1
|
Ma X, Ma J, Leng T, Yuan Z, Hu T, Liu Q, Shen T. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren Fail 2023; 45:2146512. [PMID: 36762989 PMCID: PMC9930779 DOI: 10.1080/0886022x.2022.2146512] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes and has become the leading cause of end-stage kidney disease. The pathogenesis of DKD is complicated, and oxidative stress is considered as a core of DKD onset. High glucose can lead to increased production of reactive oxygen species (ROS) via the polyol, PKC, AGE/RAGE and hexosamine pathways, resulting in enhanced oxidative stress response. In this way, pathways such as PI3K/Akt, TGF-β1/p38-MAPK and NF-κB are activated, inducing endothelial cell apoptosis, inflammation, autophagy and fibrosis that cause histologic and functional abnormalities of the kidney and finally result in kidney injury. Presently, the treatment for DKD remains an unresolved issue. Traditional Chinese medicine (TCM) has unique advantages for DKD prevention and treatment attributed to its multi-target, multi-component, and multi-pathway characteristics. Numerous studies have proved that Chinese herbs (e.g., Golden Thread, Kudzuvine Root, Tripterygium glycosides, and Ginseng) and patent medicines (e.g., Shenshuaining Tablet, Compound Rhizoma Coptidis Capsule, and Zishen Tongluo Granule) are effective for DKD treatment. The present review described the role of oxidative stress in DKD pathogenesis and the effect of TCM intervention for DKD prevention and treatment, in an attempt to provide evidence for clinical practice.
Collapse
Affiliation(s)
- Xiaoju Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingru Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Leng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhu Yuan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,CONTACT Tao Shen School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
2
|
Jin L, Shen N, Wen X, Wang W, Lim SW, Yang CW. CTLA4-Ig protects tacrolimus-induced oxidative stress via inhibiting the AKT/FOXO3 signaling pathway in rats. Korean J Intern Med 2023; 38:393-405. [PMID: 37157174 PMCID: PMC10175874 DOI: 10.3904/kjim.2022.293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND/AIMS Although the conversion from tacrolimus (TAC) to cytotoxic T-lymphocyte-associated antigen 4-immunoglobulin (CTLA4-Ig) is effective in reducing TAC-induced nephrotoxicity, it remains unclear whether CTLA4-Ig has a direct effect on TAC-induced renal injury. In this study, we evaluated the effects of CTLA4-Ig on TAC-induced renal injury in terms of oxidative stress. METHODS In vitro study was performed to assess the effect of CTLA4-Ig on TAC-induced cell death, reactive oxygen species (ROS), apoptosis, and the protein kinase B (AKT)/forkhead transcription factor (FOXO) 3 pathway in human kidney 2 cells. In the in vivo study, the effect of CTLA4-Ig on TAC-induced renal injury was evaluated using renal function, histopathology, markers of oxidative stress (8-hydroxy-2'-deoxyguanosine) and metabolites (4-hydroxy-2-hexenal, catalase, glutathione S-transferase, and glutathione reductase), and activation of the AKT/FOXO3 pathway with insulin-like growth factor 1 (IGF-1). RESULTS CTLA4-Ig significantly decreased cell death, ROS, and apoptosis caused by TAC. TAC treatment increased apoptotic cell death and apoptosis-related proteins (increased Bcl-2-associated X protein and caspase-3 and decreased Bcl-2), but it was reversed by CTLA4-Ig treatment. The activation of p-AKT and p-FOXO3 by TAC decreased with CTLA4-Ig treatment. TAC-induced renal dysfunction and oxidative marker levels were significantly improved by CTLA4-Ig in vivo. Concomitant IGF-1 treatment abolished the effects of CTLA4-Ig. CONCLUSION CTLA4-Ig has a direct protective effect on TAC-induced renal injury via the inhibition of AKT/FOXO3 pathway.
Collapse
Affiliation(s)
- Long Jin
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Department of Nephrology, Air Force Medical Center,Air Force Medical University, Beijing, China
| | - Nan Shen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Wen
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Weidong Wang
- Department of Nephrology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Sun Woo Lim
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, Seoul, Korea
| | - Chul Woo Yang
- Transplant Research Center, College of Medicine, The Catholic University of Korea, Seoul, Korea
- Convergent Research Consortium for Immunologic Disease, Seoul, Korea
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
3
|
Fawzy M, Al Ageeli E, Al‑Qahtani S, Abu Alsel B, Kattan S, Alelwani W, Toraih E. MicroRNA‑499a (rs3746444A/G) gene variant and susceptibility to type 2 diabetes‑associated end‑stage renal disease. Exp Ther Med 2021; 23:63. [PMID: 34934434 PMCID: PMC8649846 DOI: 10.3892/etm.2021.10985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/01/2021] [Indexed: 11/20/2022] Open
Abstract
Diabetic nephropathy (DN) is a major risk factor for end-stage renal disease (ESRD). MicroRNAs (miRNAs/miRs) and their variants may be implicated in health and disease, including DN. The present study aimed to investigate the association of the miRNA-499a gene (MIR499A) A/G seed region variant (rs3746444) with DN-associated ESRD susceptibility in patients with diabetes mellitus, and to determine whether there was an association between the different genotypes and the patients' laboratory and clinical data. A case-control pilot study was conducted on 180 adult patients with type 2 diabetes mellitus. A total of 90 patients with ESRD on regular hemodialysis were considered as the cases, and 90 age-, sex- and ethnicity-matched diabetic patients with normo-albuminuria were considered as the controls. MIR499A genotyping was performed using a TaqMan Real-Time allele discrimination assay. Results demonstrated that the MIR499A rs3746444*G variant conferred susceptibility to the development of ESRD under co-dominant [(odds ratio (95% confidence interval): 2.49 (1.41-3.89) and 2.41 (1.61-6.68) for heterozygous and homozygous comparison, respectively], dominant [2.30 (1.18-3.90)] and allelic [1.82 (1.17-2.83)] models. Different genotypes of the specified variant did not exhibit significant associations with the clinic-laboratory data of the studied patients or the circulating miR-499a plasma levels. In conclusion, results of the present study suggested that MIR499A rs3746444 may be a susceptibility variant for DN-associated ESRD in the study population. However, larger sample size studies with different ethnicities are warranted to verify these findings.
