1
|
Liu J, Tian H, Jin X, Wang Y, Zhang Z, Li M, Dai L, Zhang X, Jiang L. Targeted long-read sequencing identifies missing pathogenic variant in unsolved 11β-hydroxylase deficiency. BMC Endocr Disord 2024; 24:215. [PMID: 39402525 PMCID: PMC11472585 DOI: 10.1186/s12902-024-01748-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND 11β-hydroxylase deficiency (11β-OHD), caused by homozygosity or compound heterozygosity CYP11B1 variants, is the second most common cause of congenital adrenal hyperplasia (CAH). Due to the high degree of sequence identity between CYP11B1 and CYP11B2, chimeric genes, and complex structural variants (SVs), the conventional approach to gene testing for 11β-OHD is facing challenges. The study aimed to clarify the underlying genetic causes of two siblings of a Chinese family with 11β-OHD. METHODS Peripheral blood samples and clinical information were collected from subjects and their family members. Sex steroid concentrations were measured using LC-MS/MS. Long-range PCR-based next-generation sequencing (NGS), PCR assay and target long-read sequencing were used to detect the pathogenic variants. RESULTS Early onset hypertension, increased serum levels of adrenocorticotropin (ACTH), progesterone, testosterone, and decreased cortisol and potassium were detected in both affected siblings. Long-range PCR-based NGS identified a heterozygous missense variant (NM_000497.4:c.281 C > T, p.P94> L) in CYP11B1 gene in the two siblings. PCR detected no chimeric CYP11B2/CYP11B1 gene. We finally identified a second pathogenic variant in CYP11B1 gene via target long-read sequencing (T-LRS). This novel variant was a deletion-insertion variant and located chr8:143957269-143,957,579 (hg19) with the insertion of 'ACAG' (NM_000497.4:c.954 + 78_980delinsACAG), which was in trans with CYP11B1: c.281 C > T. CONCLUSIONS Our study suggests that the integrated long-range PCR-based NGS and T-LRS seem to be the most reliable and accurate method for 11β-OHD genetic diagnosis and carrier sequencing.
Collapse
Affiliation(s)
- Jidong Liu
- Department of Endocrinology and Metabolism, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, P.R. China
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong Province, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong Province, 250012, China
| | - Huihui Tian
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Xinchen Jin
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Yanxiang Wang
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Zhenhong Zhang
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Mengxue Li
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Lulu Dai
- Jinan AXZE Medical Test Laboratory, Jinan, Shandong Province, 250101, China
| | - Xiaoli Zhang
- Department of Endocrinology and Metabolism, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, P.R. China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong Province, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong Province, 250012, China.
| | - Ling Jiang
- Department of Endocrinology and Metabolism, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, 250012, P.R. China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, Jinan, Shandong Province, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, Jinan, Shandong Province, 250012, China.
| |
Collapse
|
2
|
Liu H, Liu F, Wei Z, Liu P, Liu Q, Chen L, Hou X. Identification and functional characterization of compound heterozygous CYP11B1 gene mutations. Endocrine 2024; 84:253-264. [PMID: 38285409 DOI: 10.1007/s12020-023-03614-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE 11β-Hydroxylase deficiency (11β-OHD) is the second leading cause of congenital adrenal hyperplasia (CAH), a rare autosomal recessive disease caused by mutations in the CYP11B1 gene. We previously reported the case of a male Chinese patient with typical 11β-OHD symptoms. Sanger sequencing revealed that the patient carried a splice-site mutation, c.595+1G>A in the CYP11B1 gene. His mother and sister harbored the heterozygous mutation, c.595+1G>A. Paradoxically, Sanger sequencing did not detect any abnormality in the CYP11B1 gene of his father and brother. Therefore, in this study, we aimed to further explore the exact genetic etiology of 11β-OHD in this pedigree and analyze the functional consequence of the c.595+1G>A mutation. METHODS Gemomic DNA was extracted from the peripheral blood leukocytes of the family members and normal control individuals, followed by quantitative real-time polymerase chain reaction (qPCR) to detect the copy number of the target CYP11B1 gene fragment. Mutation analysis was also performed via whole-exome sequencing (WES) followed by Sanger sequencing validation. In vitro minigene assay was also performed to investigate the impact of the c.595+1G>A mutation on pre-mRNA splicing. RESULTS qPCR results suggested a heterozygous deletion encompassing position c.595+1 along with flanking exonic and intronic sequences in the CYP11B1 gene of the patient and his father. WES followed by Sanger sequencing verified that the patient carried compound heterozygous mutations in the CYP11B1 gene, including a novel 2840-bp deletion (c.395+661_c.1121+180del) and c.595+1G>A, while his father carried the heterozygous c.395+661_c.1121+180del mutation. No other novel CYP11B1 mutations were found in the rest of the family members. Furthermore, minigene assay revealed that the c.595+1G>A mutation resulted in a 70-bp deletion of exon 3 in the mRNA, and this altered the reading frame at amino acid 176 and created a premature stop codon at amino acid 197. CONCLUSION We identified a novel 2840-bp-sized large deletion and confirmed that the c.595+1G>A mutation disrupts normal pre-mRNA splicing. Either mutation could significantly alter the reading frame and abolish CYP11B1 enzyme activity. Therefore, our findings widen the mutation spectrum of CYP11B1 and provide an accurate diagnosis of 11β-OHD at a molecular genetic level.
