1
|
Shen Z, Lu Y, Bai Y, Li J, Wang H, Kou D, Li Z, Ma Q, Hu J, Bai L, Li L, Wang J, Liu H. Transcriptome-metabolome reveals the molecular changes in meat production and quality in the hybrid populations of Sichuan white goose. Poult Sci 2024; 103:103931. [PMID: 38972281 PMCID: PMC11263958 DOI: 10.1016/j.psj.2024.103931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/29/2024] [Accepted: 05/29/2024] [Indexed: 07/09/2024] Open
Abstract
Hybrid breeding has proven to enhance meat quality and is extensively utilized in goose breeding. Nevertheless, there is a paucity of research investigating the molecular mechanisms that underlie the meat quality of hybrid geese. In this study, we employed the Sichuan White Goose as the maternal line for hybridization with the Zhedong White Goose and Tianfu Meat Goose P3 line. We assessed the growth and slaughter meat quality performance of 10-wk-old hybrid offspring in comparison to Sichuan white goose purebred offspring. The results indicate that hybrid geese have significantly improved performance in growth and slaughter meat quality. Furthermore, we conducted a comprehensive analysis of the chest muscles of hybrid offspring through transcriptomics and metabolomics to unravel the effects of hybrid breeding on growth and meat quality. A total of 673 differentially expressed genes (DEGs), and 93 differentially expressed metabolites were identified. The joint analysis highlighted the significant enrichment of DEGs AMPD1, AMPD3, RRM2, ENTPD3, and the metabolite UMP in the nucleotide metabolism pathway. These findings underscore the crucial role of these genetic and metabolic factors in regulating muscle growth and meat quality in hybrid populations.
Collapse
Affiliation(s)
- Zhengyang Shen
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Yuan Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Junpeng Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Huazhen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Daqin Kou
- Livestock and Aquaculture Industry Development Service Center, Agricultural and Rural Bureau of Nanxi District Yibin City, Sichuan Province 644105, PR China
| | - Zhongbin Li
- Livestock and Aquaculture Industry Development Service Center, Agricultural and Rural Bureau of Nanxi District Yibin City, Sichuan Province 644105, PR China
| | - Qian Ma
- Livestock and Aquaculture Industry Development Service Center, Agricultural and Rural Bureau of Nanxi District Yibin City, Sichuan Province 644105, PR China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Jiwen Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China
| | - Hehe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, PR China.
| |
Collapse
|
2
|
Sherif R, Nassef E, El-Kassas S, Bakr A, Hegazi E, El-Sawy H. Synergistic impact of Chlorella vulgaris, zinc oxide- and/or selenium nanoparticles dietary supplementation on broiler's growth performance, antioxidant and blood biochemistry. Trop Anim Health Prod 2024; 56:246. [PMID: 39212817 PMCID: PMC11364791 DOI: 10.1007/s11250-024-04098-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 07/18/2024] [Indexed: 09/04/2024]
Abstract
The current study explored the influence of dietary supplementation of Chlorella vulgaris dried powder (CV) with zinc-oxide-nanoparticles (ZnO-NPs), and/or selenium-nanoparticles (Se-NPs) on broilers' growth, antioxidant capacity, immune status, histological responses, and gene expression of some related genes. Several 200 one-day-old Cobb-500 male chicks were distributed into 5 groups with four replicates each. In the 1st group, birds were fed the basal diet (BD). In the 2nd, 3rd, 4th, and 5th groups, birds received the BD supplemented with CV only, CV + ZnO-NPs, CV + Se-NPs, and CV + ZnO-NPs + Se-NPs, respectively. The CV dried powder, ZnO-NPs, and Se-NPs were added to the BD at a rate of 1 g, 40 mg, and 0.3 mg/kg diet, respectively. After 6 weeks of feeding, increases in final body weights (P < 0.05), body weight gain (P < 0.05), and feed intake (P < 0.05) were linked with improvements in FCR (P < 0.05) and intestinal morphometric indices (P < 0.05), and marked up-regulations of MYOS (P < 0.05), GHR (P < 0.05), and IGF (P < 0.05) genes were established. Additionally, distinct increases in antioxidant enzyme activities of SOD (P < 0.05), and GPX (P < 0.05) with increases in the mRNA copies of their genes were measured. Moreover, slight improvement in immunity indices, WBCs count (P > 0.05), and phagocytic and lysozyme activities (P > 0.05) were found. However, distinct increases in phagocytic index (P < 0.05) and up-regulations of IL-1β and TNF, and down-regulation of IL-10 mRNA levels were reported (P < 0.05). These findings were prominent in the case of the separate supplementation of CV with ZnO-NPs or Se-NPs confirming the synergistic mechanisms of CV with ZnO-NPs or Se-NPs. Thus, the synergetic supplementation of CV with ZnO-NPs, or Se-NPs in the broiler's diet could augment their growth and antioxidant response.
