1
|
Koelblen T, Burris EP, Burris TP. Development of radioligand binding assays for REV-ERBα and REV-ERBβ. Anal Biochem 2025; 702:115858. [PMID: 40189177 DOI: 10.1016/j.ab.2025.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/04/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
REV-ERBα and REV-ERBβ are atypical nuclear receptors that function as ligand-dependent repressors of transcription. They play critical roles in the regulation of the circadian rhythm, inflammation, and metabolism. The natural ligand for the REV-ERBs is heme, and synthetic ligands (both agonists and antagonists) have been designed and utilized to probe the potential clinical utility of targeting REV-ERBs for drug development. Although biochemical assays that can detect REV-ERB ligands have been developed based on protein-protein interactions, no classical fluorescent- or radioligand-binding assay has yet been developed that directly detects ligand binding. Here, we describe the development of the first radioligand binding assay (RLBA) using scintillation proximity assay (SPA) technology for both REV-ERBα and REV-ERBβ using labeled STL1267, a potent REV-ERBα/β agonist we recently described. 3H-STL1267 displayed saturable binding to the ligand binding domains of both REV-ERBα and REV-ERBβ with equilibrium dissociation constants (Kds) of 392 nM and 202 nM, respectively. In competition radioligand binding assays, we used unlabeled STL1267 or the well-characterized first-generation REV-ERB agonist SR9009 as competitors to 3H-STL1267 binding. STL1267 displayed Kis for REV-ERBα and REV-ERBβ of 253 ± 30 nM and 98 ± 14 nM, respectively. As expected, SR9009 displayed considerably lower potency than STL1267, with a Ki of 692 ± 209 nM for REV-ERBα and 2546 ± 127 nM for REV-ERBβ. Although developing an RLBA has been challenging due to the lack of high-affinity ligands that can be used as probes, our results demonstrate the feasibility of such an assay for both receptors, providing a robust assay with utility for ligand/drug discovery.
Collapse
Affiliation(s)
- Thomas Koelblen
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA
| | - Elise P Burris
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA
| | - Thomas P Burris
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA.
| |
Collapse
|
2
|
Eberhardt L, Doria HB, Bulut B, Feldmeyer B, Pfenninger M. Transcriptomics predicts artificial light at night's (ALAN) negative fitness effects and altered gene expression patterns in the midge Chironomus riparius (Diptera:Chironomidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 369:125827. [PMID: 39923976 DOI: 10.1016/j.envpol.2025.125827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
The emission of artificial light at night (ALAN) is rapidly increasing worldwide. Yet, evidence for its detrimental effects on various species is accumulating. While the effects of ALAN on phenotypic traits have been widely investigated, effects on the molecular level are less well understood. Here we aimed to integrate the effects of ALAN at the transcriptomic and the phenotypic level. We tested these effects on Chironomus riparius, a multivoltine, holometabolous midge with high ecological relevance for which genomic resources are available. We performed life-cycle experiments in which we exposed midges to constant light and control conditions for one generation. We observed reduced fertility under ALAN from which we predicted the population size to decline to 1% after 200 days. The transcriptomic analysis revealed expression changes of genes related to circadian rhythmicity, moulting, catabolism and oxidative stress. From the transcriptomic analysis we hypothesised that under ALAN, oxidative stress is increased, and that moulting begins earlier. We were able to confirm both hypotheses in two posthoc experiments, showing that transcriptomics can be a powerful tool for predicting effects on higher level phenotypic traits.
Collapse
Affiliation(s)
- Linda Eberhardt
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany.
| | - Halina Binde Doria
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Burak Bulut
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Barbara Feldmeyer
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany
| | - Markus Pfenninger
- Molecular Ecology, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, 60325, Frankfurt am Main, Germany; Institute for Molecular and Organismic Evolution, Johannes Gutenberg University, Johann-Joachim-Becker-Weg 7, D-55128, Mainz, Germany; LOEWE Centre of Translational Biodiversity Genomics, Senckenberg Biodiversity and Climate Research Centre, Georg-Voigt-Str. 14-16, D-60325, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Rokicki M, Żurowski J, Sawicki S, Ocłoń E, Szmatoła T, Jasielczuk I, Mizera-Szpilka K, Semik-Gurgul E, Gurgul A. Impact of Long-Term Cannabidiol (CBD) Treatment on Mouse Kidney Transcriptome. Genes (Basel) 2024; 15:1640. [PMID: 39766907 PMCID: PMC11675924 DOI: 10.3390/genes15121640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Cannabidiol, which is one of the main cannabinoids present in Cannabis sativa plants, has been shown to have therapeutic properties, including anti-inflammatory and antioxidant effects that may be useful for treatment of various kidney conditions. OBJECTIVES This article investigates the effect of long-term cannabidiol (CBD) treatment on changes in the renal transcriptome in a mouse model. The main hypothesis was that systematic CBD treatment would affect gene expression associated with those processes in the kidney. METHODS The study was conducted on male C57BL/6J mice. Mice in the experimental groups received daily intraperitoneal injections of CBD at doses of 10 mg/kg or 20 mg/kg body weight (b.w.) for 28 days. After the experiment, kidney tissues were collected, RNA was isolated, and RNA-Seq sequencing was performed. RESULTS The results show CBD's effects on changes in gene expression, including the regulation of genes related to circadian rhythm (e.g., Ciart, Nr1d1, Nr1d2, Per2, and Per3), glucocorticoid receptor function (e.g., Cyp1b1, Ddit4, Foxo3, Gjb2, and Pck1), lipid metabolism (e.g., Cyp2d22, Cyp2d9, Decr2 Hacl1, and Sphk1), and inflammatory response (e.g., Cxcr4 and Ccl28). CONCLUSIONS The obtained results suggest that CBD may be beneficial for therapeutic purposes in treating kidney disease, and its effects should be further analyzed in clinical trials.
Collapse
Affiliation(s)
- Mikołaj Rokicki
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland; (M.R.); (J.Ż.); (T.S.); (I.J.)
| | - Jakub Żurowski
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland; (M.R.); (J.Ż.); (T.S.); (I.J.)
| | - Sebastian Sawicki
- Department of Animal Reproduction, Anatomy and Genomics, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059 Krakow, Poland;
| | - Ewa Ocłoń
- Laboratory of Recombinant Proteins Production, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland;
| | - Tomasz Szmatoła
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland; (M.R.); (J.Ż.); (T.S.); (I.J.)
| | - Igor Jasielczuk
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland; (M.R.); (J.Ż.); (T.S.); (I.J.)
| | - Karolina Mizera-Szpilka
- Department of Infectious Diseases and Public Health, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland;
| | - Ewelina Semik-Gurgul
- Department of Animal Molecular Biology, National Research Institute of Animal Production, Krakowska 1, 32-083 Balice, Poland;
| | - Artur Gurgul
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Agriculture in Kraków, Redzina 1C, 30-248 Krakow, Poland; (M.R.); (J.Ż.); (T.S.); (I.J.)
| |
Collapse
|
4
|
Guo M, Lin Y, Obi CD, Zhao P, Dailey HA, Medlock AE, Shen Y. Impact of Phosphorylation at Various Sites on the Active Pocket of Human Ferrochelatase: Insights from Molecular Dynamics Simulations. Int J Mol Sci 2024; 25:6360. [PMID: 38928065 PMCID: PMC11203519 DOI: 10.3390/ijms25126360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Ferrochelatase (FECH) is the terminal enzyme in human heme biosynthesis, catalyzing the insertion of ferrous iron into protoporphyrin IX (PPIX) to form protoheme IX (Heme). Phosphorylation increases the activity of FECH, and it has been confirmed that the activity of FECH phosphorylated at T116 increases. However, it remains unclear whether the T116 site and other potential phosphorylation modification sites collaboratively regulate the activity of FECH. In this study, we identified a new phosphorylation site, T218, and explored the allosteric effects of unphosphorylated (UP), PT116, PT218, and PT116 + PT218 states on FECH in the presence and absence of substrates (PPIX and Heme) using molecular dynamics (MD) simulations. Binding free energies were evaluated with the MM/PBSA method. Our findings indicate that the PT116 + PT218 state exhibits the lowest binding free energy with PPIX, suggesting the strongest binding affinity. Additionally, this state showed a higher binding free energy with Heme compared to UP, which facilitates Heme release. Moreover, employing multiple analysis methods, including free energy landscape (FEL), principal component analysis (PCA), dynamic cross-correlation matrix (DCCM), and hydrogen bond interaction analysis, we demonstrated that phosphorylation significantly affects the dynamic behavior and binding patterns of substrates to FECH. Insights from this study provide valuable theoretical guidance for treating conditions related to disrupted heme metabolism, such as various porphyrias and iron-related disorders.
Collapse
Affiliation(s)
- Mingshan Guo
- School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuhong Lin
- School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| | - Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (C.D.O.); (H.A.D.); (A.E.M.)
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA;
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (C.D.O.); (H.A.D.); (A.E.M.)
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA; (C.D.O.); (H.A.D.); (A.E.M.)
- Augusta University/University of Georgia Medical Partnership, Athens, GA 30602, USA
| | - Yong Shen
- School of Chemistry, IGCME, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
5
|
Liu M, Zhang Z, Chen Y, Feng T, Zhou Q, Tian X. Circadian clock and lipid metabolism disorders: a potential therapeutic strategy for cancer. Front Endocrinol (Lausanne) 2023; 14:1292011. [PMID: 38189049 PMCID: PMC10770836 DOI: 10.3389/fendo.2023.1292011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/30/2023] [Indexed: 01/09/2024] Open
Abstract
Recent research has emphasized the interaction between the circadian clock and lipid metabolism, particularly in relation to tumors. This review aims to explore how the circadian clock regulates lipid metabolism and its impact on carcinogenesis. Specifically, targeting key enzymes involved in fatty acid synthesis (SREBP, ACLY, ACC, FASN, and SCD) has been identified as a potential strategy for cancer therapy. By disrupting these enzymes, it may be possible to inhibit tumor growth by interfering with lipid metabolism. Transcription factors, like SREBP play a significant role in regulating fatty acid synthesis which is influenced by circadian clock genes such as BMAL1, REV-ERB and DEC. This suggests a strong connection between fatty acid synthesis and the circadian clock. Therefore, successful combination therapy should target fatty acid synthesis in addition to considering the timing and duration of drug use. Ultimately, personalized chronotherapy can enhance drug efficacy in cancer treatment and achieve treatment goals.
Collapse
Affiliation(s)
- Mengsi Liu
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Zhen Zhang
- Department of Oncology, Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Yating Chen
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Ting Feng
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| | - Qing Zhou
- Department of Andrology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Xuefei Tian
- School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Hunan Key Laboratory of Traditional Chinese Medicine Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, China
- Hunan Province University Key Laboratory of Oncology of Traditional Chinese Medicine, Changsha, China
- Key Laboratory of Traditional Chinese Medicine for Mechanism of Tumor Prevention and Treatment, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Bukhnikashvili L. Overlaps Between CDS Regions of Protein-Coding Genes in the Human Genome: A Case Study on the NR1D1-THRA Gene Pair. J Mol Evol 2023; 91:963-975. [PMID: 38006429 DOI: 10.1007/s00239-023-10147-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/12/2023] [Indexed: 11/27/2023]
Abstract
For several decades, it has been known that a substantial number of genes within human DNA exhibit overlap; however, the biological and evolutionary significance of these overlaps remain poorly understood. This study focused on investigating specific instances of overlap where the overlapping DNA region encompasses the coding DNA sequences (CDSs) of protein-coding genes. The results revealed that proteins encoded by overlapping CDSs exhibit greater disorder than those from nonoverlapping CDSs. Additionally, these DNA regions were identified as GC-rich. This could be partially attributed to the absence of stop codons from two distinct reading frames rather than one. Furthermore, these regions were found to harbour fewer single-nucleotide polymorphism (SNP) sites, possibly due to constraints arising from the overlapping state where mutations could affect two genes simultaneously.While elucidating these properties, the NR1D1-THRA gene pair emerged as an exceptional case with highly structured proteins and a distinctly conserved sequence across eutherian mammals. Both NR1D1 and THRA are nuclear receptors lacking a ligand-binding domain at their C-terminus, which is the region where these gene pairs overlap. The NR1D1 gene is involved in the regulation of circadian rhythm, while the THRA gene encodes a thyroid hormone receptor, and both play crucial roles in various physiological processes. This study suggests that, in addition to their well-established functions, the specifically overlapping CDS regions of these genes may encode protein segments with additional, yet undiscovered, biological roles.
