1
|
Li C, Ge YZ, Hao YH, Xu JJ, Zhang SW, Chen SY, Kan HD, Meng X, Huang HF, Wu YT. Associations between fine particulate matter and its constituents and intrahepatic cholestasis of pregnancy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 293:118010. [PMID: 40073785 DOI: 10.1016/j.ecoenv.2025.118010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/15/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025]
Abstract
Few studies have reported an association between intrahepatic cholestasis of pregnancy (ICP) and preconception exposure to PM2.5 and sunlight duration, but there has been no in-depth analysis of the correlation between ICP and different constituents of PM2.5. Thus, we performed this retrospective analysis among 160,544 pregnant women who delivered between 2014 and 2020, to further estimate the impact of different constituents of PM2.5, as well as the duration of sunlight, on ICP via generalized linear models. During the three months prior to conception, the adjusted odds ratios (aORs) for ICP were 1.176 (95 % CI: 1.066, 1.298) for a 10 μg/m3 increase in PM2.5, 1.080 (95 % CI: 1.026, 1.138) for a 1 μg/m3 increase in sulfate (SO42-), 1.069 (95 % CI: 1.025, 1.115) for a 1 μg/m3 increase in organic matter (OM), 1.274 (95 % CI: 1.049, 1.546) for a 1 μg/m3 increase in black carbon (BC), and 1.213 (95 % CI: 1.088, 1.353) for a 1-hour decrease in sunlight duration. In addition, during the preconception period, increased exposure to PM2.5 constituents (including SO42-, OM, and BC) and decreased sunlight duration interactively associated with ICP. Moreover, exposure to OM during the first trimester (aOR=1.043, 95 % CI: 1.004, 1.083) and to BC during both the first trimester (aOR=1.201, 95 % CI: 1.000, 1.442) and the second trimester (aOR=1.278, 95 % CI: 1.048, 1.558) were found to elevate the risk of ICP. In the future, women preparing to conceive should increase sunlight exposure and avoid exposure to air pollution, and the constituents related to anthropogenic emissions should be controlled to prevent these associations.
Collapse
Affiliation(s)
- Cheng Li
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Ying-Zhou Ge
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Department of Reproductive Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Yan-Hui Hao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Jing-Jing Xu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Si-Wei Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Si-Yue Chen
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China
| | - Hai-Dong Kan
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China
| | - Xia Meng
- School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and Key Laboratory of Health Technology Assessment of the Ministry of Health, Fudan University, Shanghai 200032, China.
| | - He-Feng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China; Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China.
| | - Yan-Ting Wu
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200011, China; Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai 200030, China.
| |
Collapse
|
2
|
Pan D, Jiang M, Tao G, Shi J, Song Z, Chen R, Wang D. The role of Ca 2+ signalling and InsP3R in the pathogenesis of intrahepatic cholestasis of pregnancy. J OBSTET GYNAECOL 2024; 44:2345276. [PMID: 38685831 DOI: 10.1080/01443615.2024.2345276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/14/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND In order to contribute new insights for future prevention and treatment of intrahepatic cholestasis of pregnancy (ICP), and to promote positive pregnancy outcomes, we evaluated serum Ca2+ levels and inositol 1,4,5-trisphosphate receptor (InsP3R) expression in the liver tissue of a rat ICP model. METHODS After establishing the model by injection of oestradiol benzoate and progesterone into pregnant rats, animals were divided into normal control (n = 5) and ICP model groups (n = 5). The expression of InsP3R protein in the liver, and serum levels of Ca2+, glycocholic acid and bile acid were detected. RESULTS InsP3R mRNA and protein were significantly lower in the ICP model group compared to the normal group, as determined by qPCR and immunohistochemistry, respectively. Serum enzyme-linked immunosorbent assay results revealed significantly higher levels of glycocholic acid and bile acid in the ICP model group compared to the normal group, while Ca2+ levels were significantly lower. The levers of Ca2+ were significantly and negatively correlated with the levels of glycocholic acid. The observed decrease in Ca2+ was associated with an increase in total bile acids, but there was no significant correlation. CONCLUSIONS Our results revealed that the expression of InsP3R and serum Ca2+ levels was significantly decreased in the liver tissue of ICP model rats. Additionally, Ca2+ levels were found to be negatively correlated with the level of glycocholic acid.
