1
|
Becker JO, Shijo SK, Huynh HH, Forrest KL, MacCoss MJ, Emrick MA, Goonatilleke E, Hoofnagle AN. Quantification of glucagon and oxyntomodulin by protein precipitation-immunoaffinity enrichment-LC-MS/MS. J Mass Spectrom Adv Clin Lab 2025; 36:37-45. [PMID: 40385697 PMCID: PMC12083559 DOI: 10.1016/j.jmsacl.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 05/20/2025] Open
Abstract
Introduction Glucagon and oxyntomodulin are peptide hormones differentially released from proglucagon that function in regulating blood glucose. Their overlapping amino acid sequences make the development of specific immunoassays difficult, but the specificity of liquid chromatography-tandem mass spectrometry can be used to distinguish the peptides. We aimed to develop a sensitive and specific mass spectrometric assay that uses non-proprietary reagents and normal-flow liquid chromatography in the simultaneous quantification of both analytes. Methods Bulk plasma proteins were precipitated in ethanol/ammonium hydroxide. Analytes were enriched using monoclonal antibodies generated in-house and analyzed using liquid chromatography-tandem mass spectrometry. A glucagon calibration material was sourced commercially and characterized for purity and concentration by high-performance liquid chromatography-ultraviolet detection and amino acid analysis. Single-point calibration was used to minimize between-day variability. Results The novel antibodies performed acceptably (peptide recovery 45-59 %). The assay was precise (<13 %CV) and linear over the range of 1.3-14.7 pM and 1.1-13.7 pM for glucagon and oxyntomodulin, respectively. The glucagon calibration material concentration was determined to be 1.596 mg/g. Tube-type studies supported the use of protease inhibitor tubes at the time of blood draw. Patients with type 1 diabetes had lower concentrations of glucagon when maintained on an insulin pump, but not with injectable insulin. Conclusion We have validated a method with a highly detailed standard operating procedure. We have characterized calibration materials to help maintain accuracy and achieve between-day and between-laboratory harmonization. The assay will be beneficial in better understanding α-cell health and glycemic control in diabetes and other diseases.
Collapse
Affiliation(s)
| | - Sara K. Shijo
- Department of Laboratory Medicine and Pathology, USA
| | | | | | | | | | | | - Andrew N. Hoofnagle
- Department of Laboratory Medicine and Pathology, USA
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Box 357110, Seattle, WA 98195-7110, USA
| |
Collapse
|
2
|
Horie I, Abiru N. Advances in clinical research on glucagon. Diabetol Int 2024; 15:353-361. [PMID: 39101175 PMCID: PMC11291794 DOI: 10.1007/s13340-024-00705-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/19/2024] [Indexed: 08/06/2024]
Abstract
We are now celebrating the 100th anniversary of the discovery of an important pancreatic hormone, glucagon. Glucagon is historically described as a diabetogenic hormone elevating glucose levels via increases in insulin resistance and hepatic gluconeogenesis. The more recently identified actions of glucagon include not only its pathophysiologic effects on glucose metabolism but also its significant roles in amino-acid metabolism in the liver. The possibility that abnormalities in α-cells' secretion of glucagon in metabolic disorders are a compensatory adaptation for the maintenance of metabolic homeostasis is another current issue. However, the clinical research concerning glucagon has been considerably behind the advances in basic research due to the lack of suitable methodology for obtaining precise measurements of plasma glucagon levels in humans. The precise physiology of glucagon secretory dynamics in individuals with metabolic dysfunction (including diabetes) has been clarified since the development in 2014 of a quantitative measurement technique for glucagon. In this review, we summarize the advances in the clinical research concerning glucagon, including those of our studies and the relevant literature.