Collapse
Affiliation(s)
- Rawda Sherif
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Eldsokey Nassef
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Seham El-Kassas
- Animal, Poultry, and Fish Breeding and Production, Department of Animal Wealth Development, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, 33516, Egypt.
| | - Abdulnasser Bakr
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Elsayed Hegazi
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Hanan El-Sawy
- Nutrition and Clinical Nutrition Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
3
|
Carlini LE, Fernandez AC, Mellinger JL. Sex and gender in alcohol use disorder and alcohol-associated liver disease in the United States: A narrative review. Hepatology 2024:01515467-990000000-00864. [PMID: 38683562 DOI: 10.1097/hep.0000000000000905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
Over the last 20 years, there has been an alarming increase in alcohol use and AUD prevalence among women, narrowing the historical gender gap. Concurrently, there has also been a significant rise in alcohol-associated liver disease (ALD) prevalence, severity, and mortality among women. Despite this, there are no recent reviews that have sought to evaluate both sex and gender differences at the intersection of AUD and ALD. In this narrative review, we address the escalating rates of ALD and AUD in the United States, with a specific focus on the disproportionate impact on women. Sex and gender play an important and well-known role in the pathogenesis and epidemiology of ALD. However, sex and gender are also implicated in the development and prevalence of AUD, as well as in the treatment of AUD, all of which have important consequences on the approach to the treatment of patients with ALD and AUD. A better understanding of sex and gender differences in AUD, ALD, and the intersection of the 2 is essential to enhance prevention, diagnosis, and management strategies. These data underscore the urgent need for awareness and preventive efforts to mitigate the potential long-term health consequences.
Collapse
Affiliation(s)
- Lauren E Carlini
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Anne C Fernandez
- Department of Psychiatry, Michigan Medicine, Ann Arbor, Michigan, USA
| | - Jessica L Mellinger
- Department of Internal Medicine and Psychiatry, Michigan Medicine, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Chen Y, Wang Y, Fu Y, Yin Y, Xu K. Modulating AHR function offers exciting therapeutic potential in gut immunity and inflammation. Cell Biosci 2023; 13:85. [PMID: 37179416 PMCID: PMC10182712 DOI: 10.1186/s13578-023-01046-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023] Open
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor. 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a classical exogenous synthetic ligand of AHR that has significant immunotoxic effects. Activation of AHR has beneficial effects on intestinal immune responses, but inactivation or overactivation of AHR can lead to intestinal immune dysregulation and even intestinal diseases. Sustained potent activation of AHR by TCDD results in impairment of the intestinal epithelial barrier. However, currently, AHR research has been more focused on elucidating physiologic AHR function than on dioxin toxicity. The appropriate level of AHR activation plays a role in maintaining gut health and protecting against intestinal inflammation. Therefore, AHR offers a crucial target to modulate intestinal immunity and inflammation. Herein, we summarize our current understanding of the relationship between AHR and intestinal immunity, the ways in which AHR affects intestinal immunity and inflammation, the effects of AHR activity on intestinal immunity and inflammation, and the effect of dietary habits on intestinal health through AHR. Finally, we discuss the therapeutic role of AHR in maintaining gut homeostasis and relieving inflammation.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yadong Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
| | - Yawei Fu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450000, China
| | - Kang Xu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China.