Collapse
|
7
|
Kinney B, Sahu S, Stec N, Hills-Muckey K, Adams DW, Wang J, Jaremko M, Joshua-Tor L, Keil W, Hammell CM. A circadian-like gene network programs the timing and dosage of heterochronic miRNA transcription during C. elegans development. Dev Cell 2023; 58:2563-2579.e8. [PMID: 37643611 PMCID: PMC10840721 DOI: 10.1016/j.devcel.2023.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/10/2023] [Accepted: 08/02/2023] [Indexed: 08/31/2023]
Abstract
Development relies on the exquisite control of both the timing and the levels of gene expression to achieve robust developmental transitions. How cis- and trans-acting factors control both aspects simultaneously is unclear. We show that transcriptional pulses of the temporal patterning microRNA (miRNA) lin-4 are generated by two nuclear hormone receptors (NHRs) in C. elegans, NHR-85 and NHR-23, whose mammalian orthologs, Rev-Erb and ROR, function in the circadian clock. Although Rev-Erb and ROR antagonize each other to control once-daily transcription in mammals, NHR-85/NHR-23 heterodimers bind cooperatively to lin-4 regulatory elements to induce a single pulse of expression during each larval stage. Each pulse's timing, amplitude, and duration are dictated by the phased expression of these NHRs and the C. elegans Period ortholog, LIN-42, that binds to and represses NHR-85. Therefore, during nematode temporal patterning, an evolutionary rewiring of circadian clock components couples the timing of gene expression to the control of transcriptional dosage.
Collapse
Affiliation(s)
- Brian Kinney
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Shubham Sahu
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168 Laboratoire Physico Chimie Curie, Paris 75005, France
| | - Natalia Stec
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | | | - Dexter W Adams
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jing Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Matt Jaremko
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Leemor Joshua-Tor
- Howard Hughes Medical Institute, W. M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Wolfgang Keil
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168 Laboratoire Physico Chimie Curie, Paris 75005, France.
| | | |
Collapse
|
8
|
Gomatou G, Karachaliou A, Veloudiou OZ, Karvela A, Syrigos N, Kotteas E. The Role of REV-ERB Receptors in Cancer Pathogenesis. Int J Mol Sci 2023; 24:ijms24108980. [PMID: 37240325 DOI: 10.3390/ijms24108980] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
REV-ERB receptors are members of the nuclear receptor superfamily of proteins, which act as both intracellular receptors and transcription factors, therefore modulating the expression of target genes. REV-ERBs act as transcription repressors because of their unique structure. Their predominant role involves the control of peripheral circadian rhythmicity by participating in a transcription-translation feedback loop with other major clock genes. Regarding their role in cancer pathogenesis, recent studies in various cancerous tissues have revealed that their expression was downregulated in the majority of the cases. Dysregulation of their expression was also implicated in cancer-associated cachexia. The pharmacological restoration of their effects is feasible with synthetic agonists, which have been explored in preclinical studies but with scarce data. There is a need for further investigation, primarily with mechanistic studies, on the effect of the REV-ERB-induced circadian rhythm deregulation in carcinogenesis and cancer-related systemic effects, such as cachexia, in order to address the potential of relevant therapeutic implications.
Collapse
Affiliation(s)
- Georgia Gomatou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Anastasia Karachaliou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Orsalia-Zoi Veloudiou
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Alexandra Karvela
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Nikolaos Syrigos
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| | - Elias Kotteas
- Oncology Unit, Third Department of Medicine, "Sotiria" General Hospital for Diseases of the Chest, National and Kapodistrian University of Athens, 115 27 Athens, Greece
| |
Collapse
|
9
|
Furtado A, Costa D, Lemos MC, Cavaco JE, Santos CRA, Quintela T. The impact of biological clock and sex hormones on the risk of disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:39-81. [PMID: 37709381 DOI: 10.1016/bs.apcsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Molecular clocks are responsible for defining 24-h cycles of behaviour and physiology that are called circadian rhythms. Several structures and tissues are responsible for generating these circadian rhythms and are named circadian clocks. The suprachiasmatic nucleus of the hypothalamus is believed to be the master circadian clock receiving light input via the optic nerve and aligning internal rhythms with environmental cues. Studies using both in vivo and in vitro methodologies have reported the relationship between the molecular clock and sex hormones. The circadian system is directly responsible for controlling the synthesis of sex hormones and this synthesis varies according to the time of day and phase of the estrous cycle. Sex hormones also directly interact with the circadian system to regulate circadian gene expression, adjust biological processes, and even adjust their own synthesis. Several diseases have been linked with alterations in either the sex hormone background or the molecular clock. So, in this chapter we aim to summarize the current understanding of the relationship between the circadian system and sex hormones and their combined role in the onset of several related diseases.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Diana Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - J Eduardo Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal; UDI-IPG, Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
10
|
Bingham MA, Neijman K, Yang CR, Aponte A, Mak A, Kikuchi H, Jung HJ, Poll BG, Raghuram V, Park E, Chou CL, Chen L, Leipziger J, Knepper MA, Dona M. Circadian gene expression in mouse renal proximal tubule. Am J Physiol Renal Physiol 2023; 324:F301-F314. [PMID: 36727945 PMCID: PMC9988533 DOI: 10.1152/ajprenal.00231.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/18/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
Circadian variability in kidney function is well recognized but is often ignored as a potential confounding variable in physiological experiments. Here, we have created a data resource consisting of expression levels for mRNA transcripts in microdissected proximal tubule segments from mice as a function of the time of day. Small-sample RNA sequencing was applied to microdissected S1 proximal convoluted tubules and S2 proximal straight tubules. After stringent filtering, the data were analyzed using JTK-Cycle to detect periodicity. The data set is provided as a user-friendly webpage at https://esbl.nhlbi.nih.gov/Databases/Circadian-Prox2/. In proximal convoluted tubules, 234 transcripts varied in a circadian manner (4.0% of the total). In proximal straight tubules, 334 transcripts varied in a circadian manner (5.3%). Transcripts previously known to be associated with corticosteroid action and with increased flow were found to be overrepresented among circadian transcripts peaking during the "dark" portion of the day [zeitgeber time (ZT)14-22], corresponding to peak levels of corticosterone and glomerular filtration rate in mice. To ask whether there is a time-of-day dependence of protein abundances in the kidney, we carried out LC-MS/MS-based proteomics in whole mouse kidneys at ZT12 and ZT0. The full data set (n = 6,546 proteins) is available at https://esbl.nhlbi.nih.gov/Databases/Circadian-Proteome/. Overall, 293 proteins were differentially expressed between ZT12 and ZT0 (197 proteins greater at ZT12 and 96 proteins greater at ZT0). Among the regulated proteins, only nine proteins were found to be periodic in the RNA-sequencing analysis, suggesting a high level of posttranscriptional regulation of protein abundances.NEW & NOTEWORTHY Circadian variation in gene expression can be an important determinant in the regulation of kidney function. The authors used RNA-sequencing transcriptomics and LC-MS/MS-based proteomics to identify gene products expressed in a periodic manner. The data were used to construct user-friendly web resources.
Collapse
Affiliation(s)
- Molly A Bingham
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Kim Neijman
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chin-Rang Yang
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angel Aponte
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Angela Mak
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hiroaki Kikuchi
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Hyun Jun Jung
- Division of Nephrology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Brian G Poll
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Viswanathan Raghuram
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Euijung Park
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Chung-Lin Chou
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Lihe Chen
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Jens Leipziger
- Department of Biomedicine, Physiology, Aarhus University, Aarhus, Denmark
| | - Mark A Knepper
- Systems Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Margo Dona
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Yiğit S, Kul S, Aci R, Keskin A, Tuygun T, Duman E. The effect of RORA (RAR-Related Orphan Receptor Alpha) receptors on litter size in Akkaraman sheep breed. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2023; 12:109-115. [PMID: 37525665 PMCID: PMC10387175 DOI: 10.22099/mbrc.2023.47336.1827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
In this study, the relationship between RORA 23bp indel genotype and allele frequency with twin pregnancy, fertility, live weight and milk yield in 106 female Akkaraman ewes raised in Elazığ province was investigated. In the study conducted in Elâzığ province, 10ml milk was collected from 106 Akkaraman sheep and DNA was extracted from these milk. In RORA 23bp indel genotype frequency, DD genotype was found more than ID and II genotypes and RORA 23bp indel ın allele frequency, the D allele was found to be higher than the I allele. In both the first and second parity, the twinning rate was found to be lower. In both the first and second parity, the twinning rate was higher in the DD genotype, and it was observed that this genotype promınated mıddle lıvestock weıght and mılk yıeld. According to the results of our study, mutations in the RORA gene, which is a gene affecting reproductive efficiency in sheep, do not have a positive effect on fertility and twinning rate in Akkaraman sheep. To sum, this study provided theoretical references for the comprehensively research of the function of RORA gene and the breeding of Akkaraman Sheep. The 23-bp indel variants can be considered as molecular markers for litter size of sheep for marker-assisted selection breeding.
Collapse
Affiliation(s)
- Serbulent Yiğit
- Department of Genetics, Faculty of Veterinary Medicine, Ondokuz Mayis University, Samsun, Turkiye
- Department of Medical Biology, Graduate Institute, Ondokuz Mayis University, Samsun, Turkiye
| | - Selim Kul
- Faculty of Veterinary Medicine, Department of Animal Breeding, Fırat University, Elazig, Turkiye
| | - Recai Aci
- Department of Biochemistry, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkiye
| | - Adem Keskin
- University Faculty of Medicine, Department of Biochemistry, Aydın, Turkiye
| | - Tuğçe Tuygun
- Department of Parasitology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun, Turkiye
| | - Esra Duman
- Department of Gastrology and Hepatology, Faculty of Medicine, Kocaeli University, Kocaeli, Turkiye
| |
Collapse
|
12
|
Geng YJ, Smolensky M, Sum-Ping O, Hermida R, Castriotta RJ. Circadian rhythms of risk factors and management in atherosclerotic and hypertensive vascular disease: Modern chronobiological perspectives of an ancient disease. Chronobiol Int 2023; 40:33-62. [PMID: 35758140 PMCID: PMC10355310 DOI: 10.1080/07420528.2022.2080557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 12/13/2022]
Abstract
Atherosclerosis, a chronic inflammatory disease of the arteries that appears to have been as prevalent in ancient as in modern civilizations, is predisposing to life-threatening and life-ending cardiac and vascular complications, such as myocardial and cerebral infarctions. The pathogenesis of atherosclerosis involves intima plaque buildup caused by vascular endothelial dysfunction, cholesterol deposition, smooth muscle proliferation, inflammatory cell infiltration and connective tissue accumulation. Hypertension is an independent and controllable risk factor for atherosclerotic cardiovascular disease (CVD). Conversely, atherosclerosis hardens the arterial wall and raises arterial blood pressure. Many CVD patients experience both atherosclerosis and hypertension and are prescribed medications to concurrently mitigate the two disease conditions. A substantial number of publications document that many pathophysiological changes caused by atherosclerosis and hypertension occur in a manner dependent upon circadian clocks or clock gene products. This article reviews progress in the research of circadian regulation of vascular cell function, inflammation, hemostasis and atherothrombosis. In particular, it delineates the relationship of circadian organization with signal transduction and activation of the renin-angiotensin-aldosterone system as well as disturbance of the sleep/wake circadian rhythm, as exemplified by shift work, metabolic syndromes and obstructive sleep apnea (OSA), as promoters and mechanisms of atherogenesis and risk for non-fatal and fatal CVD outcomes. This article additionally updates advances in the clinical management of key biological processes of atherosclerosis to optimally achieve suppression of atherogenesis through chronotherapeutic control of atherogenic/hypertensive pathological sequelae.