Collapse
Affiliation(s)
- Manal Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Essam Al Ageeli
- Department of Clinical Biochemistry (Medical Genetics), Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
| | - Saeed Al‑Qahtani
- Department of Physiology, Faculty of Medicine, Taibah University, Al Madinah Al Munawwarah 42353, Saudi Arabia
| | - Baraah Abu Alsel
- Department of Pathology, Northern Border University, Arar 1321, Saudi Arabia
| | - Shahad Kattan
- Department of Medical Laboratory, College of Applied Medical Sciences, Taibah University, Yanbu 46522, Saudi Arabia
| | - Walla Alelwani
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah 23445, Saudi Arabia
| | - Eman Toraih
- Department of Surgery, School of Medicine, Tulane University, New Orleans, LA 70112‑2632, USA
| |
Collapse
|
4
|
Ding Z, Qiu M, Alharbi MA, Huang T, Pei X, Milovanova TN, Jiao H, Lu C, Liu M, Qin L, Graves DT. FOXO1 expression in chondrocytes modulates cartilage production and removal in fracture healing. Bone 2021; 148:115905. [PMID: 33662610 PMCID: PMC8106874 DOI: 10.1016/j.bone.2021.115905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 02/15/2021] [Accepted: 02/24/2021] [Indexed: 01/08/2023]
Abstract
Fracture healing is a multistage process characterized by inflammation, cartilage formation, bone deposition, and remodeling. Chondrocytes are important in producing cartilage that forms the initial anlagen for the hard callus needed to stabilize the fracture site. We examined the role of FOXO1 by selective ablation of FOXO1 in chondrocytes mediated by Col2α1 driven Cre recombinase. Experimental mice with lineage-specific FOXO1 deletion (Col2α1Cre+FOXO1L/L) and negative control littermates (Col2α1Cre-FOXO1L/L) were used for in vivo, closed fracture studies. Unexpectedly, we found that in the early phases of fracture healing, FOXO1 deletion significantly increased the amount of cartilage formed, whereas, in later periods, FOXO1 deletion led to a greater loss of cartilage. FOXO1 was functionally important as its deletion in chondrocytes led to diminished bone formation on day 22. Mechanistically, the early effects of FOXO1 deletion were linked to increased proliferation of chondrocytes through enhanced expression of cell cycle genes that promote proliferation and reduced expression of those that inhibit it and increased expression of cartilage matrix genes. At later time points experimental mice with FOXO1 deletion had greater loss of cartilage, enhanced formation of osteoclasts, increased IL-6 and reduced numbers of M2 macrophages. These results identify FOXO1 as a transcription factor that regulates chondrocyte behavior by limiting the early expansion of cartilage and preventing rapid cartilage loss at later phases.
Collapse
Affiliation(s)
- Zhenjiang Ding
- Department of Pediatric Dentistry, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China; Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Qiu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Shengjing Hospital, China Medical University, Shenyang, China
| | - Mohammed A Alharbi
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Endodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tiffany Huang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiyan Pei
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA; First Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, China
| | - Tatyana N Milovanova
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hongli Jiao
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chanyi Lu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Min Liu
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- McKay Orthopaedic Research Laboratory, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dana T Graves
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Benchoula K, Arya A, Parhar IS, Hwa WE. FoxO1 signaling as a therapeutic target for type 2 diabetes and obesity. Eur J Pharmacol 2020; 891:173758. [PMID: 33249079 DOI: 10.1016/j.ejphar.2020.173758] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/12/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Glucose production and the consumption of high levels of carbohydrate increase the chance of insulin resistance, especially in cases of obesity. Therefore, maintaining a balanced glucose homeostasis might form a strategy to prevent or cure diabetes and obesity. The activation and inhibition of glucose production is complicated due to the presence of many interfering pathways. These pathways can be viewed at the downstream level because they activate certain transcription factors, which include the Forkhead-O1 (FoxO1). This has been identified as a significant agent in the pancreas, liver, and adipose tissue, which is significant in the regulation of lipids and glucose. The objective of this review is to discuss the intersecting portrayal of FoxO1 and its parallel cross-talk which highlights obesity-induced insulin susceptibility in the discovery of a targeted remedy. The review also analyses current progress and provides a blueprint on therapeutics, small molecules, and extracts/phytochemicals which are explored at the pre-clinical level.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Aditya Arya
- Department of Pharmacology and Therapeutics, School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia; Department of Pharmacology and Therapeutics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, Victoria, 3010, Australia; Malaysian Institute of Pharmaceuticals and Nutraceuticals (IPharm), Bukit Gambir, Gelugor, Pulau Pinang, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine & Health Sciences, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia.
