1
|
Yang C, Xiao J, Xu Z, Wang Z. Gut Microbiota Changes and Its Potential Relations with Thyroid Disorders: From Composition to Therapeutic Targets. Int J Gen Med 2024; 17:3719-3731. [PMID: 39219667 PMCID: PMC11363920 DOI: 10.2147/ijgm.s481183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Composed of over 1200 species of anaerobes and aerobes bacteria along with bacteriophages, viruses, and fungal species, the human gut microbiota (GM) is vital to health, including digestive equilibrium, immunologic, hormonal, and metabolic homeostasis. Micronutrients, usually refer to trace elements (copper, iodine, iron, selenium, zinc) and vitamins (A, C, D, E), interact with the GM to influence host immune metabolism. So far, microbiome studies have revealed an association between disturbances in the microbiota and various pathological disorders, such as anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis, anxiety, depression, early-onset cancers, type 1 diabetes (T1D) and type 2 diabetes (T2D). As common conditions, thyroid diseases, encompassing Graves' disease (GD), Graves' orbitopathy (GO), Hashimoto's thyroiditis (HT), benign nodules, and papillary thyroid cancer (TC), have negative impacts on the health of all populations. Following recent studies, GM might play an integral role in triggering diseases of the thyroid gland. Not only do environmental triggers and genetic predisposing background lead to auto-aggressive damage, involving cellular and humoral networks of the immune system, but the intestinal microbiota interacts with distant organs by signals that may be part of the bacteria themselves or their metabolites. The review aims to describe the current knowledge about the GM in the metabolism of thyroid hormones and the pathogenesis of thyroid diseases and its involvement in the appearance of benign nodules and papillary TC. We further focused on the reciprocal interaction between GM composition and the most used treatment drugs for thyroid disorders. However, the exact etiology has not yet been known. To elucidate more precisely the mechanism for GM involvement in the development of thyroid diseases, future work is needed.
Collapse
Affiliation(s)
- Cai Yang
- Department of Laboratory Medicine, Medical Center Hospital of Qionglai City, Chengdu, Sichuan, 611530, People’s Republic of China
| | - Jiafeng Xiao
- Department of Laboratory Medicine, Medical Center Hospital of Qionglai City, Chengdu, Sichuan, 611530, People’s Republic of China
| | - Zibei Xu
- Department of Laboratory Medicine, Medical Center Hospital of Qionglai City, Chengdu, Sichuan, 611530, People’s Republic of China
| | - Zehong Wang
- Department of Laboratory Medicine, Medical Center Hospital of Qionglai City, Chengdu, Sichuan, 611530, People’s Republic of China
| |
Collapse
|
2
|
Cho YY, Ahn SH, Lee EK, Park YJ, Choi D, Kim BY, Jung CH, Mok JO, Kim CH, Kim SW. Malignancy Risk of Follicular Neoplasm (Bethesda IV) With Variable Cutoffs of Tumor Size: A Systemic Review and Meta-Analysis. J Clin Endocrinol Metab 2024; 109:1383-1392. [PMID: 38113188 DOI: 10.1210/clinem/dgad684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Indexed: 12/21/2023]
Abstract
CONTEXT The decision on diagnostic lobectomy for follicular neoplasms (FN) is challenging. OBJECTIVE This meta-analysis investigates whether an appropriate size cutoff exists for recommending surgery for thyroid nodules diagnosed as FN by fine needle aspiration. METHODS The Ovid-Medline, EMBASE, Cochrane, and KoreaMed databases were searched for studies reporting the malignancy rate of FN/suspicious for FN (FN/SFN) according to tumor size, using search terms "fine needle aspiration," "follicular neoplasm," "lobectomy," "surgery," and "thyroidectomy." RESULTS Fourteen observational studies comprising 2016 FN/SFN nodules with postsurgical pathologic reports were included, and 2 studies included malignancy rates with various tumor sizes. The pooled malignancy risk of FN/SFN nodules according to size was: odds ratio (OR) 2.29 (95% CI, 1.68-3.11) with cutoff of 4 cm (9 studies), OR 2.39 (95% CI, 1.45-3.95) with cutoff of 3 cm (3 studies), and OR 1.81 (95% CI, 0.94-3.50) with cutoff of 2 cm (5 studies). However, tumors ≥2 cm also showed a higher risk (OR 2.43; 95% CI, 1.54-3.82) based on the leave-one-out meta-analysis after removal of 1 influence study. When each cutoff size was evaluated by summary receiver operating characteristic (sROC) curves, the cutoff of 4 cm showed the highest summary area under the curve (sAUC, 0.645) compared to other cutoffs (sAUC, 0.58 with 2 cm, and 0.62 with 3 cm), although there was no significant difference. CONCLUSION Although the risk of malignancy increases with increasing tumor size, the risk remains significant at all tumor sizes and no cutoff limit can be recommended as a decision-making parameter for diagnostic surgery in Bethesda IV thyroid nodules.