Collapse
Affiliation(s)
- Dan Pan
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Mengting Jiang
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Guoxian Tao
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Jinmei Shi
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Zhiwei Song
- Department of Medical Laboratory, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Ren Chen
- Department of Obstetrics and Gynecology, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| | - Dongguo Wang
- Department of Central Laboratory, Taizhou Municipal Hospital affiliated with Taizhou University, Taizhou, China
| |
Collapse
|
3
|
Liu LW, Chen Y, Zhu LJ, Xu QX, Xu S, Ding Y, Yin B. A study on the relationship between gut microbiota and intrahepatic cholestasis of pregnancy. Heliyon 2024; 10:e25861. [PMID: 38384504 PMCID: PMC10878930 DOI: 10.1016/j.heliyon.2024.e25861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/23/2024] Open
Abstract
Objective Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease associated with a high incidence of complications in the mid and late stages of gestation. This study investigates differences in the composition of intestinal flora among pregnant women diagnosed with ICP, employing Illumina MiSeq high-throughput sequencing technology. Methods This case-control study obtained patient data from the hospital information system (HIS) and the laboratory information system (LIS). Fecal samples were collected from 25 pregnant women who did not undergo intestinal preparation before delivery between December 2020 and March 2021. Whole-genome analysis was performed. PCR was used to amplify the 16S rRNA V3-V4 variable region, which was then sequenced. Alpha and beta diversity were computed, and the maternal intestinal flora's abundance and composition characteristics were analyzed. Differences in intestinal flora between the two sample groups were examined. Results Bacteroides and Proteobacteria exhibited positive correlations with TBIL and IBIL. Betaproteobacteria, Gammaproteobacteria, and Erysipeiotrichi showed positive correlations with TBIL, IBIL, and DBIL, while Lactobacillus, Delftia, and Odoribacter demonstrated positive correlations with ALT. Conclusion The ICP group displayed significantly higher levels of total bile acid and ALT compared to the control group. The intestinal flora composition comprised four primary phyla: Firmicutes, Actinobacteria, Bacteroidetes, and Proteobacteria. ICP patients exhibited a lower relative abundance of intestinal flora across different levels of community composition when compared to the control group. Specific correlations between certain intestinal flora and clinical liver parameters were identified.
Collapse
Affiliation(s)
- Li-wen Liu
- Department of Anesthesia, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning City, 530000, China
| | - Yan Chen
- Department of Obstetrical, Guangzhou Women and Children's Hospital Liuzhou Hospital, Liuzhou City, 545000, China
| | - Liu-jing Zhu
- Department of Obstetrical, Guangzhou Women and Children's Hospital Liuzhou Hospital, Liuzhou City, 545000, China
| | - Qun-xiang Xu
- Department of Breast, Guangzhou Women and Children's Hospital Liuzhou Hospital, Liuzhou City, 545000, China
| | - Shaolin Xu
- Department of Laboratory, Guangzhou Women and Children's Hospital Liuzhou Hospital, Liuzhou City, 545000, China
| | - Yanling Ding
- Department of Laboratory, Guangzhou Women and Children's Hospital Liuzhou Hospital, Liuzhou City, 545000, China
| | - Biao Yin
- Department of Eugenic Genetics, The Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning City, 530000, China
| |
Collapse
|
4
|