Collapse
Affiliation(s)
- Yong-Jian Geng
- The Center for Cardiovascular Biology and Atherosclerosis Research, Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Michael Smolensky
- The Center for Cardiovascular Biology and Atherosclerosis Research, Division of Cardiovascular Medicine, Department of Internal Medicine, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Oliver Sum-Ping
- The Center for Sleep Sciences and Medicine, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University, Stanford, CA, USA
| | - Ramon Hermida
- Bioengineering & Chronobiology Laboratories, Atlantic Research Center for Telecommunication Technologies (atlanTTic), University of Vigo, Vigo, Spain
| | - Richard J. Castriotta
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, Keck Medical School, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
13
|
Stanton D, Justin HS, Reitzel AM. Step in Time: Conservation of Circadian Clock Genes in Animal Evolution. Integr Comp Biol 2022; 62:1503-1518. [PMID: 36073444 DOI: 10.1093/icb/icac140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Over the past few decades, the molecular mechanisms responsible for circadian phenotypes of animals have been studied in increasing detail in mammals, some insects, and other invertebrates. Particular circadian proteins and their interactions are shared across evolutionary distant animals, resulting in a hypothesis for the canonical circadian clock of animals. As the number of species for which the circadian clockwork has been described increases, the circadian clock in animals driving cyclical phenotypes becomes less similar. Our focus in this review is to develop and synthesize the current literature to better understand the antiquity and evolution of the animal circadian clockwork. Here, we provide an updated understanding of circadian clock evolution in animals, largely through the lens of conserved genes characterized in the circadian clock identified in bilaterian species. These comparisons reveal extensive variation within the likely composition of the core clock mechanism, including losses of many genes, and that the ancestral clock of animals does not equate to the bilaterian clock. Despite the loss of these core genes, these species retain circadian behaviors and physiology, suggesting novel clocks have evolved repeatedly. Additionally, we highlight highly conserved cellular processes (e.g., cell division, nutrition) that intersect with the circadian clock of some animals. The conservation of these processes throughout the animal tree remains essentially unknown, but understanding their role in the evolution and maintenance of the circadian clock will provide important areas for future study.
Collapse
Affiliation(s)
- Daniel Stanton
- Department of Animal Sciences, University of Florida, Gainesville, FL 32608, USA
| | - Hannah S Justin
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte NC 28223, USA
| |
Collapse
|
14
|
Ma L, Huang M, Sun G, Lin Y, Lu D, Wu B. Puerariae lobatae radix protects against UVB-induced skin aging via antagonism of REV-ERBα in mice. Front Pharmacol 2022; 13:1088294. [PMID: 36618934 PMCID: PMC9813444 DOI: 10.3389/fphar.2022.1088294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
Puerariae lobatae radix (PLR) is a wildly used herbal medicine. Here we aimed to assess the PLR efficacy against UVB (ultraviolet-B)-induced skin aging and to determine the mechanisms thereof. We found a significant protective effect of PLR (topical application) on UVB-induced skin aging in mice, as evidenced by reduced skin wrinkles, epidermal thickness, and MDA (malondialdehyde) content as well as increased levels of HYP (hydroxyproline) and SOD (superoxide dismutase) in the skin. In the meantime, Mmp-1, p21 and p53 levels were decreased in the skin of PLR-treated mice. Anti-aging effects of PLR were also confirmed in L929 cells. Furthermore, PLR up-regulated skin expression of BMAL1, which is a known regulator of aging by promoting Nrf2 and antioxidant enzymes. Consistently, Nrf2 and several genes (i.e., Prdx6, Sod1, and Sod2) encoding antioxidant enzymes in the skin were increased in PLR-treated mice. Moreover, based on Gal4 chimeric assay, Bmal1 reporter gene and expression assays, we identified PLR as an antagonist of REV-ERBα that can increase Bmal1 expression. Intriguingly, loss of Rev-erbα protected mice against UVB-induced skin aging and abrogated the protective effect of PLR. In conclusion, PLR acts as an antagonist of REV-ERBα and promotes the expression of BMAL1 to protect against skin aging in mice.
Collapse
Affiliation(s)
- Luyao Ma
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Meiping Huang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanghui Sun
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanke Lin
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Danyi Lu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
15
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504 DOI: 10.12688/f1000research.126364.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/17/2022] [Indexed: 11/13/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
16
|
Kim E, Yoo SH, Chen Z. Circadian stabilization loop: the regulatory hub and therapeutic target promoting circadian resilience and physiological health. F1000Res 2022; 11:1236. [PMID: 36415204 PMCID: PMC9652504.2 DOI: 10.12688/f1000research.126364.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The circadian clock is a fundamental biological mechanism that orchestrates essential cellular and physiological processes to optimize fitness and health. The basic functional unit is the cell-autonomous oscillator, consisting of intersecting negative feedback loops. Whereas the core loop is primarily responsible for rhythm generation, auxiliary loops, most notably the secondary or stabilization loop, play pivotal roles to confer temporal precision and molecular robustness. The stabilization loop contains opposing nuclear receptor subfamilies REV-ERBs and retinoic acid receptor-related orphan receptors (RORs), competing to modulate rhythmic expression of the basic helix-loop-helix ARNT like 1 ( Bmal1) genes in the core loop as well as other clock-controlled genes. Therefore, REV-ERBs and RORs are strategically located to interface the oscillator and the global transcriptomic network, promoting cellular homeostasis and physiological fitness throughout lifespan. Disruption of REV-ERB and ROR functions has been linked with diseases and aging, and pharmacological manipulation of these factors has shown promise in various mouse disease models. Nobiletin is a natural compound that directly binds to and activates RORα/γ, modulating circadian rhythms, and shows robust in vivo efficacies to combat clock-associated pathophysiologies and age-related decline. Results from several studies demonstrate an inverse relation between nobiletin efficacy and clock functional state, where nobiletin elicits little effect in young and healthy mice with growing efficacy as the clock is perturbed by environmental and genetic challenges. This mode of action is consistent with the function of the stabilization loop to promote circadian and physiological resilience. Future studies should further investigate the function and mechanism of REV-ERBs and RORs, and test strategies targeting these factors against disease and aging.
Collapse
Affiliation(s)
- Eunju Kim
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth Houston), Houston, TX, 77030, USA,
| |
Collapse
|
17
|
Sun G, Dang Y, Lin Y, Zeng W, Wu Z, Zhang X, Dong D, Wu B. Scutellaria baicalensis Georgi regulates REV-ERBα/BMAL1 to protect against skin aging in mice. Front Pharmacol 2022; 13:991917. [PMID: 36249807 PMCID: PMC9561880 DOI: 10.3389/fphar.2022.991917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Scutellaria baicalensis Georgi (SBG) is a traditional Chinese medicine widely used to treat disorders such as hypertension, dysentery and hemorrhaging. Here, we aimed to assess the pharmacological effects of SBG on skin aging and to investigate the underlying mechanisms. Mice with skin aging were established by treatment with D-galactose and ultraviolet-B. SBG (topical application) showed a protective effect on skin aging in mice, as evidenced by less formation of skin wrinkles, higher levels of SOD (superoxide dismutase) and HYP (hydroxyproline) as well as a lower level of MDA (malondialdehyde). In the meantime, skin MMP-1 and p53 expression were lower, epidermis was thinner and collagen amount was higher in SBG-treated mice. Anti-skin aging effects of SBG were also confirmed in NIH3T3 and HaCaT cells, as well as in mouse primary dermal fibroblasts and human primary epidermal keratinocytes. Furthermore, we found that loss of Rev-erbα (a known repressor of Bmal1) up-regulated skin BMAL1 (a clock component and a known anti-aging factor) and ameliorated skin aging in mice. Moreover, SBG dose-dependently increased the expression of BMAL1 in the skin of aged mice and in senescent NIT3H3 cells. In addition, based on a combination of Gal4 chimeric, luciferase reporter and expression assays, SBG was identified as an antagonist of REV-ERBα and thus an inducer of BMAL1 expression. In conclusion, SBG antagonizes REV-ERBα to up-regulate BMAL1 and to protect against skin aging in mice.
Collapse
Affiliation(s)
- Guanghui Sun
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yongkang Dang
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanke Lin
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wanying Zeng
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zongjian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
| | | | - Dong Dong
- School of Medicine, Jinan University, Guangzhou, China
- *Correspondence: Dong Dong, ; Baojian Wu,
| | - Baojian Wu
- Institute of Molecular Rhythm and Metabolism, Guangzhou University of Chinese Medicine, Guangzhou, China
- *Correspondence: Dong Dong, ; Baojian Wu,
| |
Collapse
|
18
|
Zhang Y, Liu L, Zhao X, Yan S, Zeng F, Zhou D. New insight into ischemic stroke: Circadian rhythm in post-stroke angiogenesis. Front Pharmacol 2022; 13:927506. [PMID: 36016550 PMCID: PMC9395980 DOI: 10.3389/fphar.2022.927506] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/07/2022] [Indexed: 11/29/2022] Open
Abstract
The circadian rhythm is an endogenous clock system that coordinates and optimizes various physiological and pathophysiological processes, which accord with the master and the peripheral clock. Increasing evidence indicates that endogenous circadian rhythm disruption is involved in the lesion volume and recovery of ischemic stroke. As a critical recovery mechanism in post-stroke, angiogenesis reestablishes the regional blood supply and enhances cognitive and behavioral abilities, which is mainly composed of the following processes: endothelial cell proliferation, migration, and pericyte recruitment. The available evidence revealed that the circadian governs many aspects of angiogenesis. This study reviews the mechanism by which circadian rhythms regulate the process of angiogenesis and its contribution to functional recovery in post-stroke at the aspects of the molecular level. A comprehensive understanding of the circadian clock regulating angiogenesis in post-stroke is expected to develop new strategies for the treatment of cerebral infarction.
Collapse
Affiliation(s)
- Yuxing Zhang
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Lijuan Liu
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xin Zhao
- The Medical School, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Siyang Yan
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Fukang Zeng
- The Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan, China
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Changsha, China
| | - Desheng Zhou
- Department of Neurology, The First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
- *Correspondence: Desheng Zhou,
| |
Collapse
|
19
|
Griffett K, Hayes ME, Boeckman MP, Burris TP. The role of REV-ERB in NASH. Acta Pharmacol Sin 2022; 43:1133-1140. [PMID: 35217816 PMCID: PMC9061770 DOI: 10.1038/s41401-022-00883-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/28/2022] [Indexed: 02/07/2023]
Abstract
REV-ERBs are atypical nuclear receptors as they function as ligand-regulated transcriptional repressors. The natural ligand for the REV-ERBs (REV-ERBα and REV-ERBβ) is heme, and heme-binding results in recruitment of transcriptional corepressor proteins such as N-CoR that mediates repression of REV-ERB target genes. These two receptors regulate a large range of physiological processes including several important in the pathophysiology of non-alcoholic steatohepatitis (NASH). These include carbohydrate and lipid metabolism as well as inflammatory pathways. A number of synthetic REV-ERB agonists have been developed as chemical tools and they show efficacy in animal models of NASH. Here, we will review the functions of REV-ERB with regard to their relevance to NASH as well as the potential to target REV-ERB for treatment of this disease.