Collapse
Affiliation(s)
- Yoon Young Cho
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, South Korea
| | - Soo Hyun Ahn
- Department of Mathematics, Ajou University, Suwon 16499, South Korea
| | - Eun Kyung Lee
- Center for Thyroid Cancer, National Cancer Center, Goyang 10408, South Korea
| | - Young Joo Park
- Genomic Medicine Institute, Medical Research Center, Seoul National University, Seoul 03080, South Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul 03080, South Korea
| | - Dughyun Choi
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, South Korea
| | - Bo-Yeon Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, South Korea
| | - Chan-Hee Jung
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, South Korea
| | - Ji Oh Mok
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, South Korea
| | - Chul-Hee Kim
- Department of Internal Medicine, Soonchunhyang University Bucheon Hospital, Bucheon 14584, South Korea
| | - Sun Wook Kim
- Department of Internal Medicine, Samsung Medical Center, Sungkyunkwan University, Seoul 06351, South Korea
| |
Collapse
|
3
|
Abstract
The human microbiome plays an integral role in health. In particular, it is important for the development, differentiation, and maturation of the immune system, 70% of which resides in the intestinal mucosa. Microbiome studies conducted to date have revealed an association between disturbances in the microbiota (dysbiosis) and various pathological disorders, including changes in host immune status. Autoimmune thyroid diseases are one of the most common organ-specific autoimmune disorders, with a worldwide prevalence higher than 5%. The predominant autoimmune thyroid diseases are Hashimoto's thyroiditis and Grave's disease. Several factors, such as genetic and environmental ones, have been studied. In accordance with recent studies, it is assumed that the gut microbiome might play a significant role in triggering autoimmune diseases of the thyroid gland. However, the exact etiology has not yet been elucidated. The present review aims to describe the work carried out so far regarding the role of gut microflora in the pathogenesis of autoimmune thyroid diseases and its involvement in the appearance of benign nodules and papillary thyroid cancer. It appears that future work is needed to elucidate more precisely the mechanism for gut microbiota involvement in the development of autoimmune thyroid diseases.
Collapse
Affiliation(s)
- Ioannis Legakis
- Endocrinology and Metabolism, European University Cyprus, Nicosia, Cyprus
| | - George P Chrousos
- First Department of Pediatrics, University of Athens Medical School, Aghia Sophia Children's Hospital, Athens, Greece
| | | |
Collapse
|
4
|
Gunjača I, Benzon B, Pleić N, Babić Leko M, Pešutić Pisac V, Barić A, Kaličanin D, Punda A, Polašek O, Vukojević K, Zemunik T. Role of ST6GAL1 in Thyroid Cancers: Insights from Tissue Analysis and Genomic Datasets. Int J Mol Sci 2023; 24:16334. [PMID: 38003522 PMCID: PMC10671354 DOI: 10.3390/ijms242216334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Thyroid cancer is the predominant endocrine-related malignancy. ST6 β-galactoside α2,6-sialyltransferase 1 (ST6GAL1) has been studied in various types of cancers; however, the expression and function of ST6GAL1 in thyroid cancer has not been investigated so far. Previously, we conducted two genome-wide association studies and have identified the association of the ST6GAL1 gene with plasma thyroglobulin (Tg) levels. Since Tg levels are altered in thyroid pathologies, in the current study, we wanted to evaluate the expression of ST6GAL1 in thyroid cancer tissues. We performed an immunohistochemical analysis using human thyroid tissue from 89 patients and analyzed ST6GAL1 protein expression in papillary thyroid cancer (including follicular variant and microcarcinoma) and follicular thyroid cancer in comparison to normal thyroid tissue. Additionally, ST6GAL1 mRNA levels from The Cancer Genome Atlas (TCGA, n = 572) and the Genotype-Tissue Expression (GTEx) project (n = 279) were examined. The immunohistochemical analysis revealed higher ST6GAL1 protein expression in all thyroid tumors compared to normal thyroid tissue. TCGA data revealed increased ST6GAL1 mRNA levels in both primary and metastatic tumors versus controls. Notably, the follicular variant of papillary thyroid cancer exhibited significantly higher ST6GAL1 mRNA levels than classic papillary thyroid cancer. High ST6GAL1 mRNA levels significantly correlated with lymph node metastasis status, clinical stage, and reduced survival rate. ST6GAL1 emerges as a potential cancer-associated glycosyltransferase in thyroid malignancies, offering valuable insights into its diagnostic and prognostic significance.