Ismail A, Kennedy L, Francis H. Sex-Dependent Differences in Cholestasis: Why Estrogen Signaling May Be a Key Pathophysiological Driver. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1355-1362. [PMID: 37422150 PMCID: PMC10548272 DOI: 10.1016/j.ajpath.2023.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Accepted: 06/15/2023] [Indexed: 07/10/2023]
Abstract
Primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) are cholestatic liver diseases that have significant clinical impact with debilitating symptoms and mortality. While PBC is predominantly seen in perimenopausal and postmenopausal women, men who are diagnosed with PBC have worse clinical outcomes and all-cause mortality. In contrast, 60% to 70% of patients with PSC are men; the data indicate that female sex may be an independent factor against PSC-related complications. These findings suggest a sex-dependent biological basis for these differences. Estrogen has been implicated in the pathogenesis of intrahepatic cholestasis of pregnancy and may induce cholestasis through a variety of interactions. However, it is unclear why some sexual dimorphic features may provide a protective effect despite known estrogen models that induce cholestasis. This article provides a brief introductory background and discusses the sexual dimorphism in clinical presentation in PSC and PBC. It also explores the role of estrogen signaling in pathogenesis and how it relates to intrahepatic cholestasis of pregnancy. Studies have already targeted certain molecules involved in estrogen signaling, and this review discusses these studies that identify estrogen-related receptor, estrogen receptor-α, estrogen receptor-β, farnesoid X receptor, and mast cells as possible targets, in addition to long noncoding RNA H19-induced cholestasis and sexual dimorphism. It also explores these interactions and their role in the pathogenesis of PBC and PSC.
Collapse
Affiliation(s)
- AbdiGhani Ismail
- Division of Internal Medicine, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana.
| |
Collapse
|
5
|
Ehtezazi T, Rahman K, Davies R, Leach AG. The Pathological Effects of Circulating Hydrophobic Bile Acids in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:173-211. [PMID: 36994114 PMCID: PMC10041467 DOI: 10.3233/adr-220071] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023] Open
Abstract
Recent clinical studies have revealed that the serum levels of toxic hydrophobic bile acids (deoxy cholic acid, lithocholic acid [LCA], and glycoursodeoxycholic acid) are significantly higher in patients with Alzheimer's disease (AD) and amnestic mild cognitive impairment (aMCI) when compared to control subjects. The elevated serum bile acids may be the result of hepatic peroxisomal dysfunction. Circulating hydrophobic bile acids are able to disrupt the blood-brain barrier and promote the formation of amyloid-β plaques through enhancing the oxidation of docosahexaenoic acid. Hydrophobic bile acid may find their ways into the neurons via the apical sodium-dependent bile acid transporter. It has been shown that hydrophobic bile acids impose their pathological effects by activating farnesoid X receptor and suppressing bile acid synthesis in the brain, blocking NMDA receptors, lowering brain oxysterol levels, and interfering with 17β-estradiol actions such as LCA by binding to E2 receptors (molecular modelling data exclusive to this paper). Hydrophobic bile acids may interfere with the sonic hedgehog signaling through alteration of cell membrane rafts and reducing brain 24(S)-hydroxycholesterol. This article will 1) analyze the pathological roles of circulating hydrophobic bile acids in the brain, 2) propose therapeutic approaches, and 3) conclude that consideration be given to reducing/monitoring toxic bile acid levels in patients with AD or aMCI, prior/in combination with other treatments.