Collapse
Affiliation(s)
- He Liu
- School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, 6699 Qingdao Road, Jinan, Shandong, 250117, China
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Fuqiang Liu
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Zichun Wei
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China
| | - Pan Liu
- Department of Endocrinology, Tai'an City Central Hospital, 29 Longtan Road, Tai'an, Shandong, 271000, China
| | - Qiao Liu
- MOE Key Laboratory of Experimental Teratology, Department of Genetics, Shandong University School of Basic Medical Sciences, 44 Wenhuaxi Road, Lixia District, Jinan, Shandong, 250012, China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| | - Xinguo Hou
- Department of Endocrinology, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Institute of Endocrine and Metabolic Diseases of Shandong University, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Key Laboratory of Endocrine and Metabolic Diseases, Shandong Province Medicine & Health, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
- Jinan Clinical Research Center for Endocrine and Metabolic Diseases, 107 Wenhuaxi Road, Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Li J, Zhang F, Xu M, Qiu H, Zhou C, Li L, Qin L. Case Report: A combination of chimeric CYP11B2/CYP11B1 and a novel p.Val68Gly CYP11B1 variant causing 11β-Hydroxylase deficiency in a Chinese patient. Front Endocrinol (Lausanne) 2023; 14:1216767. [PMID: 38027139 PMCID: PMC10679387 DOI: 10.3389/fendo.2023.1216767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction 11β-Hydroxylase deficiency (11β-OHD, OMIM#202010) is the second most common form of congenital adrenal hyperplasia (CAH) caused by pathogenic variants in the CYP11B1 gene. Both single nucleotide variations (SNV)/small insertion and deletion and genomic rearrangements of CYP11B1 are important causes of 11β-OHD. Among these variant types, pathogenic CYP11B2/CYP11B1 chimeras only contribute to a minority of cases. Heterozygote cases (chimera combined with SNV) are very rare, and genetic analysis of these cases can be challenging. Case presentation We presented a suspected 11β-OHD female patient with incomplete virilization, adrenal hyperplasia, and hypokalemia hypertension. Whole exome sequencing (WES) revealed that the patient carried both a chimeric CYP11B2/CYP11B1 and a novel missense variant, NM_000497.4: c.203T>G, p.Val68Gly (chr8:143961027) in CYP11B1, which were confirmed by CNVplex and Sanger sequencing, respectively. The patient's manifestations and genetic findings confirmed the diagnosis of 11β-OHD, and oral dexamethasone was administered as a subsequent treatment. Conclusion This report showed a rare CYP11B2/CYP11B1 chimera combined with a novel missense variant in a 11β-OHD female patient. The result expands variant spectrum of CYP11B1 and suggests that both chimera and CYP11B1 variant screening should be performed simultaneously in suspected cases of 11β-OHD. To our knowledge, this is the first report about CYP11B2/CYP11B1 chimera detected by WES analysis. WES combined with CNV analysis is an efficient method in the genetic diagnosis of this rare and complex disorder.