Collapse
Affiliation(s)
- Kristine Griffett
- Center for Clinical Pharmacology, Washington University in St. Louis and University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - Matthew E Hayes
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA
| | - Michael P Boeckman
- Center for Clinical Pharmacology, Washington University in St. Louis and University of Health Sciences & Pharmacy, St. Louis, MO, 63110, USA
| | - Thomas P Burris
- University of Florida Genetics Institute, Gainesville, FL, 32610, USA.
| |
Collapse
|
20
|
Welch RD, Billon C, Losby M, Bedia-Diaz G, Fang Y, Avdagic A, Elgendy B, Burris TP, Griffett K. Emerging Role of Nuclear Receptors for the Treatment of NAFLD and NASH. Metabolites 2022; 12:238. [PMID: 35323681 PMCID: PMC8953348 DOI: 10.3390/metabo12030238] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Non-alcoholic fatty liver (NAFLD) over the past years has become a metabolic pandemic linked to a collection of metabolic diseases. The nuclear receptors ERRs, REV-ERBs, RORs, FXR, PPARs, and LXR are master regulators of metabolism and liver physiology. The characterization of these nuclear receptors and their biology has promoted the development of synthetic ligands. The possibility of targeting these receptors to treat NAFLD is promising, as several compounds including Cilofexor, thiazolidinediones, and Saroglitazar are currently undergoing clinical trials. This review focuses on the latest development of the pharmacology of these metabolic nuclear receptors and how they may be utilized to treat NAFLD and subsequent comorbidities.
Collapse
Affiliation(s)
- Ryan D. Welch
- Biology and Chemistry Department, Blackburn College, Carlinville, IL 62626, USA;
| | - Cyrielle Billon
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - McKenna Losby
- Biochemistry, Biophysics and Structural Biology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA;
| | - Gonzalo Bedia-Diaz
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - Yuanying Fang
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - Amer Avdagic
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
| | - Bahaa Elgendy
- Center for Clinical Pharmacology, University of Health Sciences and Pharmacy and Washington University in St. Louis, St. Louis, MO 63110, USA; (C.B.); (G.B.-D.); (Y.F.); (A.A.); (B.E.)
- Department of Anesthesiology, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Thomas P. Burris
- UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA;
| | - Kristine Griffett
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
21
|
Shi J, Tong R, Zhou M, Gao Y, Zhao Y, Chen Y, Liu W, Li G, Lu D, Meng G, Hu L, Yuan A, Lu X, Pu J. OUP accepted manuscript. Eur Heart J 2022; 43:2317-2334. [PMID: 35267019 PMCID: PMC9209009 DOI: 10.1093/eurheartj/ehac109] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 02/04/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
Aims Adverse cardiovascular events have day/night patterns with peaks in the morning, potentially related to endogenous circadian clock control of platelet activation. Circadian nuclear receptor Rev-erbα is an essential and negative component of the circadian clock. To date, the expression profile and biological function of Rev-erbα in platelets have never been reported. Methods and results Here, we report the presence and functions of circadian nuclear receptor Rev-erbα in human and mouse platelets. Both human and mouse platelet Rev-erbα showed a circadian rhythm that positively correlated with platelet aggregation. Global Rev-erbα knockout and platelet-specific Rev-erbα knockout mice exhibited defective in haemostasis as assessed by prolonged tail-bleeding times. Rev-erbα deletion also reduced ferric chloride-induced carotid arterial occlusive thrombosis, prevented collagen/epinephrine-induced pulmonary thromboembolism, and protected against microvascular microthrombi obstruction and infarct expansion in an acute myocardial infarction model. In vitro thrombus formation assessed by CD41-labelled platelet fluorescence intensity was significantly reduced in Rev-erbα knockout mouse blood. Platelets from Rev-erbα knockout mice exhibited impaired agonist-induced aggregation responses, integrin αIIbβ3 activation, and α-granule release. Consistently, pharmacological inhibition of Rev-erbα by specific antagonists decreased platelet activation markers in both mouse and human platelets. Mechanistically, mass spectrometry and co-immunoprecipitation analyses revealed that Rev-erbα potentiated platelet activation via oligophrenin-1-mediated RhoA/ERM (ezrin/radixin/moesin) pathway. Conclusion We provided the first evidence that circadian protein Rev-erbα is functionally expressed in platelets and potentiates platelet activation and thrombus formation. Rev-erbα may serve as a novel therapeutic target for managing thrombosis-based cardiovascular disease. Key question Adverse cardiovascular events have day/night patterns with peaks in the morning, potentially related to endogenous circadian clock control of platelet activation. Whether circadian nuclear receptor Rev-erba is present in platelets and regulates platelet function remains unknown. Key finding We provide the first evidence that Rev-erba is functionally expressed in platelets and acts as a positive regulator of platelet activation/thrombus formation through the oligophrenin-1-mediated RhoA/ERM signalling pathway. Take home message Our observations highlight the importance of circadian clock machinery in platelet physiology and support the notion that Rev-erba may serve as a novel therapeutic target for managing thrombosis-based cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Yu Gao
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Yichao Zhao
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Yifan Chen
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Wenhua Liu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Gaoxiang Li
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Dong Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Medicine, Shanghai, China
| | - Guofeng Meng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Medicine, Shanghai, China
| | - Liuhua Hu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Ancai Yuan
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | - Xiyuan Lu
- Division of Cardiology, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai, China
| | | |
Collapse
|
22
|
Ricci A, Di Pierro E, Marcacci M, Ventura P. Mechanisms of Neuronal Damage in Acute Hepatic Porphyrias. Diagnostics (Basel) 2021; 11:diagnostics11122205. [PMID: 34943446 PMCID: PMC8700611 DOI: 10.3390/diagnostics11122205] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 01/12/2023] Open
Abstract
Porphyrias are a group of congenital and acquired diseases caused by an enzymatic impairment in the biosynthesis of heme. Depending on the specific enzyme involved, different types of porphyrias (i.e., chronic vs. acute, cutaneous vs. neurovisceral, hepatic vs. erythropoietic) are described, with different clinical presentations. Acute hepatic porphyrias (AHPs) are characterized by life-threatening acute neuro-visceral crises (acute porphyric attacks, APAs), featuring a wide range of neuropathic (central, peripheral, autonomic) manifestations. APAs are usually unleashed by external "porphyrinogenic" triggers, which are thought to cause an increased metabolic demand for heme. During APAs, the heme precursors δ-aminolevulinic acid (ALA) and porphobilinogen (PBG) accumulate in the bloodstream and urine. Even though several hypotheses have been developed to explain the protean clinical picture of APAs, the exact mechanism of neuronal damage in AHPs is still a matter of debate. In recent decades, a role has been proposed for oxidative damage caused by ALA, mitochondrial and synaptic ALA toxicity, dysfunction induced by relative heme deficiency on cytochromes and other hemeproteins (i.e., nitric oxide synthases), pyridoxal phosphate functional deficiency, derangements in the metabolic pathways of tryptophan, and other factors. Since the pathway leading to the biosynthesis of heme is inscribed into a complex network of interactions, which also includes some fundamental processes of basal metabolism, a disruption in any of the steps of this pathway is likely to have multiple pathogenic effects. Here, we aim to provide a comprehensive review of the current evidence regarding the mechanisms of neuronal damage in AHPs.
Collapse
Affiliation(s)
- Andrea Ricci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.)
| | - Elena Di Pierro
- Dipartimento di Medicina Interna, Fondazione IRCSS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Matteo Marcacci
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.)
| | - Paolo Ventura
- Internal Medicine Unit, Department of Medical and Surgical Science for Children and Adults, University of Modena e Reggio Emilia, 41124 Modena, Italy; (A.R.); (M.M.)
- Correspondence: ; Tel.: +39-059-4225-542
| |
Collapse
|
23
|
Guido ME, Monjes NM, Wagner PM, Salvador GA. Circadian Regulation and Clock-Controlled Mechanisms of Glycerophospholipid Metabolism from Neuronal Cells and Tissues to Fibroblasts. Mol Neurobiol 2021; 59:326-353. [PMID: 34697790 DOI: 10.1007/s12035-021-02595-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/07/2021] [Indexed: 12/26/2022]
Abstract
Along evolution, living organisms developed a precise timekeeping system, circadian clocks, to adapt life to the 24-h light/dark cycle and temporally regulate physiology and behavior. The transcriptional molecular circadian clock and metabolic/redox oscillator conforming these clocks are present in organs, tissues, and even in individual cells, where they exert circadian control over cellular metabolism. Disruption of the molecular clock may cause metabolic disorders and higher cancer risk. The synthesis and degradation of glycerophospholipids (GPLs) is one of the most highly regulated metabolisms across the 24-h cycle in terms of total lipid content and enzyme expression and activity in the nervous system and individual cells. Lipids play a plethora of roles (membrane biogenesis, energy sourcing, signaling, and the regulation of protein-chromatin interaction, among others), making control of their metabolism a vital checkpoint in the cellular organization of physiology. An increasing body of evidence clearly demonstrates an orchestrated and sequential series of events occurring in GPL metabolism across the 24-h day in diverse retinal cell layers, immortalized fibroblasts, and glioma cells. Moreover, the clock gene Per1 and other circadian-related genes are tightly involved in the regulation of GPL synthesis in quiescent cells. However, under proliferation, the metabolic oscillator continues to control GPL metabolism of brain cancer cells even after molecular circadian clock disruption, reflecting the crucial role of the temporal metabolism organization in cell preservation. The aim of this review is to examine the control exerted by circadian clocks over GPL metabolism, their synthesizing enzyme expression and activities in normal and tumorous cells of the nervous system and in immortalized fibroblasts.
Collapse
Affiliation(s)
- Mario E Guido
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| | - Natalia M Monjes
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Paula M Wagner
- CIQUIBIC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
- Departamento de Química Biológica "Ranwel Caputto", Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Gabriela A Salvador
- INIBIBB-UNS-CONICET, Departamento de Biología, Bioquímica y Farmacia, UNS, Bahía Blanca, Argentina
| |
Collapse
|
24
|
Xiong X, Gao H, Lin Y, Yechoor V, Ma K. Inhibition of Rev-erbα ameliorates muscular dystrophy. Exp Cell Res 2021; 406:112766. [PMID: 34364881 DOI: 10.1016/j.yexcr.2021.112766] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/30/2021] [Accepted: 08/01/2021] [Indexed: 01/25/2023]
Abstract
Duchene muscular dystrophy leads to progressive muscle structural and functional decline due to chronic degenerative-regenerative cycles. Enhancing the regenerative capacity of dystrophic muscle provides potential therapeutic options. We previously demonstrated that the circadian clock repressor Rev-erbα inhibited myogenesis and Rev-erbα ablation enhanced muscle regeneration. Here we show that Rev-erbα deficiency in the dystrophin-deficient mdx mice promotes regenerative myogenic response to ameliorate muscle damage. Loss of Rev-erbα in mdx mice improved dystrophic pathology and muscle wasting. Rev-erbα-deficient dystrophic muscle exhibit augmented myogenic response, enhanced neo-myofiber formation and attenuated inflammatory response. In mdx myoblasts devoid of Rev-erbα, myogenic differentiation was augmented together with up-regulation of Wnt signaling and proliferative pathways, suggesting that loss of Rev-erbα inhibition of these processes contributed to the improvement in regenerative myogenesis. Collectively, our findings revealed that the loss of Rev-erbα function protects dystrophic muscle from injury by promoting myogenic repair, and inhibition of its activity may have therapeutic utilities for muscular dystrophy.