Collapse
Affiliation(s)
- Touraj Ehtezazi
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Khalid Rahman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Rhys Davies
- The Walton Centre, NHS Foundation Trust, Liverpool, UK
| | - Andrew G Leach
- School of Pharmacy, University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Liu W, Wang Q, Chang J, Bhetuwal A, Bhattarai N, Ni X. Circulatory Metabolomics Reveals the Association of the Metabolites With Clinical Features in the Patients With Intrahepatic Cholestasis of Pregnancy. Front Physiol 2022; 13:848508. [PMID: 35899031 PMCID: PMC9309339 DOI: 10.3389/fphys.2022.848508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Intrahepatic cholestasis of pregnancy (ICP) is associated with an increased risk of adverse pregnancy to the mother and fetus. As yet, the metabolic profiles and the association of the clinical features remain obscure. Methods: Fifty-seven healthy pregnant women and 52 patients with ICP were recruited in this study. Plasma samples were collected from pregnancies who received prenatal care between 30 and 36 weeks. Untargeted metabolomics to portray the metabolic profiles were performed by LC/MS. Multivariate combined with the univariate analysis was performed to screen out differential metabolites between the ICP and control groups. A de-biased sparse partial correlation (DSPC) network analysis of differential metabolites was conducted to explore the potential mutual regulation among metabolites on the basis of de-sparsified graphical lasso modeling. The pathway analysis was carried out using MetaboAnalyst. Linear regression and Pearson correlation analysis was applied to analyze correlations of bile acid levels, metabolites, newborn weights, and pregnancy outcomes in ICP patients. Results: Conspicuous metabolic changes and choreographed metabolic profiles were disclosed: 125 annotated metabolites and 18 metabolic pathways were disturbed in ICP patients. DSPC networks indicated dense interactions among amino acids and their derivatives, bile acids, carbohydrates, and organic acids. The levels of total bile acid (TBA) were increased in ICP patients with meconium-stained amniotic fluid (MSAF) compared with those without MSAF. An abnormal tryptophan metabolism, elevated long chain saturated fatty acids and estrone sulfate levels, and a low-antioxidant capacity were relevant to increased bile acid levels. Newborn weights were significantly associated with the levels of bile acids and some metabolites of amino acids. Conclusion: Our study revealed the metabolomic profiles in circulation and the correlation of the metabolites with clinical features in ICP patients. Our data suggest that disturbances in metabolic pathways might be associated with adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Wenhu Liu
- Department of Gynecology and Obstetrics, International Collaborative Research Center for Medical Metabolomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- School of Pharmacy, School of Basic Medical Sciences and Forensic Medical, North Sichuan Medical College, Nanchong, China
| | - Qiang Wang
- Department of Laboratory Medicine, Translational Medicine Research Center, North Sichuan Medical College, Nanchong, China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Jinxia Chang
- School of Pharmacy, School of Basic Medical Sciences and Forensic Medical, North Sichuan Medical College, Nanchong, China
| | - Anup Bhetuwal
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Nisha Bhattarai
- Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xin Ni
- Department of Gynecology and Obstetrics, International Collaborative Research Center for Medical Metabolomics, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, China
- *Correspondence: Xin Ni,
| |
Collapse
|
7
|
Wang P, Yuan P, Lin S, Zhong H, Zhang X, Zhuo Y, Li J, Che L, Feng B, Lin Y, Xu S, Wu D, Burrin DG, Fang Z. Maternal and Fetal Bile Acid Homeostasis Regulated by Sulfated Progesterone Metabolites through FXR Signaling Pathway in a Pregnant Sow Model. Int J Mol Sci 2022; 23:6496. [PMID: 35742938 PMCID: PMC9224516 DOI: 10.3390/ijms23126496] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/24/2022] Open
Abstract
Abnormally elevated circulating bile acids (BA) during pregnancy endanger fetal survival and offspring health; however, the pathology and underlying mechanisms are poorly understood. A total of nineteen pregnant sows were randomly assigned to day 60 of gestation, day 90 of gestation (G60, G90), and the farrowing day (L0), to investigate the intercorrelation of reproductive hormone, including estradiol, progesterone and sulfated progesterone metabolites (PMSs), and BA in the peripheral blood of mother and fetuses during pregnancy. All data were analyzed by Student's t-test or one-way ANOVA of GraphPad Prism and further compared by using the Student-Newman-Keuls test. Correlation analysis was also carried out using the CORR procedure of SAS to study the relationship between PMSs and BA levels in both maternal and fetal serum at G60, G90, and L0. Allopregnanolone sulphate (PM4S) and epiallopregnanolone sulphate (PM5S) were firstly identified in the maternal and fetal peripheral blood of pregnant sows by using newly developed ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) methods. Correlation analysis showed that pregnancy-associated maternal BA homeostasis was correlated with maternal serum PM4S levels, whereas fetal BA homeostasis was correlated with fetal serum PM5S levels. The antagonist activity role of PM5S on farnesoid X receptor (FXR)-mediated BA homeostasis and fibroblast growth factor 19 (FGF19) were confirmed in the PM5S and FXR activator co-treated pig primary hepatocytes model, and the antagonist role of PM4S on FXR-mediated BA homeostasis and FGF19 were also identified in the PM4S-treated pig primary hepatocytes model. Together with the high relative expression of FGF19 in pig hepatocytes, the pregnant sow is a promising animal model to investigate the pathogenesis of cholestasis during pregnancy.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