Collapse
Affiliation(s)
- Jialin Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Fenglan Zhang
- Clincal Genomics Center, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Miao Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Hao Qiu
- Clincal Genomics Center, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| | - Cheng Zhou
- Department of Urology, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Li Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Lan Qin
- Clincal Genomics Center, Dian Diagnostics Group Co., Ltd., Hangzhou, China
| |
Collapse
|
4
|
Arriba M, Ezquieta B. Molecular Diagnosis of Steroid 21-Hydroxylase Deficiency: A Practical Approach. Front Endocrinol (Lausanne) 2022; 13:834549. [PMID: 35422767 PMCID: PMC9001848 DOI: 10.3389/fendo.2022.834549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Adrenal insufficiency in paediatric patients is mostly due to congenital adrenal hyperplasia (CAH), a severe monogenic disease caused by steroid 21-hydroxylase deficiency (21-OHD, encoded by the CYP21A2 gene) in 95% of cases. CYP21A2 genotyping requires careful analyses that guaranty gene-specific PCR, accurate definition of pseudogene-gene chimeras, gene duplications and allele dropout avoidance. A small panel of well-established disease-causing alterations enables a high diagnostic yield in confirming/discarding the disorder not only in symptomatic patients but also in those asymptomatic with borderline/positive results of 17-hydroxyprogesterone. Unfortunately, the complexity of this locus makes it today reluctant to high throughput techniques of massive sequencing. The strong relationship existing between the molecular alterations and the degree of enzymatic deficiency has allowed genetic studies to demonstrate its usefulness in predicting/classifying the clinical form of the disease. Other aspects of interest regarding molecular studies include its independence of physiological variations and analytical interferences, its usefulness in the diagnosis of simple virilizing forms in males and its inherent contribution to the genetic counseling, an aspect of great importance taking into account the high carrier frequency of CAH in the general population. Genetic testing of CYP21A2 constitutes an irreplaceable tool to detect severe alleles not just in family members of classical forms but also in mild late-onset forms of the disease and couples. It is also helpful in areas such as assisted reproduction and preimplantation diagnosis. Molecular diagnosis of 21-OHD under expert knowledge definitely contributes to a better management of the disease in every step of the clinical course.
Collapse
Affiliation(s)
- María Arriba
- Molecular Diagnostics Laboratory, Department of Laboratory Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| | - Begoña Ezquieta
- Molecular Diagnostics Laboratory, Department of Laboratory Medicine, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Gregorio Marañón Health Research Institute (IiSGM), Madrid, Spain
| |
Collapse
|
5
|
Wang G, Xiao B, Deng J, Gong L, Li Y, Li J, Zhong Y. The Role of Cytochrome P450 Enzymes in COVID-19 Pathogenesis and Therapy. Front Pharmacol 2022; 13:791922. [PMID: 35185562 PMCID: PMC8847594 DOI: 10.3389/fphar.2022.791922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) has become a new public health crisis threatening the world. Dysregulated immune responses are the most striking pathophysiological features of patients with severe COVID-19, which can result in multiple-organ failure and death. The cytochrome P450 (CYP) system is the most important drug metabolizing enzyme family, which plays a significant role in the metabolism of endogenous or exogenous substances. Endogenous CYPs participate in the biosynthesis or catabolism of endogenous substances, including steroids, vitamins, eicosanoids, and fatty acids, whilst xenobiotic CYPs are associated with the metabolism of environmental toxins, drugs, and carcinogens. CYP expression and activity are greatly affected by immune response. However, changes in CYP expression and/or function in COVID-19 and their impact on COVID-19 pathophysiology and the metabolism of therapeutic agents in COVID-19, remain unclear. In this analysis, we review current evidence predominantly in the following areas: firstly, the possible changes in CYP expression and/or function in COVID-19; secondly, the effects of CYPs on the metabolism of arachidonic acid, vitamins, and steroid hormones in COVID-19; and thirdly, the effects of CYPs on the metabolism of therapeutic COVID-19 drugs.