| |
Collapse
|
5
|
Wu P, He M, Zhang X, Zhou K, Zhang T, Xie K, Dai G, Wang J, Wang X, Zhang G. miRNA-seq analysis in skeletal muscle of chicken and function exploration of miR-24-3p. Poult Sci 2022; 101:102120. [PMID: 36113166 PMCID: PMC9483787 DOI: 10.1016/j.psj.2022.102120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 06/16/2022] [Accepted: 08/03/2022] [Indexed: 10/31/2022] Open
Abstract
The regulation of skeletal muscle growth and development in chicken is complex. MicroRNAs (miRNAs) have been found to play an important role in the process, and more research is needed to further understand the regulatory mechanism of miRNAs. In this study, leg muscles of Jinghai yellow chickens at 300 d with low body weight (slow-growing group) and high body weight (fast-growing group) were collected for miRNA sequencing (miRNA-seq) and Bioinformatics analysis revealed 12 differentially expressed miRNAs (DEMs) between the two groups. We predicted 150 target genes for the DEMs, and GO and KEGG pathway analysis showed the target genes of miR-24-3p and novel_miR_133 were most enriched in the terms related to growth and development. Moreover, networks of DEMs and target genes showed that miR-24-3p and novel_miR_133 were the 2 core miRNAs. Hence, miR-24-3p was selected for further functional exploration in chicken primary myoblasts (CPMs) with molecular biology technologies including qPCR, cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and immunofluorescence. When proliferating CPMs were transfected with miR-24-3p mimic, the expression of cyclin dependent kinase inhibitor 1A (P21) was up-regulated and both CCK-8 and EdU assays showed that the proliferation of CPMs was inhibited. However, when the inhibitor was transfected into the proliferating CPMs, the opposite results were found. In differentiated CPMs, transfection with miR-24-3p mimic resulted in up regulation of MYOD, MYOG and MYHC after 48 h. Myotube areas also increased significantly compared to the mimic negative control (NC) group. When treated with inhibitor, differentiation CPMs produced the opposite effects. Overall, we revealed 2 miRNAs (novel_miR_133 and miR-24-3p) significantly related with growth and development and further proved that miR-24-3p could suppress the proliferation and promote differentiation of CPMs. The results would facilitate understanding the effects of miRNAs on the growth and development of chickens at the post-transcriptional level and could also have an important guiding role in yellow-feathered chicken breeding.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xinchao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Kaizhi Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Xinglong Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; Joint International Research Laboratory of Agriculture & Agri-Product Safety, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
6
|
Wang R, Bhat-Nakshatri P, Zhong X, Zimmers T, Nakshatri H. Hormonally Regulated Myogenic miR-486 Influences Sex-specific Differences in Cancer-induced Skeletal Muscle Defects. Endocrinology 2021; 162:6321973. [PMID: 34265069 PMCID: PMC8335968 DOI: 10.1210/endocr/bqab142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Indexed: 12/20/2022]
Abstract
Cancer-induced skeletal muscle defects show sex-specific differences in severity with men performing poorly compared to women. Hormones and sex chromosomal differences are suggested to mediate these differences, but the functional skeletal muscle markers to document these differences are unknown. We show that the myogenic microRNA miR-486 is a marker of sex-specific differences in cancer-induced skeletal muscle defects. Cancer-induced loss of circulating miR-486 was more severe in men with bladder, lung, and pancreatic cancers compared to women with the same cancer types. In a syngeneic model of pancreatic cancer, circulating and skeletal muscle loss of miR-486 was more severe in male mice compared to female mice. Estradiol (E2) and the clinically used selective estrogen receptor modulator toremifene increased miR-486 in undifferentiated and differentiated myoblast cell line C2C12 and E2-inducible expression correlated with direct binding of estrogen receptor alpha (ERα) to the regulatory region of the miR-486 gene. E2 and toremifene reduced the actions of cytokines such as myostatin, transforming growth factor β, and tumor necrosis factor α, which mediate cancer-induced skeletal muscle wasting. E2- and toremifene-treated C2C12 myoblast/myotube cells contained elevated levels of active protein kinase B (AKT) with a corresponding decrease in the levels of its negative regulator PTEN, which is a target of miR-486. We propose an ERα:E2-miR-486-AKT signaling axis, which reduces the deleterious effects of cancer-induced cytokines/chemokines on skeletal muscle mass and/or function.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Xiaoling Zhong
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Teresa Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Richard L Roudebush VA Medical Center, Indianapolis, IN 46202, USA
- Corresponding Author: Harikrishna Nakshatri, BVSc., PhD, C218C, 980 West Walnut St., Indianapolis, IN 46202, USA, 317 278 2238,
| |
Collapse
|
7
|