Collapse
Affiliation(s)
- Ivana Gunjača
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Benjamin Benzon
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (K.V.)
| | - Nikolina Pleić
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Mirjana Babić Leko
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Valdi Pešutić Pisac
- Clinical Department of Pathology, Forensic Medicine and Cytology, University Hospital of Split, 21000 Split, Croatia;
| | - Ana Barić
- Department of Nuclear Medicine, University Hospital of Split, 21000 Split, Croatia; (A.B.); (A.P.)
| | - Dean Kaličanin
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| | - Ante Punda
- Department of Nuclear Medicine, University Hospital of Split, 21000 Split, Croatia; (A.B.); (A.P.)
| | - Ozren Polašek
- Department of Public Health, School of Medicine, University of Split, 21000 Split, Croatia;
| | - Katarina Vukojević
- Department of Anatomy, Histology and Embryology, School of Medicine, University of Split, 21000 Split, Croatia; (B.B.); (K.V.)
| | - Tatijana Zemunik
- Department of Medical Biology, School of Medicine, University of Split, 21000 Split, Croatia; (N.P.); (M.B.L.); (D.K.)
| |
Collapse
|
5
|
Majdalani P, Yoel U, Nasasra T, Fraenkel M, Haim A, Loewenthal N, Zarivach R, Hershkovitz E, Parvari R. Novel Susceptibility Genes Drive Familial Non-Medullary Thyroid Cancer in a Large Consanguineous Kindred. Int J Mol Sci 2023; 24:ijms24098233. [PMID: 37175943 PMCID: PMC10179265 DOI: 10.3390/ijms24098233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
Familial non-medullary thyroid cancer (FNMTC) is a well-differentiated thyroid cancer (DTC) of follicular cell origin in two or more first-degree relatives. Patients typically demonstrate an autosomal dominant inheritance pattern with incomplete penetrance. While known genes and chromosomal loci account for some FNMTC, the molecular basis for most FNMTC remains elusive. To identify the variation(s) causing FNMTC in an extended consanguineous family consisting of 16 papillary thyroid carcinoma (PTC) cases, we performed whole exome sequence (WES) analysis of six family patients. We demonstrated an association of ARHGEF28, FBXW10, and SLC47A1 genes with FNMTC. The variations in these genes may affect the structures of their encoded proteins and, thus, their function. The most promising causative gene is ARHGEF28, which has high expression in the thyroid, and its protein-protein interactions (PPIs) suggest predisposition of PTC through ARHGEF28-SQSTM1-TP53 or ARHGEF28-PTCSC2-FOXE1-TP53 associations. Using DNA from a patient's thyroid malignant tissue, we analyzed the possible cooperation of somatic variations with these genes. We revealed two somatic heterozygote variations in XRCC1 and HRAS genes known to implicate thyroid cancer. Thus, the predisposition by the germline variations and a second hit by somatic variations could lead to the progression to PTC.