- College of Biology Engineering, Henan University of Technology, Zhengzhou 450000, China
| | - Peiqiang Yuan
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
| | - Sen Lin
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510000, China;
| | - Heju Zhong
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
| | - Xiaoling Zhang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
| | - Yong Zhuo
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
| | - Jian Li
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
| | - Lianqiang Che
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
| | - Bin Feng
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
- Key Laboratory for Food Science and Human Health, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Yan Lin
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
| | - Shengyu Xu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
| | - De Wu
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
| | - Douglas G Burrin
- USDA/ARS Children’s Nutrition Research Center, Section of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Zhengfeng Fang
- Key Laboratory for Animal Disease Resistance Nutrition of the Ministry of Education, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (P.W.); (P.Y.); (H.Z.); (X.Z.); (Y.Z.); (J.L.); (L.C.); (B.F.); (Y.L.); (S.X.); (D.W.)
- Key Laboratory for Food Science and Human Health, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China
| |
Collapse
|
8
|
Waspe J, Beronius A. Development of an adverse outcome pathway for intrahepatic cholestasis of pregnancy. Curr Res Toxicol 2022; 3:100065. [PMID: 35243364 PMCID: PMC8885608 DOI: 10.1016/j.crtox.2022.100065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 12/04/2022] Open
Abstract
Adverse Outcome Pathways (AOPs) are a research synthesis tool, used primarily by toxicologists for numerous applications including: hypothesis generation, data integration, biomarker determination, and identification of gaps in current knowledge. The AOP model provides a means for evaluating critical interactions between stressors and biological systems which result in adversity, meaning there is significant potential value in using this model in clinical research. However, AOPs have so far not been applied in this context, which may be attributable to the fact that the method is not yet streamlined with established practices in evidence-based medicine, such as systematic review. Here, we present one approach to developing a clinically focused AOP for intrahepatic cholestasis of pregnancy; aiming to enhance understanding of the mechanistic link between this common, gestational liver disease and its association with preterm birth. Mechanistic aspects of the disease pathogenesis, and use of AOPs to broaden inclusion and improve integration of in vitro and in vivo data in clinical research are discussed. We also demonstrate for the first time how central components of systematic review can be integrated into the development of an AOP.
Collapse
Affiliation(s)
- Jennifer Waspe
- Sheffield Teaching Hospitals, Glossop Road, Broomhall, Sheffield S10 2JF, United Kingdom
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| |
Collapse
|
9
|
Nuclear Receptors in Pregnancy and Outcomes: Clinical Perspective. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:3-19. [DOI: 10.1007/978-3-031-11836-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
10
|
Zu Y, Yang J, Zhang C, Liu D. The Pathological Mechanisms of Estrogen-Induced Cholestasis: Current Perspectives. Front Pharmacol 2021; 12:761255. [PMID: 34819862 PMCID: PMC8606790 DOI: 10.3389/fphar.2021.761255] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/26/2021] [Indexed: 12/31/2022] Open
Abstract
Estrogens are steroid hormones with a wide range of biological activities. The excess of estrogens can lead to decreased bile flow, toxic bile acid (BA) accumulation, subsequently causing intrahepatic cholestasis. Estrogen-induced cholestasis (EIC) may have increased incidence during pregnancy, and within women taking oral contraception and postmenopausal hormone replacement therapy, and result in liver injury, preterm birth, meconium-stained amniotic fluid, and intrauterine fetal death in pregnant women. The main pathogenic mechanisms of EIC may include deregulation of BA synthetic or metabolic enzymes, and BA transporters. In addition, impaired cell membrane fluidity, inflammatory responses and change of hepatocyte tight junctions are also involved in the pathogenesis of EIC. In this article, we review the role of estrogens in intrahepatic cholestasis, and outlined the mechanisms of EIC, providing a greater understanding of this disease.
