diversity, heterogeneity and limited incidence, studying in detail the molecular and genetic alterations that underlie their development and progression is still a highly elusive task. This, in turn, hinders the discovery of novel therapeutic options for these tumors. To circumvent these limitations, numerous mouse models of endocrine and neuroendocrine tumors have been developed, characterized and used in pre-clinical, co-clinical (implemented in mouse models and patients simultaneously) and post-clinical studies, for they represent powerful and necessary tools in basic and translational tumor biology research. Indeed, different in vivo mouse models, including cell line-based xenografts (CDXs), patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs), have been used to delineate the development, progression and behavior of human tumors. Results gained with these in vivo models have facilitated the clinical application in patients of diverse breakthrough discoveries made in this field. Herein, we review the generation, characterization and translatability of the most prominent mouse models of endocrine and neuroendocrine tumors reported to date, as well as the most relevant clinical implications obtained for each endocrine and neuroendocrine tumor type.
Collapse
Affiliation(s)
- Manuel D Gahete
- M Gahete, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, 14011, Spain
| | - Juan M Jimenez-Vacas
- J Jimenez-Vacas, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Emilia Alors-Perez
- E Alors-Perez, Department of Cell Biology, Physiology and Inmunology, Maimonides Institute for Biomedical Research of Cordoba (IMIBIC) / University of Cordoba, Cordoba, Spain
| | - Vicente Herrero-Aguayo
- V Herrero-Aguayo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Antonio C Fuentes-Fayos
- A Fuentes-Fayos, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Sergio Pedraza-Arevalo
- S Pedraza-Arevalo, Department of Cell Biology, Physiology and Immunology, University of Córdoba, Cordoba, Spain
| | - Justo P Castaño
- J Castaño, Dpt. of Cell Biology-University of Córdoba, IMIBIC-Maimonides Biomedical Research Institute of Cordoba, Cordoba, E-14004, Spain
| | - Raul M Luque
- R Luque, Dept of Cell Biology, Phisiology and Inmunology, Section of Cell Biology, University of Cordoba, Cordoba, Spain, Cordoba, 14014, Spain
| |
Collapse
|
29
|
Breil T, Lorz C, Choukair D, Mittnacht J, Inta I, Klose D, Jesser J, Schulze E, Bettendorf M. Clinical Features and Response to Treatment of Prolactinomas in Children and Adolescents: A Retrospective Single-Centre Analysis and Review of the Literature. Horm Res Paediatr 2018; 89:157-165. [PMID: 29455199 DOI: 10.1159/000486280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 12/12/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Paediatric prolactinomas are rare. The aim of this study was to investigate the clinical features and outcome of paediatric patients with prolactinomas. METHODS In this single-centre retrospective analysis, clinical, biochemical, and radiological features of all paediatric patients with pituitary adenomas diagnosed between 2000 and 2016 were evaluated. RESULTS Among 21 patients with pituitary adenomas, 12 patients with prolactinomas (median age 14.2 years, range 11-16.6 years, 8 females, 4 males) were identified (7 macro- and 5 microprolactinomas). The most common clinical symptoms were headaches (67%) and pubertal delay (67%). All patients with macroprolactinomas with prolactin concentrations >10,000 mU/L had at least 1 pituitary hormone deficiency. Cabergoline as first-line treatment (n = 11, median follow-up of 37 months, range 12-89 months) induced normoprolactinemia (n = 8), reduced the mean tumour volume by 80%, and ameliorated headaches (p = 0.016) and pubertal delay (p = 0.031), whereas intermittent moderate side effects occurred in 55%. CONCLUSION Adolescents with headaches and pubertal delay should be investigated for prolactinomas. Treatment with cabergoline is well tolerated and effective in reducing clinical symptoms and prolactin concentrations was well as inducing tumour shrinkage. Further clinical prospective studies are needed to standardize paediatric treatment modalities.
Collapse
Affiliation(s)
- Thomas Breil
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Catherine Lorz
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Choukair
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Janna Mittnacht
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Ioana Inta
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Daniela Klose
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| | - Jessica Jesser
- Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Egbert Schulze
- Molecular Laboratory, Prof. F. Raue, Heidelberg, Germany
| | - Markus Bettendorf
- Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|