Collapse
Affiliation(s)
- Pierre Majdalani
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Uri Yoel
- Endocrinology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Tayseer Nasasra
- Internal Medicine A, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Merav Fraenkel
- Endocrinology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Alon Haim
- Pediatric Endocrinology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Neta Loewenthal
- Pediatric Endocrinology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Raz Zarivach
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- Department of Life Sciences, Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Eli Hershkovitz
- Pediatric Endocrinology Unit, Soroka University Medical Center and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84101, Israel
| | - Ruti Parvari
- The Shraga Segal Department of Microbiology, Immunology & Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
- The National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| |
Collapse
|
6
|
Zhou Y, Bennett TM, Shiels A. Mutation of the TRPM3 cation channel underlies progressive cataract development and lens calcification associated with pro-fibrotic and immune cell responses. FASEB J 2021; 35:e21288. [PMID: 33484482 DOI: 10.1096/fj.202002037r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 12/11/2022]
Abstract
Transient-receptor-potential cation channel, subfamily M, member 3 (TRPM3) serves as a polymodal calcium sensor in diverse mammalian cell-types. Mutation of the human TRPM3 gene (TRPM3) has been linked with inherited forms of early-onset cataract with or without other eye abnormalities. Here, we have characterized the ocular phenotypes of germline "knock-in" mice that harbor a human cataract-associated isoleucine-to-methionine mutation (p.I65M) in TRPM3 (Trpm3-mutant) compared with germline "knock-out" mice that functionally lack TRPM3 (Trpm3-null). Despite strong expression of Trpm3 in lens epithelial cells, neither heterozygous (Trpm3+/- ) nor homozygous (Trpm3-/- ) Trpm3-null mice developed cataract; however, the latter exhibited a mild impairment of lens growth. In contrast, homozygous Trpm3-M/M mutants developed severe, progressive, anterior pyramid-like cataract with microphthalmia, whereas heterozygous Trpm3-I/M and hemizygous Trpm3-M/- mutants developed anterior pyramidal cataract with delayed onset and progression-consistent with a semi-dominant lens phenotype. Histochemical staining revealed abnormal accumulation of calcium phosphate-like deposits and collagen fibrils in Trpm3-mutant lenses and immunoblotting detected increased αII-spectrin cleavage products consistent with calpain hyper-activation. Immunofluorescent confocal microscopy of Trpm3-M/M mutant lenses revealed fiber cell membrane degeneration that was accompanied by accumulation of alpha-smooth muscle actin positive (α-SMA+ve) myofibroblast-like cells and macrosialin positive (CD68+ve) macrophage-like cells. Collectively, our mouse model data support an ocular disease association for TRPM3 in humans and suggest that (1) Trpm3 deficiency impaired lens growth but not lens transparency and (2) Trpm3 dysfunction resulted in progressive lens degeneration and calcification coupled with pro-fibrotic (α-SMA+ve) and immune (CD68+ve) cell responses.
Collapse
Affiliation(s)
- Yuefang Zhou
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Thomas M Bennett
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
7
|
Li A, Li T, Gao X, Yan H, Chen J, Huang M, Wang L, Yin D, Li H, Ma R, Zeng Q, Ding S. Gut Microbiome Alterations in Patients With Thyroid Nodules. Front Cell Infect Microbiol 2021; 11:643968. [PMID: 33791245 PMCID: PMC8005713 DOI: 10.3389/fcimb.2021.643968] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/18/2021] [Indexed: 12/12/2022] Open
Abstract
Thyroid nodules are found in nearly half of the adult population. Accumulating evidence suggests that the gut microbiota plays an important role in thyroid metabolism, yet the association between gut microbiota capacity, thyroid nodules, and thyroid function has not been studied comprehensively. We performed a gut microbiome genome-wide association study in 196 patients with thyroid nodules and 283 controls by using whole-genome shotgun sequencing. We found that participants with high-grade thyroid nodules have decreased number of gut microbial species and gene families compared with those with lower grade nodules and controls. There are also significant alterations in the overall microbial composition in participants with high-grade thyroid nodules. The gut microbiome in participants with high-grade thyroid nodules is characterized by greater amino acid degradation and lower butyrate production. The relative abundances of multiple butyrate producing microbes are reduced in patients with high-grade thyroid nodules and the relative abundances of L-histidine metabolism pathways are associated with thyrotropin-releasing hormone. Our study describes the gut microbiome characteristics in thyroid nodules and a gut-thyroid link and highlight specific gut microbiota as a potential therapeutic target to regulate thyroid metabolism.
Collapse
Affiliation(s)
- Ang Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tiantian Li
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinxin Gao
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hang Yan
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingfeng Chen
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Meng Huang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lin Wang
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Detao Yin
- Department of Thyroidology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hongqiang Li
- Department of Thyroidology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Runsheng Ma
- Department of Thyroidology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qiang Zeng
- Health Management Institute,The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, China
| | - Suying Ding
- Health Management Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Yuan J, Song Y, Pan W, Li Y, Xu Y, Xie M, Shen Y, Zhang N, Liu J, Hua H, Wang B, An C, Yang M. LncRNA SLC26A4-AS1 suppresses the MRN complex-mediated DNA repair signaling and thyroid cancer metastasis by destabilizing DDX5. Oncogene 2020; 39:6664-6676. [PMID: 32939012 DOI: 10.1038/s41388-020-01460-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
Abstract
Lymph node metastasis is the major adverse feature for recurrence and death of thyroid cancer patients. To identify lncRNAs involved in thyroid cancer metastasis, we systemically screened differentially expressed lncRNAs in lymph node metastasis, thyroid cancer, and normal tissues via RNAseq. We found that lncRNA SLC26A4-AS1 was continuously, significantly down-regulated in normal tissues, thyroid cancer, and lymph node metastasis specimens. Low SLC26A4-AS1 levels in tissues were significantly associated with poor prognosis of thyroid cancer patients. LncRNA SLC26A4-AS1 markedly inhibited migration, invasion, and metastasis capability of cancer cells in vitro and in vivo. Intriguingly, SLC26A4-AS1 could simultaneously interact with DDX5 and the E3 ligase TRIM25, which promoting DDX5 degradation through the ubiquitin-proteasome pathway. In particular, SLC26A4-AS1 inhibited expression of multiple DNA double-strand breaks (DSBs) repair genes, especially genes coding proteins in the MRE11/RAS50/NBS1 (MRN) complex. Enhanced interaction between DDX5 and transcriptional factor E2F1 due to silencing of SLC26A4-AS1 promoted binding of the DDX5-E2F1 complex at promoters of the MRN genes and, thus, stimulate the MRN/ATM dependent DSB signaling and thyroid cancer metastasis. Our study uncovered new insights into the biology driving thyroid cancer metastasis and highlights potentials of lncRNAs as future therapeutic targets again cancer metastasis.