Collapse
Affiliation(s)
- Yue Zu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinyu Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengliang Zhang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Liu
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
11
|
Wang L, Luo Q, Zeng S, Lou Y, Li X, Hu M, Lu L, Liu Z. Disordered farnesoid X receptor signaling is associated with liver carcinogenesis in Abcb11-deficient mice. J Pathol 2021; 255:412-424. [PMID: 34410012 DOI: 10.1002/path.5780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 07/10/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022]
Abstract
ABCB11 encodes the bile salt export pump (BSEP), a key regulator in maintaining bile acid (BA) homeostasis. Although inherited ABCB11 mutations have previously been linked to primary liver cancer, whether ABCB11 deficiency leads to liver cancer remains unknown. Here, we analyzed ABCB11 mRNA expression levels in liver tumor specimens [29 with hepatocellular carcinoma (HCC), one with intrahepatic cholangiocarcinoma (ICC), and one with mixed HCC/ICC] with adjacent normal specimens and published human datasets. Liver tissues obtained from Abcb11-deficient (Abcb11-/- ) mice and wild-type mice at different ages were compared by histologic, RNA-sequencing, and BA analyses. ABCB11 was significantly downregulated in human liver tumors compared with normal controls. Abcb11-/- mice demonstrated progressive intrahepatic cholestasis and liver fibrosis, and spontaneously developed HCC and ICC over 12 months of age. Abcb11 deficiency increased BAs in the liver and serum in mice, most of which are farnesoid X receptor (FXR) antagonists/non-agonists. Accordingly, the hepatic expression and transcriptional activity of FXR were downregulated in Abcb11-/- mouse livers. Administration of the FXR agonist obeticholic acid reduced liver injury and tumor incidence in Abcb11-/- mice. In conclusion, ABCB11 is aberrantly downregulated and plays a vital role in liver carcinogenesis. The cholestatic liver injury and liver tumors developed in Abcb11-/- mice are associated with increased FXR antagonist BAs and thereby decreased activation of FXR. FXR activation might be a therapeutic strategy in ABCB11 deficiency diseases. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Liping Wang
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Qing Luo
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Sijing Zeng
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Yanmei Lou
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Xiaoyan Li
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Ming Hu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.,Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, USA
| | - Linlin Lu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research of Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, PR China.,State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau (SAR), PR China
| |
Collapse
|
12
|
Hu T, Wang H. Hepatic Bile Acid Transporters in Drug‐Induced Cholestasis. TRANSPORTERS AND DRUG‐METABOLIZING ENZYMES IN DRUG TOXICITY 2021:307-337. [DOI: 10.1002/9781119171003.ch10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
13
|
Rodrigues AD. Drug Interactions Involving 17α-Ethinylestradiol: Considerations Beyond Cytochrome P450 3A Induction and Inhibition. Clin Pharmacol Ther 2021; 111:1212-1221. [PMID: 34342002 DOI: 10.1002/cpt.2383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 07/29/2021] [Indexed: 11/08/2022]
Abstract