Wu P, Zhang X, Zhang G, Chen F, He M, Zhang T, Wang J, Xie K, Dai G. Transcriptome for the breast muscle of Jinghai yellow chicken at early growth stages. PeerJ 2020; 8:e8950. [PMID: 32328350 PMCID: PMC7166044 DOI: 10.7717/peerj.8950] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 03/20/2020] [Indexed: 12/31/2022] Open
Abstract
Background The meat quality of yellow feathered broilers is better than the quality of its production. Growth traits are important in the broiler industry. The exploration of regulation mechanisms for the skeletal muscle would help to increase the growth performance of chickens. At present, some progress has been made by researchers, but the molecular mechanisms of the skeletal muscle still remain unclear and need to be improved. Methods In this study, the breast muscles of fast- and slow-growing female Jinghai yellow chickens (F4F, F8F, F4S, F8S) and slow-growing male Jinghai yellow chickens (M4S, M8S) aged four and eight weeks were selected for transcriptome sequencing (RNA-seq). All analyses of differentially expressed genes (DEGs) and functional enrichment were performed. Finally, we selected nine DEGs to verify the accuracy of the sequencing by qPCR. Results The differential gene expression analysis resulted in 364, 219 and 111 DEGs (adjusted P-value ≤ 0.05) for the three comparison groups, F8FvsF4F, F8SvsF4S, and M8SvsM4S, respectively. Three common DEGs (ADAMTS20, ARHGAP19, and Novel00254) were found, and they were all highly expressed at four weeks of age. In addition, some other genes related to growth and development, such as ANXA1, COL1A1, MYH15, TGFB3 and ACTC1, were obtained. The most common DEGs (n = 58) were found between the two comparison groups F8FvsF4F and F8SvsF4S, and they might play important roles in the growth of female chickens. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway also showed some significant enrichment pathways, for instance, extracellular matrix (ECM)-receptor interaction, focal adhesion, cell cycle, and DNA replication. The two pathways that were significantly enriched in the F8FvsF4F group were all contained in that of F8SvsF4S. The same two pathways were ECM–receptor interaction and focal adhesion, and they had great influence on the growth of chickens. However, many differences existed between male and female chickens in regards to common DEGs and KEGG pathways. The results would help to reveal the regulation mechanism of the growth and development of chickens and serve as a guideline to propose an experimental design on gene function with the DEGs and pathways.
Collapse
Affiliation(s)
- Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Xinchao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China.,College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
8
|
Chen F, Wu P, Shen M, He M, Chen L, Qiu C, Shi H, Zhang T, Wang J, Xie K, Dai G, Wang J, Zhang G. Transcriptome Analysis of Differentially Expressed Genes Related to the Growth and Development of the Jinghai Yellow Chicken. Genes (Basel) 2019; 10:genes10070539. [PMID: 31319533 PMCID: PMC6678745 DOI: 10.3390/genes10070539] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 12/18/2022] Open
Abstract
The growth traits are important traits in chickens. Compared to white feather broiler breeds, Chinese local broiler breeds have a slow growth rate. The main genes affecting the growth traits of local chickens in China are still unclear and need to be further explored. This experiment used fast-growth and slow-growth groups of the Jinghai Yellow chicken as the research objects. Three males and three females with similar body weights were selected from the two groups at four weeks old and eight weeks old, respectively, with a total of 24 individuals selected. After slaughter, their chest muscles were taken for transcriptome sequencing. In the differentially expressed genes screening, all of the genes obtained were screened by fold change ≥ 2 and false discovery rate (FDR) < 0.05. For four-week-old chickens, a total of 172 differentially expressed genes were screened in males, where there were 68 upregulated genes and 104 downregulated genes in the fast-growth group when compared with the slow-growth group. A total of 31 differentially expressed genes were screened in females, where there were 11 upregulated genes and 20 downregulated genes in the fast-growth group when compared with the slow-growth group. For eight-week-old chickens, a total of 37 differentially expressed genes were screened in males. The fast-growth group had 28 upregulated genes and 9 downregulated genes when compared with the slow-growth group. A total of 44 differentially expressed genes were screened in females. The fast-growth group had 13 upregulated genes and 31 downregulated genes when compared with the slow-growth group. Through gene ontology (GO) enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, many genes were found to be related to cell proliferation and differentiation, muscle growth, and cell division such as SNCG, MCL1, ARNTL, PLPPR4, VAMP1, etc. Real-time PCR results were consistent with the RNA-Seq data and validated the findings. The results of this study will help to understand the regulation mechanism of the growth and development of Jinghai Yellow chicken and provide a theoretical basis for improving the growth rate of Chinese local chicken breeds.