Collapse
Affiliation(s)
- Guyi Wang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Bing Xiao
- Department of Emergency, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Linmei Gong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yi Li
- Department of Cardiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
6
|
Yuan X, Lu L, Chen S, Jiang J, Wang X, Liu Z, Zhu H, Pan H, Lu Z. A Chinese patient with 11β-hydroxylase deficiency due to novel compound heterozygous mutation in CYP11B1 gene: a case report. BMC Endocr Disord 2018; 18:68. [PMID: 30241518 PMCID: PMC6151069 DOI: 10.1186/s12902-018-0295-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 09/13/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Congenital adrenal hyperplasia (CAH) resulting from steroid 11β-hydroxylase deficiency (11β-OHD) is caused by mutations in the CYP11B1 gene. It is the second major form of CAH associated with hypertension and hypopotassemia. The aim of this study was to provide a genetic analysis of 11β-OHD in a Chinese family. CASE PRESENTATION A 19-year-old Chinese man was clinically diagnosed with 11β-OHD. His initial clinical manifestations included precocious puberty, hyperpigmentation, hypertension, and hypopotassemia. The patient had taken an overdose of dexamethasone (0.75 mg/d) for more than 10 years before finally developing iatrogenic Cushing's syndrome. Our aim was to perform a molecular diagnosis of his family. Mutations in the CYP11B1 gene of the patient and his parents were examined using polymerase chain reaction (PCR) resequencing. Additionally, to predict the possible effects of novel mutations on the structure and function of 11β-hydroxylase, these mutations were analyzed by MutationTaster software. Two novel pathogenic mutations were found in the CYP11B1 gene: a heterozygous in-frame insertion deletion mutation c.1440_1447delinsTAAAAG in exon 9 inherited from the father and a heterozygous mutation c.1094_1120delTGCGTGCGGCCCTCAAGGAGACCTTGC (p.364_372del) in exon 6 inherited from the mother. CONCLUSIONS A clear genetic diagnosis can be made by analyzing the functional and structural consequences of CYP11B1 gene mutations that lead to 11β-OHD. Because the dosage of glucocorticoid should be adjusted to minimize the risk of iatrogenic Cushing's syndrome, clinical follow-up should be conducted with these patients.
Collapse
Affiliation(s)
- Xianxian Yuan
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Lin Lu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Shi Chen
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Jun Jiang
- The Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xiangqing Wang
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Zhihui Liu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Huijuan Zhu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Hui Pan
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| | - Zhaolin Lu
- Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Key Laboratory of Endocrinology of National Health Commission of the People’s Republic of China, No. 1 Shuaifuyuan, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
7
|
Duan L, Shen R, Song L, Liao Y, Zheng H. A novel chimeric CYP11B2/CYP11B1 combined with a new p.L340P CYP11B1 mutation in a patient with 11OHD: case report. BMC Endocr Disord 2018; 18:23. [PMID: 29703198 PMCID: PMC5921981 DOI: 10.1186/s12902-018-0249-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 04/12/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 11β-Hydroxylase deficiency (11OHD) is a common form of congenital adrenal hyperplasia that has been shown to result from inactivating CYP11B1 mutations, and pathogenic CYP11B2/CYP11B1 chimeras contribute to a minority of cases. Heterozygote cases (chimeras combined with missense mutation) are very rare, and genetic analysis of these cases is difficult. CASE PRESENTATION We describe an 11OHD patient presenting with precocious pseudopuberty and hypokalemia hypertension who harbored a chimeric CYP11B2/CYP11B1 with a novel breakage point located at g.9559-9742 of CYP11B2. Interestingly, the other allele exhibited a new mutation, p.L340P, in CYP11B1. Bioinformatics and molecular dynamics simulation indicated that p.L340P decreased the stability and changed the surface configuration of 11β-hydroxylase, indicating a disease-causing mutation. Further pedigree study, PCR and next-generation sequencing indicated that the proband carried both the chimera and p.L340P, and coexistence of the two increased the severity of 11OHD in this family. After treatment with combined medications, blood pressure and clinical parameters improved. CONCLUSIONS Our results suggest that chimera screening and CYP11B1 mutation screening should be simultaneously conducted, and pedigree study is necessary.
Collapse
Affiliation(s)
- Lian Duan
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 China
| | - Rufei Shen
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 China
| | - Lingyu Song
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 China
| | - Yong Liao
- Department of Endocrinology, Armed Police Hospital of Chongqing, Chongqing, 400061 China
| | - Hongting Zheng
- Department of Endocrinology, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037 China
| |
Collapse
|
8
|
Burrello J, Monticone S, Buffolo F, Tetti M, Veglio F, Williams TA, Mulatero P. Is There a Role for Genomics in the Management of Hypertension? Int J Mol Sci 2017; 18:ijms18061131. [PMID: 28587112 PMCID: PMC5485955 DOI: 10.3390/ijms18061131] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 05/20/2017] [Accepted: 05/21/2017] [Indexed: 12/13/2022] Open
Abstract
Hypertension (HTN) affects about 1 billion people worldwide and the lack of a single identifiable cause complicates its treatment. Blood pressure (BP) levels are influenced by environmental factors, but there is a strong genetic component. Linkage analysis has identified several genes involved in Mendelian forms of HTN and the associated pathophysiological mechanisms have been unravelled, leading to targeted therapies. The majority of these syndromes are due to gain-of-function or loss-of-functions mutations, resulting in an alteration of mineralocorticoid, glucocorticoid, or sympathetic pathways. The diagnosis of monogenic forms of HTN has limited practical implications on the population and a systematic genetic screening is not justifiable. Genome-wide linkage and association studies (GWAS) have identified single nucleotide polymorphisms (SNPs), which influence BP. Forty-three variants have been described with each SNP affecting systolic and diastolic BP by 1.0 and 0.5 mmHg, respectively. Taken together Mendelian inheritance and all GWAS-identified HTN-associated variants explain 2–3% of BP variance. Epigenetic modifications, such as DNA methylation, histone modification and non-coding RNAs, have become increasingly recognized as important players in BP regulation and may justify a further part of missing heritability. In this review, we will discuss how genetics and genomics may assist clinicians in managing patients with HTN.