Collapse
Affiliation(s)
- Xuekai Xiong
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Hongbo Gao
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Yayu Lin
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
| | - Vijay Yechoor
- Diabetes and Beta Cell Biology Center, Division of Endocrinology, Diabetes & Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ke Ma
- Department of Diabetes Complications & Metabolism, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
25
|
HO-1 and Heme: G-Quadruplex Interaction Choreograph DNA Damage Responses and Cancer Growth. Cells 2021; 10:cells10071801. [PMID: 34359970 PMCID: PMC8307061 DOI: 10.3390/cells10071801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/06/2021] [Accepted: 07/13/2021] [Indexed: 02/04/2023] Open
Abstract
Many anti-cancer therapeutics lead to the release of danger associated pattern molecules (DAMPs) as the result of killing large numbers of both normal and transformed cells as well as lysis of red blood cells (RBC) (hemolysis). Labile heme originating from hemolysis acts as a DAMP while its breakdown products exert varying immunomodulatory effects. Labile heme is scavenged by hemopexin (Hx) and processed by heme oxygenase-1 (HO-1, Hmox1), resulting in its removal and the generation of biliverdin/bilirubin, carbon monoxide (CO) and iron. We recently demonstrated that labile heme accumulates in cancer cell nuclei in the tumor parenchyma of Hx knockout mice and contributes to the malignant phenotype of prostate cancer (PCa) cells and increased metastases. Additionally, this work identified Hx as a tumor suppressor gene. Direct interaction of heme with DNA G-quadruplexes (G4) leads to altered gene expression in cancer cells that regulate transcription, recombination and replication. Here, we provide new data supporting the nuclear role of HO-1 and heme in modulating DNA damage response, G4 stability and cancer growth. Finally, we discuss an alternative role of labile heme as a nuclear danger signal (NDS) that regulates gene expression and nuclear HO-1 regulated DNA damage responses stimulated by its interaction with G4.
Collapse
|
26
|
Saito K, Ito M, Chiba T, Jia H, Kato H. A Comparison of Gene Expression Profiles of Rat Tissues after Mild and Short-Term Calorie Restrictions. Nutrients 2021; 13:2277. [PMID: 34209243 PMCID: PMC8308279 DOI: 10.3390/nu13072277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Many studies have shown the beneficial effects of calorie restriction (CR) on rodents' aging; however, the molecular mechanism explaining these beneficial effects is still not fully understood. Previously, we conducted transcriptomic analysis on rat liver with short-term and mild-to-moderate CR to elucidate its early response to such diet. Here, we expanded transcriptome analysis to muscle, adipose tissue, intestine, and brain and compared the gene expression profiles of these multiple organs and of our previous dataset. Several altered gene expressions were found, some of which known to be related to CR. Notably, the commonly regulated genes by CR include nicotinamide phosphoribosyltransferase and heat shock protein 90, which are involved in declining the aging process and thus potential therapeutic targets for aging-related diseases. The data obtained here provide information on early response markers and key mediators of the CR-induced delay in aging as well as on age-associated pathological changes in mammals.
Collapse
Affiliation(s)
- Kenji Saito
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.S.); (M.I.); (H.J.)
| | - Maiko Ito
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.S.); (M.I.); (H.J.)
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, 2-579-1 Mikajima, Tokorozawa, Saitama 359-1164, Japan;
| | - Takuya Chiba
- Biomedical Gerontology Laboratory, Faculty of Human Sciences, Waseda University, 2-579-1 Mikajima, Tokorozawa, Saitama 359-1164, Japan;
| | - Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.S.); (M.I.); (H.J.)
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (K.S.); (M.I.); (H.J.)
| |
Collapse
|
27
|
Fakih TM, Kurniawan F, Yusuf M, Mudasir M, Tjahjono DH. Molecular Dynamics of Cobalt Protoporphyrin Antagonism of the Cancer Suppressor REV-ERBβ. Molecules 2021; 26:3251. [PMID: 34071361 PMCID: PMC8198987 DOI: 10.3390/molecules26113251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/15/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Nuclear receptor REV-ERBβ is an overexpressed oncoprotein that has been used as a target for cancer treatment. The metal-complex nature of its ligand, iron protoporphyrin IX (Heme), enables the REV-ERBβ to be used for multiple therapeutic modalities as a photonuclease, a photosensitizer, or a fluorescence imaging agent. The replacement of iron with cobalt as the metal center of protoporphyrin IX changes the ligand from an agonist to an antagonist of REV-ERBβ. The mechanism behind that phenomenon is still unclear, despite the availability of crystal structures of REV-ERBβ in complex with Heme and cobalt protoporphyrin IX (CoPP). This study used molecular dynamic simulations to compare the effects of REV-ERBβ binding to Heme and CoPP, respectively. The initial poses of Heme and CoPP in complex with agonist and antagonist forms of REV-ERBβ were predicted using molecular docking. The binding energies of each ligand were calculated using the MM/PBSA method. The computed binding affinity of Heme to REV-ERBβ was stronger than that of CoPP, in agreement with experimental results. CoPP altered the conformation of the ligand-binding site of REV-ERBβ, disrupting the binding site for nuclear receptor corepressor, which is required for REV-ERBβ to regulate the transcription of downstream target genes. Those results suggest that a subtle change in the metal center of porphyrin can change the behavior of porphyrin in cancer cell signaling. Therefore, modification of porphyrin-based agents for cancer therapy should be conducted carefully to avoid triggering unfavorable effects.
Collapse
Affiliation(s)
- Taufik Muhammad Fakih
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40135, Indonesia; (T.M.F.); (F.K.)
- Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Jalan Rangga Gading 8, Bandung 40116, Indonesia
| | - Fransiska Kurniawan
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40135, Indonesia; (T.M.F.); (F.K.)
| | - Muhammad Yusuf
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jalan Raya Bandung Sumedang Km 21, Sumedang 45363, Indonesia;
| | - Mudasir Mudasir
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Sekip Utara BLS 21, Yogyakarta 55281, Indonesia;
| | - Daryono Hadi Tjahjono
- School of Pharmacy, Bandung Institute of Technology, Jalan Ganesha 10, Bandung 40135, Indonesia; (T.M.F.); (F.K.)
| |
Collapse
|
28
|
Canesin G, Di Ruscio A, Li M, Ummarino S, Hedblom A, Choudhury R, Krzyzanowska A, Csizmadia E, Palominos M, Stiehm A, Ebralidze A, Chen SY, Bassal MA, Zhao P, Tolosano E, Hurley L, Bjartell A, Tenen DG, Wegiel B. Scavenging of Labile Heme by Hemopexin Is a Key Checkpoint in Cancer Growth and Metastases. Cell Rep 2021; 32:108181. [PMID: 32966797 PMCID: PMC7551404 DOI: 10.1016/j.celrep.2020.108181] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 07/03/2020] [Accepted: 09/01/2020] [Indexed: 12/25/2022] Open
Abstract
Hemopexin (Hx) is a scavenger of labile heme. Herein, we present data defining the role of tumor stroma-expressed Hx in suppressing cancer progression. Labile heme and Hx levels are inversely correlated in the plasma of patients with prostate cancer (PCa). Further, low expression of Hx in PCa biopsies characterizes poorly differentiated tumors and correlates with earlier time to relapse. Significantly, heme promotes tumor growth and metastases in an orthotopic murine model of PCa, with the most aggressive phenotype detected in mice lacking Hx. Mechanistically, labile heme accumulates in the nucleus and modulates specific gene expression via interacting with guanine quadruplex (G4) DNA structures to promote PCa growth. We identify c-MYC as a heme:G4-regulated gene and a major player in heme-driven cancer progression. Collectively, these results reveal that sequestration of labile heme by Hx may block heme-driven tumor growth and metastases, suggesting a potential strategy to prevent and/or arrest cancer dissemination. Canesin et al. describe a role and mechanism for labile heme as a key player in regulating gene expression to promote carcinogenesis via binding to G-quadruplex in the c-MYC promoter. Hemopexin, a heme scavenger, may be used as a strategy to block progression of cancer.
Collapse
Affiliation(s)
- Giacomo Canesin
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Annalisa Di Ruscio
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; University of Eastern Piedmont, Department of Translational Medicine, Novara, Italy; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; HMS Initiative for RNA Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA.
| | - Mailin Li
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; University of Eastern Piedmont, Department of Translational Medicine, Novara, Italy
| | - Simone Ummarino
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; University of Eastern Piedmont, Department of Translational Medicine, Novara, Italy
| | - Andreas Hedblom
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Reeham Choudhury
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Agnieszka Krzyzanowska
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Eva Csizmadia
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Macarena Palominos
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Anna Stiehm
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Alexander Ebralidze
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Shao-Yong Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Mahmoud A Bassal
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA
| | - Ping Zhao
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Emanuela Tolosano
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laurence Hurley
- College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmo, Sweden
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Cambridge, MA 02138, USA
| | - Barbara Wegiel
- Department of Surgery, Division of Surgical Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA; Cancer Research Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02214, USA.
| |
Collapse
|
29
|
Benna C, Rajendran S, Spiro G, Menin C, Dall'Olmo L, Rossi CR, Mocellin S. Gender-specific associations between polymorphisms of the circadian gene RORA and cutaneous melanoma susceptibility. J Transl Med 2021; 19:57. [PMID: 33549124 PMCID: PMC7866430 DOI: 10.1186/s12967-021-02725-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/28/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Melanoma is the deadliest of skin cancers and has an increasing annual incidence worldwide. It is a multi-factorial disease most likely arising from both genetic predisposition and environmental exposure to ultraviolet light. Genetic variability of the components of the biological circadian clock is recognized to be a risk factor for different type of cancers. Moreover, two variants of a clock gene, RORA, have been associated with melanoma patient's prognosis. Our aim is to test the hypothesis that specific single nucleotide polymorphisms (SNPs) of the circadian clock genes may significantly influence the predisposition to develop cutaneous melanoma or the outcome of melanoma patients. METHODS We genotyped 1239 subjects, 629 cases of melanoma and 610 healthy controls in 14 known SNPs of seven selected clock genes: AANAT, CLOCK, NPAS2, PER1, PER2, RORA, and TIMELESS. Genotyping was conducted by q-PCR. Multivariate logistic regression was employed for susceptibility of melanoma assessment, modeled additively. Subgroup analysis was performed by gender. For the female subgroup, a further discrimination was performed by age. For prognosis of melanoma assessment, multivariate Cox proportional hazard regression was employed. The Benjamini-Hochberg method was utilized as adjustment for multiple comparisons. RESULTS We identified two RORA SNPs statistically significant with respect to the association with melanoma susceptibility. Considering the putative role of RORA as a nuclear steroid hormone receptor, we conducted a subgroup analysis by gender. Interestingly, the RORA rs339972 C allele was associated with a decreased predisposition to develop melanoma only in the female subgroup (OR 0.67; 95% CI 0.51-0.88; P = 0.003) while RORA rs10519097 T allele was associated with a decreased predisposition to develop melanoma only in the male subgroup (OR 0.62; 95% CI 0.44-0.87; P = 0.005). Moreover, the RORA rs339972 C allele had a decreased susceptibility to develop melanoma only in females aged over 50 years old (OR 0.67; 95% CI 0.54-0.83; P = 0.0002). None of the studied SNPs were significantly associated with the prognosis. CONCLUSIONS Overall, we cannot ascertain that circadian pathway genetic variation is involved in melanoma susceptibility or prognosis. Nevertheless, we identified an interesting relationship between melanoma susceptibility and RORA polymorphisms acting in sex-specific manner and which is worth further future investigation.
Collapse
Affiliation(s)
- Clara Benna
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy. .,First Surgical Clinic, Azienda Ospedaliera Padova, Padova, Italy.