Collapse
Affiliation(s)
- Ichiro Horie
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
| | - Norio Abiru
- Department of Endocrinology and Metabolism, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, 852-8501 Japan
- Medical Health Examination Center, Midori Clinic, 32-20 Joei-Machi, Nagasaki, 852-8034 Japan
| |
Collapse
|
3
|
Kitamura T, Kobayashi M. Advances in the clinical measurement of glucagon: from diagnosis to therapy. Diabetol Int 2024; 15:362-369. [PMID: 39101188 PMCID: PMC11291789 DOI: 10.1007/s13340-024-00704-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/19/2024] [Indexed: 08/06/2024]
Abstract
Glucagon has many functions: it promotes glucose production, fatty acid oxidation, thermogenesis, energy consumption, lipolysis, and myocardial contraction, and suppresses lipogenesis, appetite, and gastrointestinal motility. Which of these functions are physiological and which are pharmacological is not fully understood. Although the Mercodia sandwich ELISA provides significantly higher specificity of glucagon measurement than does conventional competitive RIA, it cannot provide accurate plasma glucagon values in the presence of elevated cross-reacting plasma glicentin. This occurs in patients post-pancreatectomy or bariatric surgery and in around 30% of outpatients suspected for glucose intolerance who have not had surgery. Thus, our newly developed sandwich ELISA with higher specificity and higher sensitivity than the Mercodia sandwich ELISA is needed for accurate measurements of plasma glucagon in diabetic patients. It is expected that the new sandwich ELISA will contribute to personalized medicine for diabetes by its use in clinical tests to accurately diagnose the conditions of diabetic patients in order to design better individual treatment strategies. Meanwhile, clinical trials are being conducted worldwide to apply glucagon/GLP-1 receptor dual agonists and glucagon/GLP-1/GIP receptor triagonists to the treatment of obesity, fatty liver, and diabetes. Most clinical trials have shown that both types of drugs have stronger effects on weight reduction, improving fatty liver, and glucose tolerance than do the single GLP-1 receptor agonists. Glucagon is expected to be used as a new diagnostic marker and in a new therapeutic strategy based on a true understanding of its physiological and pharmacological functions.
Collapse
Affiliation(s)
- Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512 Japan
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512 Japan
| |
Collapse
|
4
|
Kobayashi M, Maruyama N, Yamamoto Y, Togawa T, Ida T, Yoshida M, Miyazato M, Kitada M, Hayashi Y, Kashiwagi A, Kitamura T. A newly developed glucagon sandwich ELISA is useful for more accurate glucagon evaluation than the currently used sandwich ELISA in subjects with elevated plasma proglucagon-derived peptide levels. J Diabetes Investig 2023; 14:648-658. [PMID: 36729958 PMCID: PMC10119918 DOI: 10.1111/jdi.13986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
AIMS/INTRODUCTION Glucagon, a peptide hormone produced from proglucagon, is involved in the pathophysiology of diabetes. Plasma glucagon levels are currently measured by sandwich enzyme-linked immunosorbent assay (ELISA), but the currently used sandwich ELISA cross-reacts with proglucagon-derived peptides, thereby providing incorrect results in subjects with elevated plasma proglucagon-derived peptide levels. We aimed to develop a more broadly reliable ELISA for measuring plasma glucagon levels. MATERIALS AND METHODS A new sandwich ELISA was developed using newly generated monoclonal antibodies against glucagon. After its validation, plasma glucagon levels were measured with the new ELISA and the currently used ELISA in subjects who underwent laparoscopic sleeve gastrectomy (LSG) and in outpatients with suspected glucose intolerance. The ELISA results were compared with those from liquid chromatography-high resolution mass (LC-HRMS) analysis, which we previously established as the most accurate measuring system. RESULTS The new ELISA has high specificity (<1% cross-reactivities) and high sensitivity (a lower range of 0.31 pmol/L). Plasma glucagon values in the subjects who underwent laparoscopic sleeve gastrectomy and some outpatients with suspected glucose intolerance differed between the new ELISA and the currently used ELISA. These subjects also showed markedly high plasma glicentin levels. Despite the elevated plasma glicentin levels, the new ELISA showed better positive correlation with LC-HRMS than did the currently used ELISA. CONCLUSIONS The new ELISA enables more accurate measurement of plasma glucagon than the currently used ELISA, even in subjects with elevated proglucagon-derived peptide levels. It should be clinically useful in elucidating the pathophysiology of individual diabetic patients.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | | | - Yukako Yamamoto