Collapse
Affiliation(s)
- Fuxiang Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Pengfei Wu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Manman Shen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mingliang He
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Lan Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Cong Qiu
- Jiangsu Jinghai Poultry Group Co., Ltd., Nantong 226100, China
| | - Huiqiang Shi
- Jiangsu Jinghai Poultry Group Co., Ltd., Nantong 226100, China
| | - Tao Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jiahong Wang
- Upper School, Rutgers Preparatory School, NJ 08873, USA
| | - Kaizhou Xie
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guojun Dai
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Jinyu Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Genxi Zhang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
9
|
Roelfsema F, Yang RJ, Bowers CY, Veldhuis JD. Modulating Effects of Progesterone on Spontaneous Nocturnal and Ghrelin-Induced GH Secretion in Postmenopausal Women. J Clin Endocrinol Metab 2019; 104:2385-2394. [PMID: 30721950 PMCID: PMC6505453 DOI: 10.1210/jc.2018-02639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 01/31/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND Oral administration of estradiol (E2) generally increases GH secretion in postmenopausal women. Oral administration of E2 is associated with a decrease in IGF-1, whereas parenteral or transdermally administered E2 may have no effect on GH. The effect of progesterone (P4) on GH secretion has rarely been studied. We hypothesized that moderately increased serum E2 levels stimulate GH and that P4 modulates E2-stimulated GH secretion. STUDY DESIGN Four parallel groups of randomly assigned postmenopausal women (n = 40). Treatments were saline placebo and oral placebo, saline placebo and oral micronized P4 (3 × 200 mg/d IM), E2 (5 mg IM) and oral placebo, and E2 IM and oral micronized P4. Outcome measures were overnight GH secretion (10 hours), stimulated (ghrelin, 0.3 µg/kg IV bolus) GH secretion, and CT-estimated visceral fat. RESULTS Intramuscular E2 administration did not alter nocturnal and ghrelin-stimulated GH secretion. Nocturnal GH secretion was not changed by P4 administration. However, P4 diminished ghrelin-stimulated pulsatile GH release with or without E2 (average, 7.20 ± 2.14 and 9.58 ± 1.97 µg/L/2 h, respectively; P = 0.045). Respective outcomes for mean GH concentrations and GH peak amplitudes were 0.97 ± 0.31 and 1.52 μg/L ± 0.29 (P = 0.025) and 2.76 ± 1.04 and 3.95 μg/L ± 0.90 (P = 0.031). Ghrelin-stimulated GH secretion correlated negatively with P4 concentration with or without correction for visceral fat area in the regression equation (R = 0.49, P = 0.04, β = -0.040 ± 0.016). CONCLUSIONS Low-range physiological E2 concentrations do not affect spontaneous or ghrelin-stimulated pulsatile GH secretion. Conversely, P4 inhibits ghrelin-stimulated GH secretion in a concentration-dependent fashion. The mechanistic aspects and physiological significance of natural P4's regulation of ghrelin-evoked GH secretion require further study.
Collapse
Affiliation(s)
- Ferdinand Roelfsema
- Department of Internal Medicine, Section of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, Netherlands
| | - Rebecca J Yang
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota
| | - Cyril Y Bowers
- Department of Internal Medicine, Endocrine Division, Tulane University Health Sciences Center, New Orleans, Louisiana
| | - Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota
- Correspondence and Reprint Requests: Johannes D. Veldhuis, MD, Endocrine Research Unit, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905. E-mail:
| |
Collapse
|