Collapse
Affiliation(s)
- Jupeng Yuan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yemei Song
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenting Pan
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yankang Li
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yeyang Xu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengyu Xie
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yue Shen
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Nasha Zhang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiandong Liu
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hui Hua
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bowen Wang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Changming An
- Department of Head and Neck Surgery, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Ming Yang
- Shandong Provincial Key Laboratory of Radiation Oncology, Cancer Research Center, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
9
|
Abstract
Genome-wide association studies (GWASs) have identified at least 10 single-nucleotide polymorphisms (SNPs) associated with papillary thyroid cancer (PTC) risk. Most of these SNPs are common variants with small to moderate effect sizes. Here we assessed the combined genetic effects of these variants on PTC risk by using summarized GWAS results to build polygenic risk score (PRS) models in three PTC study groups from Ohio (1,544 patients and 1,593 controls), Iceland (723 patients and 129,556 controls), and the United Kingdom (534 patients and 407,945 controls). A PRS based on the 10 established PTC SNPs showed a stronger predictive power compared with the clinical factors model, with a minimum increase of area under the receiver-operating curve of 5.4 percentage points (P ≤ 1.0 × 10-9). Adding an extended PRS based on 592,475 common variants did not significantly improve the prediction power compared with the 10-SNP model, suggesting that most of the remaining undiscovered genetic risk in thyroid cancer is due to rare, moderate- to high-penetrance variants rather than to common low-penetrance variants. Based on the 10-SNP PRS, individuals in the top decile group of PRSs have a close to sevenfold greater risk (95% CI, 5.4-8.8) compared with the bottom decile group. In conclusion, PRSs based on a small number of common germline variants emphasize the importance of heritable low-penetrance markers in PTC.
Collapse
|
10
|
Shiels A. TRPM3_miR-204: a complex locus for eye development and disease. Hum Genomics 2020; 14:7. [PMID: 32070426 PMCID: PMC7027284 DOI: 10.1186/s40246-020-00258-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
First discovered in a light-sensitive retinal mutant of Drosophila, the transient receptor potential (TRP) superfamily of non-selective cation channels serve as polymodal cellular sensors that participate in diverse physiological processes across the animal kingdom including the perception of light, temperature, pressure, and pain. TRPM3 belongs to the melastatin sub-family of TRP channels and has been shown to function as a spontaneous calcium channel, with permeability to other cations influenced by alternative splicing and/or non-canonical channel activity. Activators of TRPM3 channels include the neurosteroid pregnenolone sulfate, calmodulin, phosphoinositides, and heat, whereas inhibitors include certain drugs, plant-derived metabolites, and G-protein subunits. Activation of TRPM3 channels at the cell membrane elicits a signal transduction cascade of mitogen-activated kinases and stimulus response transcription factors. The mammalian TRPM3 gene hosts a non-coding microRNA gene specifying miR-204 that serves as both a tumor suppressor and a negative regulator of post-transcriptional gene expression during eye development in vertebrates. Ocular co-expression of TRPM3 and miR-204 is upregulated by the paired box 6 transcription factor (PAX6) and mutations in all three corresponding genes underlie inherited forms of eye disease in humans including early-onset cataract, retinal dystrophy, and coloboma. This review outlines the genomic and functional complexity of the TRPM3_miR-204 locus in mammalian eye development and disease.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., Box 8096, St. Louis, MO, 63110, USA.
| |
Collapse
|