- Department of Diabetes and Endocrinology, Omi Medical Center, Shiga, Japan
| | - Takeshi Togawa
- Department of Bariatric and Metabolic Surgery, Omi Medical Center, Shiga, Japan
| | - Takanori Ida
- Division for Identification and Analysis of Bioactive Peptides, Department of Bioactive Peptides, Frontier Science Research Center, University of Miyazaki, Miyazaki, Japan
| | - Morikatsu Yoshida
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | | | - Yoshitaka Hayashi
- Division of Stress Adaptation and Protection, Department of Endocrinology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Atsunori Kashiwagi
- Department of Diabetes and Endocrinology, Omi Medical Center, Shiga, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| |
Collapse
|
5
|
Renuse S, Benson LM, Vanderboom PM, Ruchi FNU, Yadav YR, Johnson KL, Brown BC, Peterson JA, Basu R, McCormick DJ, Pandey A, Basu A. 13C 15N: glucagon-based novel isotope dilution mass spectrometry method for measurement of glucagon metabolism in humans. Clin Proteomics 2022; 19:16. [PMID: 35590248 PMCID: PMC9118570 DOI: 10.1186/s12014-022-09344-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/24/2022] [Indexed: 11/14/2022] Open
Abstract
Background Glucagon serves as an important regulatory hormone for regulating blood glucose concentration with tight feedback control exerted by insulin and glucose. There are critical gaps in our understanding of glucagon kinetics, pancreatic α cell function and intra-islet feedback network that are disrupted in type 1 diabetes. This is important for translational research applications of evolving dual-hormone (insulin + glucagon) closed-loop artificial pancreas algorithms and their usage in type 1 diabetes. Thus, it is important to accurately measure glucagon kinetics in vivo and to develop robust models of glucose-insulin-glucagon interplay that could inform next generation of artificial pancreas algorithms. Methods Here, we describe the administration of novel 13C15N heavy isotope-containing glucagon tracers—FF glucagon [(Phe 6 13C9,15N; Phe 22 13C9,15N)] and FFLA glucagon [(Phe 6 13C9,15N; Phe 22 13C9,15N; Leu 14 13C6,15N; Ala 19 13C3)] followed by anti-glucagon antibody-based enrichment and LC–MS/MS based-targeted assays using high-resolution mass spectrometry to determine levels of infused glucagon in plasma samples. The optimized assay results were applied for measurement of glucagon turnover in subjects with and without type 1 diabetes infused with isotopically labeled glucagon tracers. Results The limit of quantitation was found to be 1.56 pg/ml using stable isotope-labeled glucagon as an internal standard. Intra and inter-assay variability was < 6% and < 16%, respectively, for FF glucagon while it was < 5% and < 23%, respectively, for FFLA glucagon. Further, we carried out a novel isotope dilution technique using glucagon tracers for studying glucagon kinetics in type 1 diabetes. Conclusions The methods described in this study for simultaneous detection and quantitation of glucagon tracers have clinical utility for investigating glucagon kinetics in vivo in humans. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-022-09344-2.
Collapse
Affiliation(s)
- Santosh Renuse
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN, 55905, USA.,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Linda M Benson
- Mayo Genomics Facility-Proteomics Core, Mayo Clinic, Rochester, MN, 55905, USA
| | - Patrick M Vanderboom
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN, 55905, USA
| | - F N U Ruchi
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Yogesh R Yadav
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Kenneth L Johnson
- Mayo Genomics Facility-Proteomics Core, Mayo Clinic, Rochester, MN, 55905, USA
| | - Benjamin C Brown
- Mayo Genomics Facility-Proteomics Core, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jane A Peterson
- Mayo Genomics Facility-Proteomics Core, Mayo Clinic, Rochester, MN, 55905, USA
| | - Rita Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Daniel J McCormick
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First ST SW, Rochester, MN, 55905, USA. .,Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA. .,Mayo Genomics Facility-Proteomics Core, Mayo Clinic, Rochester, MN, 55905, USA. .,Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA. .,Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA. .,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| | - Ananda Basu
- Division of Endocrinology, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA.