Collapse
Affiliation(s)
- Jacopo Burrello
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Silvia Monticone
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Fabrizio Buffolo
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Martina Tetti
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Franco Veglio
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| | - Tracy A Williams
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Ludwig-Maximilians-Universität München, 80336 Munich, Germany.
| | - Paolo Mulatero
- Division of Internal Medicine and Hypertension, Department of Medical Sciences, University of Turin, 10126 Turin, Italy.
| |
Collapse
|
9
|
Menabò S, Boccassini S, Gambineri A, Balsamo A, Pasquali R, Prontera O, Mazzanti L, Baldazzi L. Improving the diagnosis of 11β-hydroxylase deficiency using home-made MLPA probes: identification of a novel chimeric CYP11B2/CYP11B1 gene in a Sicilian patient. J Endocrinol Invest 2016; 39:291-5. [PMID: 26280318 DOI: 10.1007/s40618-015-0362-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 07/12/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE 11β-Hydroxylase deficiency (11OHD) represents the second most common cause of congenital adrenal hyperplasia. It is caused by mutations in the CYP11B1 gene localized about 40 kb from the CYP11B2 gene with which it shares a homology of 95 %. The asymmetric recombination of these two genes is involved both in 11OHD and in glucocorticoid-remediable aldosteronism (GRA). Our objective was to set up an easy and rapid method to detect these hybrid genes and other kinds of deletions, to improve the molecular diagnosis of 11OHD. METHODS A set of 8 specific probes for both the CYP11B1 and the CYP11B2 genes to be used for multiplex ligation-dependent probe amplification (MLPA) analysis was designed to detect rearrangements of these genes. RESULTS The method developed was tested on 15 healthy controls and was proved to be specific and reliable; it led us to identify a novel chimeric CYP11B2/CYP11B1 gene in one patient that carried the known A306V mutation on the other allele. Specific amplification and sequencing of the hybrid gene confirmed the breakpoint localization in the second intron. CONCLUSIONS The MLPA kit developed enables the detection of deletions, duplications or chimeric genes and represents an optimal supplement to DNA sequence analysis in patients with 11OHD. In addition, it can also be used to show the presence of the opposite chimaera associated with GRA.
Collapse
Affiliation(s)
- S Menabò
- Pediatric Endocrinology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy.
| | - S Boccassini
- Pediatric Endocrinology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - A Gambineri
- Endocrinology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - A Balsamo
- Pediatric Endocrinology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - R Pasquali
- Endocrinology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - O Prontera
- Endocrinology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - L Mazzanti
- Pediatric Endocrinology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - L Baldazzi
- Pediatric Endocrinology Unit, Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
10
|
Alqahtani MA, Shati AA, Zou M, Alsuheel AM, Alhayani AA, Al-Qahtani SM, Gilban HM, Meyer BF, Shi Y. A Novel Mutation in the CYP11B1 Gene Causes Steroid 11β-Hydroxylase Deficient Congenital Adrenal Hyperplasia with Reversible Cardiomyopathy. Int J Endocrinol 2015; 2015:595164. [PMID: 26265915 PMCID: PMC4525762 DOI: 10.1155/2015/595164] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 06/28/2015] [Accepted: 06/29/2015] [Indexed: 12/29/2022] Open
Abstract
Congenital adrenal hyperplasia (CAH) due to steroid 11β-hydroxylase deficiency is the second most common form of CAH, resulting from a mutation in the CYP11B1 gene. Steroid 11β-hydroxylase deficiency results in excessive mineralcorticoids and androgen production leading to hypertension, precocious puberty with acne, enlarged penis, and hyperpigmentation of scrotum of genetically male infants. In the present study, we reported 3 male cases from a Saudi family who presented with penile enlargement, progressive darkness of skin, hypertension, and cardiomyopathy. The elder patient died due to heart failure and his younger brothers were treated with hydrocortisone and antihypertensive medications. Six months following treatment, cardiomyopathy disappeared with normal blood pressure and improvement in the skin pigmentation. The underlying molecular defect was investigated by PCR-sequencing analysis of all coding exons and intron-exon boundary of the CYP11B1 gene. A novel biallelic mutation c.780 G>A in exon 4 of the CYP11B1 gene was found in the patients. The mutation created a premature stop codon at amino acid 260 (p.W260 (∗) ), resulting in a truncated protein devoid of 11β-hydroxylase activity. Interestingly, a somatic mutation at the same codon (c.779 G>A, p.W260 (∗) ) was reported in a patient with papillary thyroid cancer (COSMIC database). In conclusion, we have identified a novel nonsense mutation in the CYP11B1 gene that causes classic steroid 11β-hydroxylase deficient CAH. Cardiomyopathy and cardiac failure can be reversed by early diagnosis and treatment.