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giovanna Spiro
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Chiara Menin
- Immunology and Diagnostic Molecular Oncology Unit, Veneto Institute of Oncology (IOV - IRCCS), Padova, Italy
| | - Luigi Dall'Olmo
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| | - Carlo Riccardo Rossi
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| | - Simone Mocellin
- Department of Surgery Oncology and Gastroenterology, University of Padova, Padova, Italy.,Surgical Oncology Unit, Veneto Institute of Oncology (IOV-IRCCS), Padova, Italy
| |
Collapse
|
30
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
31
|
Two Faces of Heme Catabolic Pathway in Newborns: A Potential Role of Bilirubin and Carbon Monoxide in Neonatal Inflammatory Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7140496. [PMID: 32908636 PMCID: PMC7450323 DOI: 10.1155/2020/7140496] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
In an infant's body, all the systems undergo significant changes in order to adapt to the new, extrauterine environment and challenges which it poses. Fragile homeostasis can be easily disrupted as the defensive mechanisms are yet imperfect. The activity of antioxidant enzymes, i.e., superoxide dismutase, catalase, and glutathione peroxidase, is low; therefore, neonates are especially vulnerable to oxidative stress. Free radical burden significantly contributes to neonatal illnesses such as sepsis, retinopathy of premature, necrotizing enterocolitis, bronchopulmonary dysplasia, or leukomalacia. However, newborns have an important ally-an inducible heme oxygenase-1 (HO-1) which expression rises rapidly in response to stress stimuli. HO-1 activity leads to production of carbon monoxide (CO), free iron ion, and biliverdin; the latter is promptly reduced to bilirubin. Although CO and bilirubin used to be considered noxious by-products, new interesting properties of those compounds are being revealed. Bilirubin proved to be an efficient free radicals scavenger and modulator of immune responses. CO affects a vast range of processes such as vasodilatation, platelet aggregation, and inflammatory reactions. Recently, developed nanoparticles consisting of PEGylated bilirubin as well as several kinds of molecules releasing CO have been successfully tested on animal models of inflammatory diseases. This paper focuses on the role of heme metabolites and their potential utility in prevention and treatment of neonatal diseases.
Collapse
|
32
|
Determination of genetic changes of Rev-erb beta and Rev-erb alpha genes in Type 2 diabetes mellitus by next-generation sequencing. Gene 2020; 763:145058. [PMID: 32798635 DOI: 10.1016/j.gene.2020.145058] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND The nuclear receptors Rev-erb alpha and Rev-erb beta are transcription factors that regulate the function of genes in glucose and lipid metabolism, and they also form a link between circadian rhythm and metabolism. We evaluated the variations in Rev-erb alpha and Rev-erb beta genes together with biochemical parameters as risk factors in type 2 diabetic (T2DM) patients. METHODS Molecular analyses of Rev-erb alpha and Rev-erb beta genes were performed on genomic DNA by using next-generation sequencing in 42 T2DM patients (21 obese and 21 non-obese) and 66 healthy controls. RESULTS We found 26 rare mutations in the study groups, including 13 missense mutations, 9 silent mutations, 3 5'UTR variations, and a 3'UTR variation, of which 9 were novel variations (5 missense and 3 silent and 1 5'UTR). Six common variations were also found in the Rev-erb genes; Rev-erb beta Chr3:24003765 A > G, Rev-erb beta rs924403442 (Chr3:24006717) G > T, Rev-erb alpha Chr17:38253751 T > C, Rev-erb alpha rs72836608 C > A, Rev-erb alpha rs2314339 C > T and Rev-erb alpha rs2102928 C > T. Of these, Rev-erb beta Chr3:24003765 A > G was a novel missense mutation (p.Q197R), while others were identified as intronic variants. T2DM patients with Rev-erb beta rs924403442 T allele had lower body surface area (BSA) than noncarriers (GG genotype) (p = 0.039). Rev-erb alpha rs72836608 A allele and Rev-erb alpha rs2314339 CC genotype were associated with decreased serum HDL-cholesterol levels in T2DM patients (p = 0.025 and p = 0.027, respectively). In our study, different effects of Rev-erbs polymorphisms were found according to gender and presence of obesity. Rev-erb alpha rs72836608 (C > A) and rs2314339 (C > T) and Rev-erb alpha rs2102928 (C > T) were associated with low HDL-C levels in male T2DM patients. In female patients, Rev-erb alpha rs2102928 (C > T) was associated with high microalbuminuria and Rev-erb beta rs9244403442 G > T was associated with low HDL and high BSA values. In addition, Rev-erb alpha Chr17: 38,253,751 (T > C), rs72836608 (C > A), and rs2314339 (C > T) and Rev-erb beta Chr3:24003765 (A > G) were associated with increased serum GGT levels in obese T2DM patients. In non-obese patients, Rev-erbs SNPs had no effect on serum GGT levels. CONCLUSION Our findings indicate that variations in the Rev-erb alpha and Rev-erb beta genes can affect metabolic changes in T2DM and these effects may vary depending on gender and obesity.
Collapse
|
33
|
Li BJ, Zhu ZX, Qin H, Meng ZN, Lin HR, Xia JH. Genome-Wide Characterization of Alternative Splicing Events and Their Responses to Cold Stress in Tilapia. Front Genet 2020; 11:244. [PMID: 32256528 PMCID: PMC7093569 DOI: 10.3389/fgene.2020.00244] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Alternative splicing (AS) is an important post-transcriptional regulatory mechanism for cells to generate transcript variability and proteome diversity. No systematic investigation of AS events among different tissues in response to stressors is available for tilapia currently. In this study, AS among different tissues was identified and the cold stress-related AS events were explored in a Nile tilapia (Oreochromis niloticus) line based on 42 RNA-seq datasets using a bioinformatics pipeline. 14,796 (82.76%; SD = 2,840) of the expression genes showed AS events. The two most abundant AS types were alternative transcription start site (TSS) and terminal site (TTS) in tilapia. Testis, brain and kidney possess the most abundant AS gene number, while the blood, muscle and liver possess the least number in each tissue. Furthermore, 208 differentially alternative splicing (DAS) genes in heart and 483 DAS in brain in response to cold stress. The number of AS types for alternative exon end, exon skipping and retention of single intron increased significantly under cold stress. GO enrichment and pathway overrepresentation analysis indicated that many DAS genes, e.g., genes in circadian clock pathway, may influence expression of downstream genes under cold stress. Our study revealed that AS exists extensively in tilapia and plays an important role in cold adaption.
Collapse
Affiliation(s)
| | | | | | | | | | - Jun Hong Xia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, College of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
34
|
Yu Z, Yang J, Xiang D, Li G, Liu D, Zhang C. Circadian rhythms and bile acid homeostasis: a comprehensive review. Chronobiol Int 2020; 37:618-628. [PMID: 32126853 DOI: 10.1080/07420528.2020.1733590] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zaoqin Yu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Yang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guodong Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Roby DA, Ruiz F, Kermath BA, Voorhees JR, Niehoff M, Zhang J, Morley JE, Musiek ES, Farr SA, Burris TP. Pharmacological activation of the nuclear receptor REV-ERB reverses cognitive deficits and reduces amyloid-β burden in a mouse model of Alzheimer's disease. PLoS One 2019; 14:e0215004. [PMID: 30973894 PMCID: PMC6459530 DOI: 10.1371/journal.pone.0215004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 03/26/2019] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease currently lacks treatment options that effectively reverse the biological/anatomical pathology and cognitive deficits associated with the disease. Loss of function of the nuclear receptor REV-ERB is associated with reduced cognitive function in mouse models. The effect of enhanced REV-ERB activity on cognitive function has not been examined. In this study, we tested the hypothesis that enhanced REV-ERB function may enhance cognitive function in a model of Alzheimer's disease. We utilized the REV-ERB agonist SR9009 to pharmacologically activate the activity of REV-ERB in the SAMP8 mouse model of Alzheimer's disease. SR9009 reversed cognitive dysfunction of an aged SAMP8 mouse in several behavioral assays including novel object recognition, T-maze foot shock avoidance, and lever press operant conditioning task assessments. SR9009 treatment reduced amyloid-β 1-40 and 1-42 levels in the cortex, which is consistent with improved cognitive function. Furthermore, SR9009 treatment led to increased hippocampal PSD-95, cortical synaptophysin expression and the number of synapses suggesting improvement in synaptic function. We conclude that REV-ERB is a potential target for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Deborah A. Roby
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Fernanda Ruiz
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Bailey A. Kermath
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Jaymie R. Voorhees
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO, United States of America
| | - Michael Niehoff
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - John E. Morley
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Erik S. Musiek
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Susan A. Farr
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, St. Louis, MO, United States of America
- Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO, United States of America
| | - Thomas P. Burris
- Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, MO, United States of America
| |
Collapse
|
36
|
The Nuclear Receptor and Clock Repressor Rev-erbα Suppresses Myogenesis. Sci Rep 2019; 9:4585. [PMID: 30872796 PMCID: PMC6418265 DOI: 10.1038/s41598-019-41059-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 02/18/2019] [Indexed: 12/25/2022] Open
Abstract
Rev-erbα is a ligand-dependent nuclear receptor and a key repressor of the molecular clock transcription network. Accumulating evidence indicate that the circadian clock machinery governs diverse biological processes in skeletal muscle, including muscle growth, repair and mass maintenance. The physiological function of Rev-erbα in myogenic regulation remains largely unknown. Here we show that Rev-erbα exerts cell-autonomous inhibitory effects on proliferation and differentiation of myogenic precursor cells, and these actions concertedly inhibit muscle regeneration in vivo. Mechanistic studies reveal Rev-erbα direct transcriptional control of two major myogenic mechanisms, proliferative pathway and the Wnt signaling cascade. Consistent with this finding, primary myoblasts lacking Rev-erbα display significantly enhanced proliferative growth and myogenic progression. Furthermore, pharmacological activation of Rev-erbα activity attenuates, whereas its inhibition by an antagonist promotes these processes. Notably, upon muscle injury, the loss-of-function of Rev-erbα in vivo augmented satellite cell proliferative expansion and regenerative progression during regeneration. Collectively, our study identifies Rev-erbα as a novel inhibitory regulator of myogenic progenitor cell properties that suppresses postnatal myogenesis. Pharmacological interventions to dampen Rev-erbα activity may have potential utilities to enhance regenerative capacity in muscle diseases.
Collapse
|
37
|
Mazaira GI, Zgajnar NR, Lotufo CM, Daneri-Becerra C, Sivils JC, Soto OB, Cox MB, Galigniana MD. The Nuclear Receptor Field: A Historical Overview and Future Challenges. NUCLEAR RECEPTOR RESEARCH 2018; 5:101320. [PMID: 30148160 PMCID: PMC6108593 DOI: 10.11131/2018/101320] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In this article we summarize the birth of the field of nuclear receptors, the discovery of untransformed and transformed isoforms of ligand-binding macromolecules, the discovery of the three-domain structure of the receptors, and the properties of the Hsp90-based heterocomplex responsible for the overall structure of the oligomeric receptor and many aspects of the biological effects. The discovery and properties of the subfamily of receptors called orphan receptors is also outlined. Novel molecular aspects of the mechanism of action of nuclear receptors and challenges to resolve in the near future are discussed.
Collapse
Affiliation(s)
- Gisela I. Mazaira
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
| | - Nadia R. Zgajnar
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | - Cecilia M. Lotufo
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| | | | - Jeffrey C. Sivils
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Olga B. Soto
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Marc B. Cox
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mario D. Galigniana
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (1428), Argentina
- Instituto de Biología y Medicina Experimental- CONICET. Buenos Aires (1428), Argentina
| |
Collapse
|
38
|
Shimozaki K. Involvement of Nuclear Receptor REV-ERBβ in Formation of Neurites and Proliferation of Cultured Adult Neural Stem Cells. Cell Mol Neurobiol 2018; 38:1051-1065. [PMID: 29397477 PMCID: PMC11481963 DOI: 10.1007/s10571-018-0576-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 01/27/2018] [Indexed: 01/05/2023]
Abstract
Neural stem cells (NSCs) serve as the source of both neurons and support cells, and neurogenesis is reportedly linked to the circadian clock. This study aimed to clarify the functional role of the circadian rhythm-related nuclear receptor, REV-ERBβ, in neurogenesis of NSCs from adult brain. Accordingly, Rev-erbβ expression and the effect of Rev-erbβ gene-specific knockdown on neurogenesis in vitro was examined in adult rodent NSCs. Initial experiments confirmed REV-ERBβ expression in cultured adult NSCs, while subsequent gene expression and gene ontogeny analyses identified functional genes upregulated or downregulated by REV-ERBβ. In particular, expression levels of factors associated with proliferation, stemness, and neural differentiation were affected. Knockdown of Rev-erbβ showed involvement of REV-ERBβ in regulation of cellular proliferation and self-renewal of cultured adult NSCs. Moreover, Rev-erbβ-knockdown cells formed neurons with a slightly shrunken morphology, fewer new primary neurites, and reduced length and branch formation of neurites. Altogether, this suggests that REV-ERBβ is involved in neurite formation during neuronal differentiation of cultured adult NSCs. In summary, REV-ERBβ is a known circadian regulatory protein that appears to be involved in neurogenesis via regulation of networks for cell proliferation and neural differentiation/maturation in adult NSCs.