| |
Collapse
|
6
|
Yoshizawa Y, Hosojima M, Kabasawa H, Tanabe N, Miyachi A, Hamajima H, Mieno E, Kobayashi M, Kitamura T, Narita I, Saito A. Measurement of Plasma Glucagon Levels Using Mass Spectrometry in Patients with Type 2 Diabetes on Maintenance Hemodialysis. Kidney Blood Press Res 2021; 46:652-656. [PMID: 34515141 DOI: 10.1159/000518027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/21/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recently, attention has been focused on the effect of glucagon on blood glucose variability. The dynamics of glucagon have attracted attention as a new target in the treatment of diabetes patients. However, the dynamics of glucagon in hemodialysis (HD) patients with type 2 diabetes mellitus (T2DM) remain unclear. OBJECTIVES The aim of this study was to assess the dynamics of glucagon in HD patients with T2DM. MATERIALS AND METHODS We measured plasma glucagon in HD patients with T2DM by liquid chromatography-high-resolution mass spectrometry (LC-HRMS), sandwich enzyme-linked immunosorbent assay (ELISA), and radioimmunoassay (RIA). The glucagon levels measured by each method were compared. We used the glucagon levels determined by our developed LC-HRMS method as the standard in this study. RESULTS Plasma glucagon levels measured by LC-HRMS before HD were significantly higher than those measured after HD. Plasma glucagon levels measured using sandwich ELISA had a significantly higher correlation with those measured using LC-HRMS compared with RIA. CONCLUSIONS This was the first study to assess glucagon levels in HD patients with T2DM using LC-HRMS, which is considered a highly accurate method. Sandwich ELISA was shown to measure glucagon levels accurately as well.
Collapse
Affiliation(s)
- Yuta Yoshizawa
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.,Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Michihiro Hosojima
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hideyuki Kabasawa
- Department of Clinical Nutrition Science, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Naohito Tanabe
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata, Japan
| | - Atsushi Miyachi
- Radioisotope and Chemical Analysis Center, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Hitoshi Hamajima
- Radioisotope and Chemical Analysis Center, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Eri Mieno
- Radioisotope and Chemical Analysis Center, Sanwa Kagaku Kenkyusho Co., Ltd., Mie, Japan
| | - Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Gunma, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Kidney Research Center, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
7
|
Kobayashi M, Satoh H, Matsuo T, Kusunoki Y, Tokushima M, Watada H, Namba M, Kitamura T. Plasma glucagon levels measured by sandwich ELISA are correlated with impaired glucose tolerance in type 2 diabetes. Endocr J 2020; 67:903-922. [PMID: 32448820 DOI: 10.1507/endocrj.ej20-0079] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glucagon dysfunction as well as insulin dysfunction is associated with the pathogenesis of type 2 diabetes (T2DM). However, it is still unclear whether the measurement of plasma glucagon levels is useful in understanding the pathophysiology of T2DM. We recently reported that sandwich ELISA provides more accurate plasma glucagon values than conventional RIA in healthy subjects. Here we used sandwich ELISA as well as RIA to assess plasma glucagon levels, comparing them in T2DM patients and healthy subjects during oral glucose (OGTT) or meal tolerance tests (MTT). We confirmed that sandwich ELISA was able to detect more significant difference between healthy subjects and T2DM patients in the fasting levels and the response dynamics of plasma glucagon than RIA. We also found significant differences in the following glucagon parameters: (1) fasting glucagon, (2) the area under the curve (AUC) of glucagon in OGTT, and (3) the change in glucagon between 0 and 30 min (ΔGlucagon0-0.5h) in OGTT or MTT. Among these, the most apparent difference was ΔGlucagon0-0.5h in MTT. When we divided T2DM patients into two groups whose ΔGlucagon0-0.5h in MTT was either below or above the maximum value in healthy subjects, the group with higher ΔGlucagon0-0.5h showed more significant impairment of glucose tolerance. These results suggest that the assessment of plasma glucagon levels by sandwich ELISA might enhance our understanding of the pathophysiology of T2DM.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Hiroaki Satoh