| |
Collapse
|
6
|
Zou HH, Wang L, Zheng XX, Xu GS, Shen Y. Endothelial cells secreted endothelin-1 augments diabetic nephropathy via inducing extracellular matrix accumulation of mesangial cells in ETBR -/- mice. Aging (Albany NY) 2020; 11:1804-1820. [PMID: 30926764 PMCID: PMC6461170 DOI: 10.18632/aging.101875] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 03/10/2019] [Indexed: 01/26/2023]
Abstract
Endothelin B receptor (ETBR) deficiency may contribute to the progression of diabetic nephropathy (DN) in a streptozotocin (STZ) model, but the underlying mechanism is not fully revealed. In this study, STZ-diabetic ETBR-/- mice was characterized by increased serum creatinine and urinary albumin, enhanced glomerulosclerosis, and upregulated ET-1 expression compared with STZ-diabetic WT mice. In vitro, HG conditioned media (CM) of ETBR-/- GENs promoted mesangial cell proliferation and upregulated ECM-related proteins, and ET-1 knockout in GENs or inhibition of ET-1/ETAR in mesangial cell suppressed mesangial cell proliferation and collagen IV formation. In addition, ET-1 was over-expressed in ETBR-/- GENs and was regulated by NF-kapapB pathway. ET-1/ETBR suppressed NF-kappaB to modulate ET-1 in GENs. Furthermore, ET-1/ETAR promoted RhoA/ROCK pathway in mesangial cells, and accelerated mesangial cell proliferation and ECM accumulation. Finally, in vivo experiments proved inhibition of NF-kappaB pathway ameliorated DN in ETBR-/- mice. These results suggest that in HG-exposed ETBR-/- GENs, suppression of ET-1 binding to ETBR activated NF-kappaB pathway, thus to secrete large amount of ET-1. Due to the communication between GENs and mesangial cells in diabetes, ET-1 binding to ETAR in mesangial cell promoted RhoA/ROCK pathway, thus to accelerate mesangial cell proliferation and ECM accumulation.
Collapse
Affiliation(s)
- Hong-Hong Zou
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Li Wang
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiao-Xu Zheng
- Division of Renal Diseases and Hypertension, Department of Medicine, The George Washington University, Washington, DC 20052, USA
| | - Gao-Si Xu
- Department of Nephrology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yunfeng Shen
- Department of Endocrinology, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
7
|
Wu Z, Yin W, Sun M, Si Y, Wu X, Chen M. BK Ca Mediates Dysfunction in High Glucose Induced Mesangial Cell Injury via TGF- β1/Smad2/3 Signaling Pathways. Int J Endocrinol 2020; 2020:3260728. [PMID: 32411221 PMCID: PMC7206888 DOI: 10.1155/2020/3260728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/11/2020] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To explore the role and mechanism of BKCa in diabetic kidney disease. METHODS Rat mesangial cells (MCs) HBZY-1 were cultured with high glucose to simulate the high-glucose environment of diabetic kidney disease in vivo. The effects of large conductance calcium-activated potassium channel (BKCa) on proliferation, migration, and apoptosis of HBZY-1 cells were observed. The contents of transforming growth factor beta 1 (TGF-β1), Smad2/3, collagen IV (Col IV), and fibronectin (FN) in the extracellular matrix were also observed. RESULTS High glucose significantly damaged HBZY-1 cells, which enhanced the ability of cell proliferation, migration, and apoptosis, and increased the secretion of Col IV and FN. Inhibition of BKCa and TGF-β1/Smad2/3 signaling pathways can inhibit the proliferation, migration, and apoptosis of HBZY-1 cells and suppress the secretion of Col IV and FN. The effect of excitation is the opposite. CONCLUSIONS BKCa regulates mesangial cell proliferation, migration, apoptosis, and secretion of Col IV and FN and is associated with TGF-β1/Smad2/3 signaling pathway.
Collapse
Affiliation(s)
- Zhigui Wu
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Wenxian Yin
- Department of Pharmacy, Affiliated Hospital of Traditional Chinese Medicine Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Mengqi Sun
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Yuankai Si
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Xiaoxiao Wu
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan, China
| | - Meijuan Chen
- Department of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China
| |
Collapse
|
8
|
Zhang L, Dai Q, Hu L, Yu H, Qiu J, Zhou J, Long M, Zhou S, Zhang K. Hyperoside Alleviates High Glucose-Induced Proliferation of Mesangial Cells through the Inhibition of the ERK/CREB/miRNA-34a Signaling Pathway. Int J Endocrinol 2020; 2020:1361924. [PMID: 32774360 PMCID: PMC7397715 DOI: 10.1155/2020/1361924] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/25/2020] [Accepted: 06/11/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Hyperoside, a flavonoid isolated from conventional medicinal herbs, has been demonstrated to exert a significant protective effect in diabetic nephropathy. This study aimed to determine the underlying mechanisms, by which hyperoside inhibits high glucose-(HG-) induced proliferation in mouse renal mesangial cells. METHODS Mouse glomerular mesangial cells line (SV40-MES13) was used to study the inhibitory effect of hyperoside on cell proliferation induced by 30 mM glucose, which was used to simulate a diabetic condition. Viable cell count was assessed using the Cell Counting Kit-8 and by the 5-ethynyl-20-deoxyuridine incorporation assay. The underlying mechanism involving miRNA-34a was further investigated by quantitative RT-PCR and transfection with miRNA-34a agomir. The phosphorylation levels of extracellular signal-regulated kinases (ERKs) and cAMP-response element-binding protein (CREB) were measured by Western blotting. The binding region and the critical binding sites of CREB in the miRNA-34a promoter were investigated by the chromatin immunoprecipitation assay and luciferase reporter assay, respectively. RESULTS We found that hyperoside could significantly decrease HG-induced proliferation of SV40-MES13 cells in a dose-dependent manner, without causing obvious cell death. In addition, hyperoside inhibited the activation of ERK pathway and phosphorylation of its downstream transcriptional factor CREB, as well as the miRNA-34a expression. We further confirmed that CREB-mediated regulation of miRNA-34a is dependent on the direct binding to specific sites in the promoter region of miRNA-34a. CONCLUSION Our cumulative results suggested that hyperoside inhibits the proliferation of SV40-MES13 cells through the suppression of the ERK/CREB/miRNA-34a signaling pathway, which provides new insight to the current investigation on therapeutic strategies for diabetic nephropathy.