Collapse
Affiliation(s)
- Mohammad A. Alqahtani
- Department of Pediatrics, Aseer Central Hospital, Abha 62523, Saudi Arabia
- *Mohammad A. Alqahtani: and
| | - Ayed A. Shati
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Minjing Zou
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Ali M. Alsuheel
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | | | - Saleh M. Al-Qahtani
- Department of Child Health, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Hessa M. Gilban
- Department of Pediatrics, Aseer Central Hospital, Abha 62523, Saudi Arabia
| | - Brain F. Meyer
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
| | - Yufei Shi
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia
- *Yufei Shi:
| |
Collapse
|
11
|
Parajes S, Loidi L, Reisch N, Dhir V, Rose IT, Hampel R, Quinkler M, Conway GS, Castro-Feijóo L, Araujo-Vilar D, Pombo M, Dominguez F, Williams EL, Cole TR, Kirk JM, Kaminsky E, Rumsby G, Arlt W, Krone N. Functional consequences of seven novel mutations in the CYP11B1 gene: four mutations associated with nonclassic and three mutations causing classic 11{beta}-hydroxylase deficiency. J Clin Endocrinol Metab 2010; 95:779-88. [PMID: 20089618 PMCID: PMC2846960 DOI: 10.1210/jc.2009-0651] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT Steroid 11beta-hydroxylase (CYP11B1) deficiency (11OHD) is the second most common form of congenital adrenal hyperplasia (CAH). Cases of nonclassic 11OHD are rare compared with the incidence of nonclassic 21-hydroxylase deficiency. OBJECTIVE The aim of the study was to analyze the functional consequences of seven novel CYP11B1 mutations (p.M88I, p.W116G, p.P159L, p.A165D, p.K254_A259del, p.R366C, p.T401A) found in three patients with classic 11OHD, two patients with nonclassic 11OHD, and three heterozygous carriers for CYP11B1 mutations. METHODS We conducted functional studies employing a COS7 cell in vitro expression system comparing wild-type (WT) and mutant CYP11B1 activity. Mutants were examined in a computational three-dimensional model of the CYP11B1 protein. RESULTS All mutations (p.W116G, p.A165D, p.K254_A259del) found in patients with classic 11OHD have absent or very little 11beta-hydroxylase activity relative to WT. The mutations detected in patients with nonclassic 11OHD showed partial functional impairment, with one patient being homozygous (p.P159L; 25% of WT) and the other patient compound heterozygous for a novel mild p.M88I (40% of WT) and the known severe p.R383Q mutation. The two mutations detected in heterozygous carriers (p.R366C, p.T401A) also reduced CYP11B1 activity by 23 to 37%, respectively. CONCLUSION Functional analysis results allow for the classification of novel CYP11B1 mutations as causative for classic and nonclassic 11OHD, respectively. Four partially inactivating mutations are predicted to result in nonclassic 11OHD. These findings double the number of mild CYP11B1 mutations previously described as associated with mild 11OHD. Our data are important to predict phenotypic expression and provide important information for clinical and genetic counseling in 11OHD.
Collapse
Affiliation(s)
- Silvia Parajes
- Centre for Endocrinology, Diabetes, and Metabolism, School of Clinical and Experimental Medicine, University of Birmingham, Institute of Biomedical Research, Wolfson Drive, Birmingham B15 2TT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|