Collapse
Affiliation(s)
- Koji Shimozaki
- Division of Functional Genomics, Life Science Support Center, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan.
| |
Collapse
|
39
|
Hering Y, Berthier A, Duez H, Lefebvre P, Deprez B, Gribbon P, Wolf M, Reinshagen J, Halley F, Hannemann J, Böger R, Staels B, Gul S. Development and implementation of a cell-based assay to discover agonists of the nuclear receptor REV-ERBα. J Biol Methods 2018; 5:e94. [PMID: 31453244 PMCID: PMC6706147 DOI: 10.14440/jbm.2018.244] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 02/19/2018] [Accepted: 03/13/2018] [Indexed: 12/14/2022] Open
Abstract
The nuclear receptors are transcription factors involved in the regulation of a variety of physiological processes whose activity can be modulated by binding to relevant small molecule ligands. Their dysfunction has been shown to play a role in disease states such as diabetes, cancer, inflammatory diseases, and hormonal resistance ailments, which makes them interesting targets for drug discovery. The nuclear receptor REV-ERBα is involved in regulating the circadian rhythm and metabolism. Its natural ligand is heme and there is significant interest in identifying novel synthetic modulators to serve as tools to characterize its function and to serve as drugs in treating metabolic disorders. To do so, we established a mammalian cell-based two-hybrid assay system capable of measuring the interaction between REV-ERBα and its co-repressor, nuclear co-repressor 1. This assay was validated to industry standard criteria and was used to screen a subset of the LOPAC®1280 library and 29568 compounds from a diverse compound library. Profiling of the primary hits in a panel of counter and selectivity assays confirmed that REV-ERBα activity can be modulated pharmacologically and chemical scaffolds have been identified for optimization.
Collapse
Affiliation(s)
- Yuliya Hering
- Fraunhofer Institute for Molecular Biology and Applied Ecology, ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Alexandre Berthier
- University of Lille-EGID, CHU, Institut Pasteur de Lille, INSERM UMR 1011, 1 rue du Professeur Calmette, BP245, 59019 Lille, France
| | - Helene Duez
- University of Lille-EGID, CHU, Institut Pasteur de Lille, INSERM UMR 1011, 1 rue du Professeur Calmette, BP245, 59019 Lille, France
| | - Philippe Lefebvre
- University of Lille-EGID, CHU, Institut Pasteur de Lille, INSERM UMR 1011, 1 rue du Professeur Calmette, BP245, 59019 Lille, France
| | - Benoit Deprez
- University Lille Nord de France, INSERM, Institut Pasteur de Lille, U1177, Drugs and Molecules for Living Systems, F-59000 Lille, France
| | - Philip Gribbon
- Fraunhofer Institute for Molecular Biology and Applied Ecology, ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Markus Wolf
- Fraunhofer Institute for Molecular Biology and Applied Ecology, ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Jeanette Reinshagen
- Fraunhofer Institute for Molecular Biology and Applied Ecology, ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Francoise Halley
- Fraunhofer Institute for Molecular Biology and Applied Ecology, ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| | - Juliane Hannemann
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Rainer Böger
- Institute of Clinical Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, D-20246 Hamburg, Germany
| | - Bart Staels
- University of Lille-EGID, CHU, Institut Pasteur de Lille, INSERM UMR 1011, 1 rue du Professeur Calmette, BP245, 59019 Lille, France
| | - Sheraz Gul
- Fraunhofer Institute for Molecular Biology and Applied Ecology, ScreeningPort, Schnackenburgallee 114, D-22525 Hamburg, Germany
| |
Collapse
|
40
|
Lipid-sensors, enigmatic-orphan and orphan nuclear receptors as therapeutic targets in breast-cancer. Oncotarget 2018; 7:42661-42682. [PMID: 26894976 PMCID: PMC5173165 DOI: 10.18632/oncotarget.7410] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/29/2016] [Indexed: 12/28/2022] Open
Abstract
Breast-cancer is heterogeneous and consists of various groups with different biological characteristics. Innovative pharmacological approaches accounting for this heterogeneity are needed. The forty eight human Nuclear-Hormone-Receptors are ligand-dependent transcription-factors and are classified into Endocrine-Receptors, Adopted-Orphan-Receptors (Lipid-sensors and Enigmatic-Orphans) and Orphan-receptors. Nuclear-Receptors represent ideal targets for the design/synthesis of pharmacological ligands. We provide an overview of the literature available on the expression and potential role played by Lipid-sensors, Enigmatic-Orphans and Orphan-Receptors in breast-cancer. The data are complemented by an analysis of the expression levels of each selected Nuclear-Receptor in the PAM50 breast-cancer groups, following re-elaboration of the data publicly available. The major aim is to support the idea that some of the Nuclear-Receptors represent largely unexploited therapeutic-targets in breast-cancer treatment/chemo-prevention. On the basis of our analysis, we conclude that the Lipid-Sensors, NR1C3, NR1H2 and NR1H3 are likely to be onco-suppressors in breast-cancer. The Enigmatic-Orphans, NR1F1 NR2A1 and NR3B3 as well as the Orphan-Receptors, NR0B1, NR0B2, NR1D1, NR2F1, NR2F2 and NR4A3 exert a similar action. These Nuclear-Receptors represent candidates for the development of therapeutic strategies aimed at increasing their expression or activating them in tumor cells. The group of Nuclear-Receptors endowed with potential oncogenic properties consists of the Lipid-Sensors, NR1C2 and NR1I2, the Enigmatic-Orphans, NR1F3, NR3B1 and NR5A2, as well as the Orphan-Receptors, NR2E1, NR2E3 and NR6A1. These oncogenic Nuclear-Receptors should be targeted with selective antagonists, reverse-agonists or agents/strategies capable of reducing their expression in breast-cancer cells.
Collapse
|
41
|
Abstract
The molecular clockwork drives rhythmic oscillations of signaling pathways managing intermediate metabolism; the circadian timing system synchronizes behavioral cycles and anabolic/catabolic processes with environmental cues, mainly represented by light/darkness alternation. Metabolic pathways, bile acid synthesis, and autophagic and immune/inflammatory processes are driven by the biological clock. Proper timing of hormone secretion, metabolism, bile acid turnover, autophagy, and inflammation with behavioral cycles is necessary to avoid dysmetabolism. Disruption of the biological clock and mistiming of body rhythmicity with respect to environmental cues provoke loss of internal synchronization and metabolic derangements, causing liver steatosis, obesity, metabolic syndrome, and diabetes mellitus.
Collapse
Affiliation(s)
- Roberto Tarquini
- Department of Clinical and Experimental Medicine, School of Medicine, University of Florence, Viale Gaetano Pieraccini, 6, 50139, Florence, Italy; Inter-institutional Department for Continuity of Care of Empoli, School of Medicine, University of Florence, Viale Gaetano Pieraccini, 6, 50139 Florence, Italy
| | - Gianluigi Mazzoccoli
- Chronobiology Unit, Division of Internal Medicine, Department of Medical Sciences, IRCCS "Casa Sollievo della Sofferenza", Cappuccini Avenue, San Giovanni Rotondo, Foggia 71013, Italy.
| |
Collapse
|
42
|
Noguchi M, Nomura A, Murase K, Doi S, Yamaguchi K, Hirata K, Shiozaki M, Hirashima S, Kotoku M, Yamaguchi T, Katsuda Y, Steensma R, Li X, Tao H, Tse B, Fenn M, Babine R, Bradley E, Crowe P, Thacher S, Adachi T, Kamada M. Ternary complex of human RORγ ligand-binding domain, inverse agonist and SMRT peptide shows a unique mechanism of corepressor recruitment. Genes Cells 2017; 22:535-551. [PMID: 28493531 DOI: 10.1111/gtc.12494] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/28/2017] [Indexed: 12/16/2023]
Abstract
Retinoid-related orphan receptor gamma (RORγ) directly controls the differentiation of Th17 cell and the production of interleukin-17, which plays an integral role in autoimmune diseases. To obtain insight into RORγ, we have determined the first crystal structure of a ternary complex containing RORγ ligand-binding domain (LBD) bound with a novel synthetic inhibitor and a repressor peptide, 22-mer peptide from silencing mediator of retinoic acid and thyroid hormone receptor (SMRT). Comparison of a binary complex of nonliganded (apo) RORγ-LBD with a nuclear receptor co-activator (NCoA-1) peptide has shown that our inhibitor displays a unique mechanism different from those caused by natural inhibitor, ursolic acid (UA). The compound unprecedentedly induces indirect disruption of a hydrogen bond between His479 on helix 11 (H11) and Tyr502 on H12, which is crucial for active conformation. This crystallographic study will allow us to develop novel synthetic compounds for autoimmune disease therapy.
Collapse
Affiliation(s)
- Masato Noguchi
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Akihiro Nomura
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Ken Murase
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Satoki Doi
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Keishi Yamaguchi
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Kazuyuki Hirata
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Makoto Shiozaki
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Shintaro Hirashima
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Masayuki Kotoku
- Chemical Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka 569-1125, Japan
| | - Takayuki Yamaguchi
- Biological Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Yoshiaki Katsuda
- Biological Pharmacological Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-1, Murasaki-cho, Takatsuki, Osaka, 569-1125, Japan
| | - Ruo Steensma
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, CA, 92121, USA
| | - Xioalin Li
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, CA, 92121, USA
| | - Haiyan Tao
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, CA, 92121, USA
| | - Bruno Tse
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, CA, 92121, USA
| | - Morgan Fenn
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, CA, 92121, USA
| | - Robert Babine
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, CA, 92121, USA
| | - Erin Bradley
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, CA, 92121, USA
| | - Paul Crowe
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, CA, 92121, USA
| | - Scott Thacher
- Orphagen Pharmaceuticals, 11558 Sorrento Valley Road, Suite 4, San Diego, CA, 92121, USA
| | - Tsuyoshi Adachi
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| | - Masafumi Kamada
- Pharmaceutical Frontier Research Laboratories, Central Pharmaceutical Research Institute, Japan Tobacco Inc., 1-13-2, Fukuura, Kanazawa-Ku, Yokohama, Kanagawa, 236-0004, Japan
| |
Collapse
|
43
|
Immenschuh S, Vijayan V, Janciauskiene S, Gueler F. Heme as a Target for Therapeutic Interventions. Front Pharmacol 2017; 8:146. [PMID: 28420988 PMCID: PMC5378770 DOI: 10.3389/fphar.2017.00146] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 03/07/2017] [Indexed: 12/30/2022] Open
Abstract
Heme is a complex of iron and the tetrapyrrole protoporphyrin IX with essential functions in aerobic organisms. Heme is the prosthetic group of hemoproteins such as hemoglobin and myoglobin, which are crucial for reversible oxygen binding and transport. By contrast, high levels of free heme, which may occur in various pathophysiological conditions, are toxic via pro-oxidant, pro-inflammatory and cytotoxic effects. The toxicity of heme plays a major role for the pathogenesis of prototypical hemolytic disorders including sickle cell disease and malaria. Moreover, there is increasing appreciation that detrimental effects of heme may also be critically involved in diseases, which usually are not associated with hemolysis such as severe sepsis and atherosclerosis. In mammalians homeostasis of heme and its potential toxicity are primarily controlled by two physiological systems. First, the scavenger protein hemopexin (Hx) non-covalently binds extracellular free heme with high affinity and attenuates toxicity of heme in plasma. Second, heme oxygenases (HOs), in particular the inducible HO isozyme, HO-1, can provide antioxidant cytoprotection via enzymatic degradation of intracellular heme. This review summarizes current knowledge on the pathophysiological role of heme for various diseases as demonstrated in experimental animal models and in humans. The functional significance of Hx and HOs for the regulation of heme homeostasis is highlighted. Finally, the therapeutic potential of pharmacological strategies that apply Hx and HO-1 in various clinical settings is discussed.