Collapse
Affiliation(s)
- Le Zhang
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Qian Dai
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Lanlan Hu
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Hua Yu
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jing Qiu
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Min Long
- Preventive Medicine Department, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Shiwen Zhou
- National Drug Clinical Trial Institution, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| | - Kebin Zhang
- Center of Medical Experiment Technology, Xinqiao Hospital, Army Medical University, Chongqing 400037, China
| |
Collapse
|
9
|
FoxO1-mediated inhibition of STAT1 alleviates tubulointerstitial fibrosis and tubule apoptosis in diabetic kidney disease. EBioMedicine 2019; 48:491-504. [PMID: 31629675 PMCID: PMC6838438 DOI: 10.1016/j.ebiom.2019.09.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 02/06/2023] Open
Abstract
Background Tubulointerstitial fibrosis (TIF) plays an important role in the progression of diabetic kidney disease (DKD). Forkhead box O1 (FoxO1) is involved in the regulation of metabolism and cell apoptosis, but its function in renal TIF induced by DKD is less well understood. Methods Human kidney biopsies with DKD and normal controls were used to detect apoptosis and TIF induced by diabetes. A mouse model with kidney-specific overexpression of Pax2-3aFoxO1 was established to further investigate the functions of FoxO1 in vivo. The in vitro roles of FoxO1 were analyzed in HK-2 cells with 3aFoxO1-knockin (3aFoxO1-KI) or FoxO1-knockdown (FoxO1-KD) via CRISPR/Cas9. Western blot, immunohistochemistry, and chromatin immunoprecipitation were used to explore the underlying mechanisms. Findings In this study, DKD patients had increased renal TIF and apoptosis. In vivo study showed that kidney-specific overexpression of Pax2-3aFoxO1 significantly reduced the expression of p-STAT1 with resultant renal functional impairment, retarding renal TIF and apoptosis in diabetic mice. Meanwhile, We observed that FoxO1-KD in HK-2 cells aggravated the expression of p-STAT1, leading to activation of epithelial-to-mesenchymal transition (EMT) and intrinsic apoptotic pathway. Conversely, EMT and apoptosis were significantly attenuated in HK-2 cells with 3aFoxO1-KI under hyperglycemic conditions. Interpretation Taken together, these data suggest that the protection role of FoxO1 against renal TIF and apoptosis in DKD is likely in part to target STAT1 signaling, which may be a promising strategy for long-term treatment of DKD. Fund This work was supported by grants from the National Natural Science Foundation of China (grant numbers: 81570746 and 81770812).
Collapse
|
10
|
He Y, Liu Y, Wang QZ, Guo F, Huang F, Ji L, An T, Qin G. Vitamin D 3 Activates Phosphatidylinositol-3-Kinase/Protein Kinase B via Insulin-Like Growth Factor-1 to Improve Testicular Function in Diabetic Rats. J Diabetes Res 2019; 2019:7894950. [PMID: 31281852 PMCID: PMC6589201 DOI: 10.1155/2019/7894950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 02/04/2019] [Accepted: 05/15/2019] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVE In diabetes mellitus, vitamin D3 deficiency affects sex hormone levels and male fertility; however, the mechanism leading to the disorder is unclear. This research was designed to investigate the mechanism of vitamin D3 deficiency and hypogonadism in diabetic rats. Our aim was to assess serum vitamin D3 levels and the relationship among vitamin D3, insulin-like growth factor-1 (IGF-1), and testicular function. MATERIALS AND METHODS Rats with streptozotocin-induced diabetes were randomly divided into four groups and treated with different doses of vitamin D3: no vitamin D3, low (0.025 μg/kg/day), high (0.1 μg/kg/day), and high (0.1 μg/kg/day) with JB-1 (the insulin-like growth factor-1 receptor inhibitor group, 100 μg/kg/day). The groups were compared with wild-type rats, which function as the control group. Various parameters such as vitamin D3 and IGF-1 were compared between the experimental and wild-type groups, and their correlations were determined. RESULTS Twelve weeks of vitamin D3 supplementation improved the testosterone levels, as shown by the increase in the level of serum IGF-1 in diabetic rats. Phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT), which was a downstream of the signaling pathway of IGF-1, was significantly increased after vitamin D3 treatment. CONCLUSIONS The study shows that vitamin D3 may promote the expression of testosterone and improve testicular function in diabetic rats by activating PI3K/AKT via IGF-1.