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshihiro Matsuo
- Division of Diabetes, Endocrinology and Clinical Immunology Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | - Yoshiki Kusunoki
- Division of Diabetes, Endocrinology and Clinical Immunology Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
| | | | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mitsuyoshi Namba
- Division of Diabetes, Endocrinology and Clinical Immunology Department of Internal Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo, Japan
- Takarazuka City Hospital, Takarazuka, Hyogo, Japan
| | - Tadahiro Kitamura
- Metabolic Signal Research Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
8
|
Nakagawa T, Nagai Y, Yamamoto Y, Miyachi A, Hamajima H, Mieno E, Takahashi M, Inoue E, Tanaka Y. Effects of anagliptin on plasma glucagon levels and gastric emptying in patients with type 2 diabetes: An exploratory randomized controlled trial versus metformin. Diabetes Res Clin Pract 2019; 158:107892. [PMID: 31669625 DOI: 10.1016/j.diabres.2019.107892] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 08/24/2019] [Accepted: 10/22/2019] [Indexed: 02/03/2023]
Abstract
AIMS Glucagon has an important role in glucose homeostasis. Recently, a new plasma glucagon assay based on liquid chromatography-high resolution mass spectrometry was developed. We evaluated the influence of a dipeptidyl peptidase-4 inhibitor (anagliptin) on plasma glucagon levels in Japanese patients with type 2 diabetes by using this new assay. METHODS Twenty-four patients with type 2 diabetes were enrolled in a prospective, single-center, randomized, open-label study and were randomly allocated to 4 weeks of treatment with metformin (1000 mg/day) or anagliptin (200 mg/day). A liquid test meal labeled with sodium [13C] acetate was ingested before and after the treatment period. Samples of blood and expired air were collected over 3 h. Plasma levels of glucose, glucagon, C-peptide, glucagon-like peptide-1 (GLP-1), and glucose-dependent insulinotropic polypeptide (GIP) were measured, and gastric emptying was also evaluated. RESULTS Twenty-two patients completed the study (metformin group: n = 10; anagliptin group: n = 12). Glycemic control showed similar improvement in both groups. In the anagliptin group, there was a slight decrease of the incremental area under the plasma concentration versus time curve for glucagon after the test meal (P = 0.048). In addition, the plasma level of active GLP-1 and GIP was increased, and plasma C-peptide was also increased versus baseline. Neither anagliptin nor metformin delayed gastric emptying. CONCLUSIONS In patients with type 2 diabetes maintained endogenous insulin secretion, anagliptin increased the plasma level of active GLP-1 and GIP in association with a slight stimulation of insulin secretion and slight inhibition of glucagon secretion, but did not delay gastric emptying. Clinical Trial Registry: University hospital Medical Information Network UMIN000028293.
Collapse
Affiliation(s)
- Tomoko Nakagawa
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Yoshio Nagai
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Yutaro Yamamoto
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Atsushi Miyachi
- Radioisotope and Chemical Analysis Center, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shisaki, Hokusei-cho, Inabe, Mie 511-0406, Japan.
| | - Hitoshi Hamajima
- Radioisotope and Chemical Analysis Center, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shisaki, Hokusei-cho, Inabe, Mie 511-0406, Japan.
| | - Eri Mieno
- Radioisotope and Chemical Analysis Center, Sanwa Kagaku Kenkyusho Co., Ltd., 363 Shisaki, Hokusei-cho, Inabe, Mie 511-0406, Japan.
| | - Masaki Takahashi
- Medical Informatics, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Eisuke Inoue
- Medical Informatics, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| | - Yasushi Tanaka
- Division of Metabolism and Endocrinology, Department of Internal Medicine, St. Marianna University School of Medicine, 2-16-1, Sugao, Miyamae-ku, Kawasaki, Kanagawa 216-8511, Japan.
| |
Collapse
|