Collapse
Affiliation(s)
- Stephan Immenschuh
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | - Vijith Vijayan
- Institute for Transfusion Medicine, Hannover Medical SchoolHannover, Germany
| | | | - Faikah Gueler
- Department of Nephrology, Hannover Medical SchoolHannover, Germany
| |
Collapse
|
44
|
Ka NL, Na TY, Na H, Lee MH, Park HS, Hwang S, Kim IY, Seong JK, Lee MO. NR1D1 Recruitment to Sites of DNA Damage Inhibits Repair and Is Associated with Chemosensitivity of Breast Cancer. Cancer Res 2017; 77:2453-2463. [PMID: 28249904 DOI: 10.1158/0008-5472.can-16-2099] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/12/2016] [Accepted: 02/16/2017] [Indexed: 11/16/2022]
Abstract
DNA repair capacity is critical for survival of cancer cells upon therapeutic DNA damage and thus is an important determinant of susceptibility to chemotherapy in cancer patients. In this study, we identified a novel function of nuclear receptor NR1D1 in DNA repair, which enhanced chemosensitivity in breast cancer cells. NR1D1 inhibited both nonhomologous end joining and homologous recombination double-strand breaks repair, and delayed the clearance of γH2AX DNA repair foci that formed after treatment of doxorubicin. PARylation of NR1D1 by PARP1 drove its recruitment to damaged DNA lesions. Deletion of the ligand binding domain of NR1D1 that interacted with PARP1, or treatment of 6-(5H)-phenanthridinone, an inhibitor of PARP1, suppressed the recruitment of NR1D1 to DNA damaged sites, indicating PARylation as a critical step for the NR1D1 recruitment. NR1D1 inhibited recruitment of the components of DNA damage response complex such as SIRT6, pNBS1, and BRCA1 to DNA lesions. Downregulation of NR1D1 in MCF7 cells resulted in resistance to doxorubicin, both in vitro and in vivo Analysis of four public patient data sets indicated that NR1D1 expression correlates positively with clinical outcome in breast cancer patients who received chemotherapy. Our findings suggest that NR1D1 and its ligands provide therapeutic options that could enhance the outcomes of chemotherapy in breast cancer patients. Cancer Res; 77(9); 2453-63. ©2017 AACR.
Collapse
Affiliation(s)
- Na-Lee Ka
- College of Pharmacy and Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Tae-Young Na
- College of Pharmacy and Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Hyelin Na
- College of Pharmacy and Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Min-Ho Lee
- College of Pharmacy and Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Han-Su Park
- College of Pharmacy and Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Sewon Hwang
- College of Pharmacy and Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul, Korea
| | - Il Yong Kim
- College of Veterinary Medicine, Seoul National University and Korea Mouse Phenotyping Center, Gwanak-gu, Seoul, Korea
| | - Je Kyung Seong
- College of Veterinary Medicine, Seoul National University and Korea Mouse Phenotyping Center, Gwanak-gu, Seoul, Korea
| | - Mi-Ock Lee
- College of Pharmacy and Bio-MAX Institute, Seoul National University, Gwanak-gu, Seoul, Korea.
| |
Collapse
|
45
|
Positive association between physical activity and PER3 expression in older adults. Sci Rep 2017; 7:39771. [PMID: 28045078 PMCID: PMC5206642 DOI: 10.1038/srep39771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 11/25/2016] [Indexed: 01/13/2023] Open
Abstract
The circadian clock regulates many physiological functions including physical activity and feeding patterns. In addition, scheduled exercise and feeding themselves can affect the circadian clock. The purpose of the present study was to investigate the relationship between physical/feeding activity and expression of clock genes in hair follicle cells in older adults. Twenty adult men (age, 68 ± 7 years, mean ± SE) were examined in this cross-sectional study. Prior to hair follicle cell collection, the participants were asked to wear a uniaxial accelerometer for one week. The timings of breakfast, lunch, and dinner were also recorded. Hair follicle cells were then collected over a 24 h period at 4 h intervals. The amplitude of PER3 expression was positively correlated with moderate and vigorous physical activity (r = 0.582, p = 0.007) and peak oxygen uptake (r = 0.481, p = 0.032), but these correlations were not observed for NR1D1 or NR1D2. No association was noted between meal times and the amplitude or the acrophase for any of these three clock genes. These findings suggest that rhythmic expression of the circadian clock gene PER3 is associated with the amount of daily physical activity and physical fitness in older adults.
Collapse
|
46
|
Domain-Specific Monoclonal Antibodies Against Human Rev-erbβ. Appl Biochem Biotechnol 2016; 182:978-989. [PMID: 27987190 DOI: 10.1007/s12010-016-2375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
The nuclear receptor Rev-erbβ is a potent transcriptional factor whose functional study has been limited by the lack of suitable antibodies against it. To better understand Rev-erbβ's biological roles, we generated five hybridoma cell lines secreting antibodies against human Rev-erbβ in mice immunized with the purified, prokaryotically expressed recombinant Rev-erbβ-6His fusion protein. Using Western blotting and immunofluorescence analyses, all the five monoclonal antibodies (MAbs) showed strong immunoreactivity to both prokaryotically and eukaryotically expressed recombinant Rev-erbβ. An immunoprecipitation study showed that all five monoclonal antibodies against Rev-erbβ were able to pull down the recombinant Rev-erbβ-Flag protein, but only one of the MAbs against Rev-erbβ, 37H8, could pull down the endogenous Rev-erbβ protein. Furthermore, domain specificity of these MAbs was characterized. Due to the high similarities between Rev-erbα and Rev-erbβ in the C and E domains, those C and E domain-specific anti-Rev-erbβ antibodies can react with human Rev-erbα as well. The MAbs produced in the study will provide a valuable tool for investigating the function of Rev-erbβ.
Collapse
|
47
|
Affiliation(s)
- Michael T Sellix
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
48
|
Piel RB, Shiferaw MT, Vashisht AA, Marcero JR, Praissman JL, Phillips JD, Wohlschlegel JA, Medlock AE. A Novel Role for Progesterone Receptor Membrane Component 1 (PGRMC1): A Partner and Regulator of Ferrochelatase. Biochemistry 2016; 55:5204-17. [PMID: 27599036 DOI: 10.1021/acs.biochem.6b00756] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Heme is an iron-containing cofactor essential for multiple cellular processes and fundamental activities such as oxygen transport. To better understand the means by which heme synthesis is regulated during erythropoiesis, affinity purification coupled with mass spectrometry (MS) was performed to identify putative protein partners interacting with ferrochelatase (FECH), the terminal enzyme in the heme biosynthetic pathway. Both progesterone receptor membrane component 1 (PGRMC1) and progesterone receptor membrane component 2 (PGRMC2) were identified in these experiments. These interactions were validated by reciprocal affinity purification followed by MS analysis and immunoblotting. The interaction between PGRMC1 and FECH was confirmed in vitro and in HEK 293T cells, a non-erythroid cell line. When cells that are recognized models for erythroid differentiation were treated with a small molecule inhibitor of PGRMC1, AG-205, there was an observed decrease in the level of hemoglobinization relative to that of untreated cells. In vitro heme transfer experiments showed that purified PGRMC1 was able to donate heme to apo-cytochrome b5. In the presence of PGRMC1, in vitro measured FECH activity decreased in a dose-dependent manner. Interactions between FECH and PGRMC1 were strongest for the conformation of FECH associated with product release, suggesting that PGRMC1 may regulate FECH activity by controlling heme release. Overall, the data illustrate a role for PGRMC1 in regulating heme synthesis via interactions with FECH and suggest that PGRMC1 may be a heme chaperone or sensor.
Collapse
Affiliation(s)
- Robert B Piel
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Mesafint T Shiferaw
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Ajay A Vashisht
- Department of Biological Chemistry, University of California , Los Angeles, California 90095-1737, United States
| | - Jason R Marcero
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - Jeremy L Praissman
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| | - John D Phillips
- Hematology Division, University of Utah School of Medicine , Salt Lake City, Utah 84132, United States
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California , Los Angeles, California 90095-1737, United States
| | - Amy E Medlock
- Department of Biochemistry and Molecular Biology, Biomedical and Health Sciences Institute, AU/UGA Medical Partnership, University of Georgia , Athens, Georgia 30602, United States
| |
Collapse
|
49
|
Westermark PO. Linking Core Promoter Classes to Circadian Transcription. PLoS Genet 2016; 12:e1006231. [PMID: 27504829 PMCID: PMC4978467 DOI: 10.1371/journal.pgen.1006231] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/08/2016] [Indexed: 01/09/2023] Open
Abstract
Circadian rhythms in transcription are generated by rhythmic abundances and DNA binding activities of transcription factors. Propagation of rhythms to transcriptional initiation involves the core promoter, its chromatin state, and the basal transcription machinery. Here, I characterize core promoters and chromatin states of genes transcribed in a circadian manner in mouse liver and in Drosophila. It is shown that the core promoter is a critical determinant of circadian mRNA expression in both species. A distinct core promoter class, strong circadian promoters (SCPs), is identified in mouse liver but not Drosophila. SCPs are defined by specific core promoter features, and are shown to drive circadian transcriptional activities with both high averages and high amplitudes. Data analysis and mathematical modeling further provided evidence for rhythmic regulation of both polymerase II recruitment and pause release at SCPs. The analysis provides a comprehensive and systematic view of core promoters and their link to circadian mRNA expression in mouse and Drosophila, and thus reveals a crucial role for the core promoter in regulated, dynamic transcription.
Collapse
Affiliation(s)
- Pål O. Westermark
- Institute for Theoretical Biology, Charité –Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
50
|
Wu L, Guo X, Wang W, Medeiros DM, Clarke SL, Lucas EA, Smith BJ, Lin D. Molecular aspects of β, β-carotene-9', 10'-oxygenase 2 in carotenoid metabolism and diseases. Exp Biol Med (Maywood) 2016; 241:1879-1887. [PMID: 27390265 DOI: 10.1177/1535370216657900] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/09/2016] [Indexed: 12/18/2022] Open
Abstract
Carotenoids, the carotenes and xanthophylls, are essential components in human nutrition. β, β-carotene-9', 10'-oxygenase 2 (BCO2), also named as β, β-carotene-9', 10'-dioxygenase 2 (BCDO2) catalyzes the asymmetrical cleavage of carotenoids, whereas β, β-carotene-15, 15'-monooxygenase (BCMO1) conducts the symmetrical cleavage of pro-vitamin A carotenoids into retinoid. Unlike BCMO1, BCO2 has a broader substrate specificity and has been considered an alternative way to produce vitamin A. In contrast to BCMO1, a cytoplasmic protein, BCO2 is located in the inner mitochondrial membrane. The difference in cellular compartmentalization may reflect the different substrate specificity and physiological functions with respect to BCMO1 and BCO2. The BCO2 gene mutations are proven to be associated with yellow color of skin and fat tissue and milk in livestock. Mutation in intron 2 of BCO2 gene is also supposed to be related to the expression of IL-18, a pro-inflammatory cytokine associated with obesity, cardiovascular diseases, and type 2 diabetes. Further, BCO2 is associated with the development of mitochondrial oxidative stress, macular degeneration, anemia, and hepatic steatosis. This review of the literature will mostly address recent updates regarding the role of BCO2 in carotenoid metabolism, and discuss the potential impacts of BCO2 protein and the mutations in mammalian diseases.
Collapse
Affiliation(s)
- Lei Wu
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Xin Guo
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Weiqun Wang
- Department of Food Nutrition Dietetics & Health, Kansas State University, Manhattan, KS 66506, USA
| | - Denis M Medeiros
- College of Graduate Studies, University of Missouri-Kansas City, Kansas City, MO 64112, USA
| | - Stephen L Clarke
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|