Collapse
Affiliation(s)
- Yanyan He
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yang Liu
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qing-Zhu Wang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Feng Guo
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fengjuan Huang
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Linlin Ji
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tingting An
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guijun Qin
- Division of Endocrinology, Department of Internal Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
11
|
Sun H, Shao X, He J, Golos M, Shi B. Role of the mTOR‑FOXO1 pathway in obesity‑associated renal tubulointerstitial inflammation. Mol Med Rep 2018; 19:1284-1293. [PMID: 30535458 DOI: 10.3892/mmr.2018.9727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 11/13/2018] [Indexed: 11/06/2022] Open
Abstract
Since obesity is largely responsible for the growing incidence of renal tubulointerstitial inflammation, exploration into the mechanisms of obesity‑associated tubulointerstitial inflammation is essential. Studies have demonstrated that mammalian target of rapamycin (mTOR) is a crucial molecule in the pathogenesis of renal inflammation, including regulating the expression of inflammatory factors. The purpose of the present study was to further elucidate the role of mTOR in obesity‑associated tubulointerstitial inflammation. In the clinical study, obese and healthy subjects were recruited for physical examination, as well as the collection of blood and urine samples. Further study was performed on a high fat diet (HFD)‑induced obese rat model and a cultured human renal tubular epithelial cell line (HK‑2). The clinical study demonstrated that the participants with obesity had increased serum lipids, creatinine (Cr), urinary albumin to creatinine ratio (UACR) and urinary neutrophil gelatinase‑associated lipocalin (u‑NGAL). Moreover, the level of urinary monocyte chemoattractant protein‑1 (u‑MCP‑1) was increased in the participants with obesity, and it was positively correlated with free fatty acid (FFA), UACR and u‑NGAL. In the in vivo study, the results indicated that the levels of serum lipids, Cr and blood urea nitrogen (BUN), as well as 24 h urine protein and u‑NGAL, were significantly increased in the HFD‑fed obese rats. In addition, the infiltration of CD68+ cells into the renal interstitial area and the release of interleukin‑1β (IL‑1β) was observed in the kidneys of obese rats. Meanwhile, the supernatant from HK‑2 cells treated with palmitic acid stimulated THP‑1 monocyte migration. The upregulation of MCP‑1, phosphorylated forkhead boxO1 (p‑FOXO1), and phosphorylated mTOR (p‑mTOR) was observed in vivo and in vitro. However, inhibition of mTOR was able to alleviate the above effects. Overall, these results demonstrated that activated mTOR induced FOXO1 phosphorylation, which mediates renal MCP‑1 release, causes tubulointerstitial inflammation and ultimately leads to pathological renal changes and dysfunction. However, inhibition of mTOR may play a renoprotective role during the progression of obesity‑associated tubulointerstitial inflammation.
Collapse
Affiliation(s)
- Hong Sun
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xinyu Shao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jiajia He
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou, Jiangsu 213000, P.R. China
| | - Michal Golos
- Centre for Amyloidosis and Acute Phase Protein, Division of Medicine, University College London (UCL), London NW3 2PF, UK
| | - Bimin Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
12
|
Huang X, Xiaokaiti Y, Yang J, Pan J, Li Z, Luria V, Li Y, Song G, Zhu X, Zhang HT, O'Donnell JM, Xu Y. Inhibition of phosphodiesterase 2 reverses gp91phox oxidase-mediated depression- and anxiety-like behavior. Neuropharmacology 2018; 143:176-185. [PMID: 30268520 DOI: 10.1016/j.neuropharm.2018.09.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/17/2018] [Accepted: 09/24/2018] [Indexed: 11/19/2022]
Abstract
Phosphodiesterase 2 (PDE2) plays an important role in treatment of stress-related depression through regulation of antioxidant defense and neuroprotective mechanisms. However, the causal relationship between PDE2 and the prevalence of depression and anxiety upon exposure to oxidative stress has not been investigated. The present study examined whether the effects of PDE2 inhibition on oxidative stress were directly involved in reduced ROS by regulating NADPH subunits gp91phox oxidase. The results suggested that the PDE2 inhibitor Bay 60-7550 reversed oxidative stress-induced behavioral signature, i.e. depression and anxiety. Pretreatment with the oxidizing agent DTNB completely blocked, while the reducing agent DTT and the NADPH oxidase inhibitor apocynin potentiated the effects of Bay 60-7550 on behavioral abnormalities, demonstrating the relationship between PDE2 and oxidative stress. Consistently, an in vitro test revealed the positive correlation between ROS and PDE2 levels. Moreover, Bay 60-7550 decreased corticosterone-induced gp91phox expression, which is the source of ROS. The subsequent study suggested that Bay 60-7550 induced decrease in ROS and increase in cAMP/cGMP, pVASP, pCREB, and the neurotrophic factor BDNF levels, which were completely blocked by CRISPR/Cas9-mediated gp91phox overexpression and potentiated by gp91phox siRNA-based antioxidant strategies. The in vivo test in stressed mice further suggested that gp91phox overexpression completely blocked the antidepressant- and anxiolytic-like effects of Bay 60-7550, while gp91phox knockdown enhanced such effects. These results provide solid evidence that the antidepressant- and anxiolytic-like effects of Bay 60-7550 against stress are causally related to down-regulation of gp91phox and activation of the cAMP/cGMP-pVASP-CREB-BDNF signaling pathway.
Collapse
Affiliation(s)
- Xianfeng Huang
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213164, China; Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Yilixiati Xiaokaiti
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Junqing Yang
- Department of Pharmacology, Chongqing Medical University, Chongqing, 400016, China
| | - Jianchun Pan
- Brain Institute, School of Pharmacy, Wenzhou Medical University, Wenzhou, 325021, China
| | - Zhi Li
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Victor Luria
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
| | - Yunfeng Li
- Beijing Institutes of Pharmacology and Toxicology, Beijing, 100850, China
| | - Guoqiang Song
- School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, 213164, China
| | - Xiongwei Zhu
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Han-Ting Zhang
- Departments of Behavioral Medicine & Psychiatry and Physiology, Pharmacology & Neuroscience, Rockefeller Neurosciences Institute, West Virginia University Health Sciences Center, Morgantown, WV, 26506, USA
| | - James M O'Donnell
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| | - Ying Xu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA.
| |
Collapse
|
13
|
Wang S, Wen X, Han X, Wang Y, Shen M, Fan S, Zhuang J, Zhang Z, Shan Q, Li M, Hu B, Sun C, Wu D, Lu J, Zheng Y. Repression of microRNA-382 inhibits glomerular mesangial cell proliferation and extracellular matrix accumulation via FoxO1 in mice with diabetic nephropathy. Cell Prolif 2018; 51:e12462. [PMID: 29701296 PMCID: PMC6528942 DOI: 10.1111/cpr.12462] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/08/2018] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is a nerve damaging disorder, characterized by glomerular mesangial cell expansion and accumulation of extracellular matrix (ECM) proteins. In this study, we aimed to investigate mesangial cell proliferation and ECM accumulation when promoting or suppressing endogenous miR-382 in glomerular mesangial cells of DN. MATERIALS AND METHODS Model establishment consisted of DN induction by streptozotocin (STZ) in mice. The underlying regulatory mechanisms of miR-382 were analysed in concert with the treatment of miR-382 mimics, miR-382 inhibitors or siRNA against FoxO1 in cultured glomerular mesangial cells isolated from DN mice. RESULTS FoxO1 was identified as the downregulated gene in DN based on the microarray data of GSE1009. We found that miR-382 was significantly upregulated in renal tissues of DN mice and its downregulation dephosphorylated FoxO1, reduced glomerular mesangial cell proliferation and ECM accumulation in vitro. The determination of luciferase activity suggested that miR-382 negatively targeted FoxO1. Expectedly, distinct levels of phosphorylated FoxO1 were observed in the renal cortices of DN mice, while the silencing of FoxO1 was found to increase glomerular mesangial cell proliferation and ECM accumulation in vitro. Reduced glomerular mesangial cell proliferation and ECM accumulation elicited by miR-382 inhibitors were reversed by silencing FoxO1. CONCLUSIONS This study demonstrates miR-382 suppression exerts a potent anti-proliferative effect that may be applied to inhibit glomerular mesangial cell proliferation and ECM accumulation in DN.
Collapse
Affiliation(s)
- Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Xin‐Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Yong‐Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Shao‐Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Juan Zhuang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,School of Environment Science and Spatial InformaticsChina University of Mining and TechnologyXuzhouChina,Jiangsu Key Laboratory for Eco‐Agricultural Biotechnology around Hongze LakeSchool of Life SciencesHuaiyin Normal UniversityHuaianChina
| | - Zi‐Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Meng‐Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Chun‐Hui Sun
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Dong‐Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| | - Yuan‐Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu ProvinceSchool of Life ScienceJiangsu Normal UniversityXuzhouChina,College of Health SciencesJiangsu Normal UniversityXuzhouChina
| |
Collapse
|
14
|
Urinary levels of sirtuin-1 associated with disease activity in lupus nephritis. Clin Sci (Lond) 2018; 132:569-579. [PMID: 29440621 DOI: 10.1042/cs20171410] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 01/15/2018] [Accepted: 02/09/2018] [Indexed: 12/26/2022]
Abstract
Identifying new markers of disease flares in lupus nephritis (LN) that facilitate patient stratification and prognosis is important. Therefore, the aim of the present study was to analyze whether urinary SIRT1 expression was altered in LN and whether SIRT1 values in urine could be valuable biomarker of disease activity. In a cohort study, urinary pellets from 40 patients diagnosed with systemic lupus erythematosus (SLE) were analyzed. Clinical measures of lupus activity were assessed. The expression of SIRT1 was quantified by quantitative PCR (qRT-PCR) and immunoblot, then compared between patients with active lupus nephritis, in remission and healthy controls. Association with lupus activity and renal histological features was also analyzed. A significant increase in SIRT1 mRNA levels in patients with active LN was observed compared with those in remission (P=0.02) or healthy controls (P=0.009). In addition, SIRT-1 protein levels were also augmented in LN group than remission (P=0.029) and controls (P=0.001). A strong association was found between SIRT1 expression with anti-dsDNA in SLE and in patients with LN. In addition, histological features in LN biopsies were related with SIRT1, increasing its expression in proliferative forms. Finally, SIRT1 expression values showed a strong discriminatory power of renal injury in SLE. Our study demonstrated an altered urinary expression of SIRT1 and a strong association with disease activity in LN patients, being a valuable marker of renal injury. These results showed the role of the SIRT1 pathway in the SLE pathogenesis.
Collapse
|
15
|
Chen P, Shi X, Xu X, Lin Y, Shao Z, Wu R, Huang L. Liraglutide ameliorates early renal injury by the activation of renal FoxO1 in a type 2 diabetic kidney disease rat model. Diabetes Res Clin Pract 2018; 137:173-182. [PMID: 29355652 DOI: 10.1016/j.diabres.2017.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 08/27/2017] [Accepted: 09/18/2017] [Indexed: 02/06/2023]
Abstract
AIMS The aim of this study was to investigate the effects of liraglutide on renal injury and the renal expression of FoxO1 in type 2 diabetic rats. METHODS Type 2 diabetic rats model was induced by a high-sugar and high-fat diet and intraperitoneal injection of low-dose Streptozotocin (STZ) (30 mg/kg). Five weeks after STZ injection, diabetic rats were randomly treated with or without subcutaneous injection of liraglutide (0.2 mg/kg/12 h) for eight weeks. Diabetes-related physical and biochemical indicators, renal histopathological and ultrastructural changes, the expression of renal transforming growth factor beta-1 (TGF-β1), fibronectin (FN), type IV collagen (Col IV), protein kinase B (Akt), forkhead box protein O1 (FoxO1) and manganese superoxide dismutase (MnSOD) were measured. RESULTS Rats in DN group showed a significant increase in fasting blood glucose, HbA1c, kidney to body weight index, serum creatinine (Scr), blood urea nitrogen (BUN), urinary albumin excretion, mesangial matrix index, glomerular basement membrane (GBM) thickening, podocyte foot process fusion, the mRNA and protein levels of renal TGF-β1, FN and Col IV and a dramatic decrease in the mRNA and protein levels of renal MnSOD, all of which were significantly ameliorated by liraglutide. In addition, liraglutide also increased the expression of FoxO1 mRNA and reduced renal phosphorylation levels of Akt and FoxO1 protein. CONCLUSIONS These results suggest that liraglutide may exert a renoprotective effect by a FoxO1-mediated upregulation of renal MnSOD expression in the early DKD.
Collapse
Affiliation(s)
- Pin Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| | - Xiaozhi Shi
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| | - Xiangjin Xu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China.
| | - Yiyang Lin
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| | - Zhulin Shao
- Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| | - Rongdan Wu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| | - Lihong Huang
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, Fujian, China; Department of Endocrinology, Fuzhou General Hospital, Fuzhou 350025, Fujian, China
| |
Collapse
|
16
|
Guo F, Yue H, Wang L, Ding C, Wu L, Wu Y, Gao F, Qin G. Vitamin D supplement ameliorates hippocampal metabolism in diabetic rats. Biochem Biophys Res Commun 2017; 490:239-246. [DOI: 10.1016/j.bbrc.2017.06.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 06/08/2017] [Indexed: 01/03/2023]
|
17
|
Namgung S, Yoon JJ, Yoon CS, Han BH, Choi ES, Oh H, Kim YC, Lee YJ, Kang DG, Lee HS. Prunella vulgaris Attenuates Diabetic Renal Injury by Suppressing Glomerular Fibrosis and Inflammation. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2017; 45:475-495. [PMID: 28359196 DOI: 10.1142/s0192415x1750029x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Diabetic nephropathy is both the most common complication and the leading cause of mortality associated with diabetes. Prunella vulgaris, a well-known traditional medicinal plant, is used for the cure of abscess, scrofula, hypertension and urinary diseases. This study confirmed whether an aqueous extract of Prunella vulgaris (APV) suppresses renal inflammation and fibrosis. In human mesangial cell (HMC), pretreatment of APV attenuated 25[Formula: see text]mM HG-induced suppressed TGF-[Formula: see text] and Smad-2/4 expression; it increased the expression level of Smad-7. Connective tissue growth factor (CTGF) and collagen IV, fibrosis biomarkers, were significantly decreased by APV. APV suppressed inflammatory factors such as intracellular cell adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1). APV inhibited activation and translocation of nuclear factor kappa-B (NF-[Formula: see text]B) in HG-stimulated HMCs. Moreover, APV significantly improved HG-induced ROS in a dose-dependent manner. In diabetic rat models, APV significantly decreased blood glucose, blood urea nitrogen (BUN) and ameliorated plasma creatinine (PCr). APV reduced the PAS positivity staining intensity and basement membrane thickening in glomeruli of diabetic rats. Fibrosis related proteins such as collagen IV and TGF-[Formula: see text]1 were also inhibited by APV. These results suggest that APV has a significant protective effect against diabetic renal dysfunction including inflammation and fibrosis through disruption of the TGF-[Formula: see text]/Smad signaling. Therefore, APV may be useful in potential therapies that target glomerulonephritis and glomerulosclerosis, which lead to diabetic nephropathy.
Collapse
Affiliation(s)
- Seung Namgung
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Jung Joo Yoon
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Chi-Su Yoon
- † Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,‡ College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Byung Hyuk Han
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Eun Sik Choi
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Hyuncheol Oh
- † Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,‡ College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Youn-Chul Kim
- † Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,‡ College of Pharmacy, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Yun Jung Lee
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Dae Gill Kang
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| | - Ho Sub Lee
- * College of Oriental Medicine and Professional, Graduate School of Oriental Medicine, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea.,† Hanbang Body-fluid Research Center, Wonkwang University, Iksan, Jeonbuk 54538, Republic of Korea
| |
Collapse
|
18
|
Chiang CK, Wang CC, Lu TF, Huang KH, Sheu ML, Liu SH, Hung KY. Involvement of Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Advanced Glycation End Products-Induced Glomerular Mesangial Cell Injury. Sci Rep 2016; 6:34167. [PMID: 27665710 PMCID: PMC5035926 DOI: 10.1038/srep34167] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/08/2016] [Indexed: 12/24/2022] Open
Abstract
Advanced glycation end-products (AGEs)-induced mesangial cell death is one of major causes of glomerulus dysfunction in diabetic nephropathy. Both endoplasmic reticulum (ER) stress and autophagy are adaptive responses in cells under environmental stress and participate in the renal diseases. The role of ER stress and autophagy in AGEs-induced mesangial cell death is still unclear. Here, we investigated the effect and mechanism of AGEs on glomerular mesangial cells. AGEs dose-dependently decreased mesangial cell viability and induced cell apoptosis. AGEs also induced ER stress signals in a time- and dose-dependent manner. Inhibition of ER stress with 4-phenylbutyric acid effectively inhibited the activation of eIF2α and CHOP signals and reversed AGEs-induced cell apoptosis. AGEs also activated LC-3 cleavage, increased Atg5 expression, and decreased p62 expression, which indicated the autophagy induction in mesangial cells. Inhibition of autophagy by Atg5 siRNAs transfection aggravated AGEs-induced mesangial cell apoptosis. Moreover, ER stress inhibition by 4-phenylbutyric acid significantly reversed AGEs-induced autophagy, but autophagy inhibition did not influence the AGEs-induced ER stress-related signals activation. These results suggest that AGEs induce mesangial cell apoptosis via an ER stress-triggered signaling pathway. Atg5-dependent autophagy plays a protective role. These findings may offer a new strategy against AGEs toxicity in the kidney.
Collapse
Affiliation(s)
- Chih-Kang Chiang
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Integrated Diagnostics &Therapeutics, College of Medicine and Hospital, National Taiwan University, Taipei, Taiwan
| | - Ching-Chia Wang
- Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan
| | - Tien-Fong Lu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuo-How Huang
- Department of Urology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Meei-Ling Sheu
- Institute of Biomedical Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Shing-Hwa Liu
- Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.,Department of Pediatrics, National Taiwan University Hospital, Taipei, Taiwan.,Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kuan-Yu Hung
- Department of Internal Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Si PP, Zhen JL, Cai YL, Wang WJ, Wang WP. Salidroside protects against kainic acid-induced status epilepticus via suppressing oxidative stress. Neurosci Lett 2016; 618:19-24. [PMID: 26940236 DOI: 10.1016/j.neulet.2016.02.056] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/23/2016] [Accepted: 02/27/2016] [Indexed: 01/05/2023]
Abstract
There are numerous mechanisms by which the brain generates seizures. It is well known that oxidative stress plays a pivotal role in status epilepticus (SE). Salidroside (SDS) extracted from Rhodiola rosea L. shows multiple bioactive properties, such as neuroprotection and antioxidant activity in vitro and in vivo. This study explored the role of SDS in kainic acid (KA)-induced SE and investigated the underlying mechanism. Latency to SE increased in the SDS-pretreated mice compared to the KA group, while the percentage of incidence of SE was significantly reduced. These results suggested that pretreatment with SDS not only delayed SE, but it also decreased the incidence of SE induced by KA. KA increased MDA level and reduced the production of SOD and GSH at multiple timepoints after KA administration. SDS inhibited the change of MDA, SOD and GSH induced by KA prior to SE onset, indicating that SDS protects against KA-induced SE via suppressing oxidative stress. Based on these results, we investigated the possible molecular mechanism of SDS. Pretreatment with SDS reversed the KA-induced decrease in AMP-activated protein kinase (AMPK); increased the sirtuin 1 (SIRT1) deacetylase activity in KA-treated mice, which had no demonstrable effect on SIRT1 mRNA and protein; and suppressed the KA-induced increase in Ace-FoxO1. These results showed that AMPK/SIRT1/FoxO1 signaling is possibly the molecular mechanism of neuroprotection by SDS.
Collapse
Affiliation(s)
- Pei-Pei Si
- Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050071, PR China
| | - Jun-Li Zhen
- Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050071, PR China
| | - Yun-Lei Cai
- Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050071, PR China
| | - Wen-Jing Wang
- Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050071, PR China
| | - Wei-Ping Wang
- Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050071, PR China.
| |
Collapse
|
20
|
Du M, Wang Q, Li W, Ma X, Wu L, Guo F, Zhao S, Huang F, Wang H, Qin G. Overexpression of FOXO1 ameliorates the podocyte epithelial-mesenchymal transition induced by high glucose in vitro and in vivo. Biochem Biophys Res Commun 2016; 471:416-22. [PMID: 26902117 DOI: 10.1016/j.bbrc.2016.02.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 02/16/2016] [Indexed: 10/22/2022]
Abstract
Accumulating evidence has suggested that the epithelial-mesenchymal transition (EMT) is a pathway that potentially leads to podocyte depletion and proteinuria in diabetic nephropathy (DN). Therefore, this study was designed to investigate the protective effects of forkhead transcription factor O1 (FOXO1) on podocyte EMT, under high-glucose (HG) conditions in vitro and under diabetic conditions in vivo. The results showed that HG-induced podocyte EMT was associated with FOXO1 inactivation, which was accompanied by activation of the transforming growth factor (TGF)-β1/SMAD3/integrin-linked kinase (ILK) pathway. Accordingly, constitutive FOXO1 activation suppressed the TGF-β1/Smad3/ILK pathway and partially reversed EMT, similar to the effects observed after treatment with SIS3 or QLT0267, which are selective inhibitors of TGF-β1-dependent SMAD3 phosphorylation and ILK, respectively. In addition, lentiviral-mediated FOXO1 overexpression in the kidneys of diabetic mice considerably increased FOXO1 expression and activation, while decreasing proteinuria and renal pathological injury. These data suggested that forced FOXO1 activation inhibited HG-induced podocyte EMT and ameliorated proteinuria and renal injury in diabetic mice. Our findings further highlighted that FOXO1 played a protective role against diabetes in mice and may potentially be used as a novel therapeutic target for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Mengmeng Du
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Qingzhu Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wen Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xiaojun Ma
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Lina Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Feng Guo
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Shuiying Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fengjuan Huang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huanhuan Wang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Institute of Clinical Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|