It is widely acknowledged that drug-drug interactions (DDIs) involving estrogen (17α-ethinylestradiol (EE))-containing oral contraceptives (OCs) are important. Consequently, sponsors of new molecular entities (NMEs) often conduct clinical studies with priority given to OCs as victims of cytochrome P450 (CYP) 3A (CYP3A) induction and inhibition. Such scenarios are reflected in the US Food and Drug Administration-issued guidance documentation related to OC DDI studies. Although CYP3A is important, OCs such as EE are metabolized by sulfotransferase 1E1 and UDP-glucuronosyltransferase (UGT) 1A1, expressed in the gut and liver, and so both can also serve as loci of victim OC DDI. Therefore, for any NME, one should carefully consider its induction and inhibition profile involving CYP3A4/5, UGT1A1, and SULT1E1. As DDI perpetrators, available clinical DDI data indicate that EE-containing OCs can induce (e.g., UGT1A4 and CYP2A6) and inhibit (CYP1A2 ≥ CYP2C19 > CYP3A4/5 > CYP2C8, CYP2B6, CYP2D6, and CYP2C9) various CYP forms. Although available in vitro CYP inhibition data do not explain such a graded inhibitory effect in vivo, it is hypothesized that EE differentially modulates CYP expression via potent agonism of the estrogen receptor expressed in the gut and liver. From the standpoint of the NME as potential OC DDI victim, therefore, it is important to assess its projected (pre-phase I) or known therapeutic index and pharmacokinetic profile (fraction absorbed, absolute oral bioavailability, clearance/extraction class, fraction metabolized by CYP1A2, CYP2C19, CYP2A6, and UGT1A4). Such information can enable the prioritization, design, and interpretation of NME-OC DDI studies.
Collapse
Affiliation(s)
- A David Rodrigues
- ADME Sciences, Medicine Design, Worldwide Research & Development, Pfizer Inc, Groton, Connecticut, USA
| |
Collapse
|
14
|
Triggers of benign recurrent intrahepatic cholestasis and its pathophysiology: a review of literature. Acta Gastroenterol Belg 2021; 84:477-486. [PMID: 34599573 DOI: 10.51821/84.3.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Benign recurrent intrahepatic cholestasis (BRIC) is a rare genetic disorder that is characterized by episodes of cholestasis followed by complete resolution. The episodic nature of BRIC raises concerns about its possible trigger factors. Indeed, case reports of this orphan disease have associated BRIC to some triggers. In the absence of any reviews, we reviewed BRIC trigger factors and its pathophysiology. The study consisted of a systematic search for case reports using PubMed. Articles describing a clear case of BRIC associated with a trigger were included resulting in 22 articles that describe 35 patients. Infection was responsible for 54.3% of triggered episodes, followed by hormonal, drugs, and miscellaneous causes reporting as 30%, 10%, and 5.7% respectively. Females predominated with 62.9%. The longest episode ranged between 3 months to 2 years with a mean of 32.37 weeks. The mean age of the first episode was 14.28 ranging between 3 months to 48 years. Winter and autumn were the major seasons during which episodes happened. Hence, BRIC is potentially triggered by infection, which is most commonly a viral infection, hormonal disturbances as seen in oral contraceptive pills and pregnancy state, and less commonly by certain drugs and other causes. The appearance of cholestasis during the first two trimesters of pregnancy compared to intrahepatic cholestasis of pregnancy could help to differentiate between the two conditions. The possible mechanism of BRIC induction implicates a role of BSEP and ATP8B1. While estrogen, drugs, and cytokines are known to affect BSEP, less is known about their action on ATP8B1.
Collapse
|
15
|
Abstract
Intrahepatic cholestasis of pregnancy is a common disorder of pregnancy manifested by pruritus and elevated bile acids. The etiology of cholestasis is poorly understood and management is difficult due to the paucity of data regarding its diagnosis, treatment, and related adverse outcomes. In this article, we review the epidemiology, pathophysiology, risk factors, laboratory findings, complications, treatment, management, and current evidence surrounding intrahepatic cholestasis of pregnancy.
Collapse
|
16
|
Molecular Pathogenesis of Intrahepatic Cholestasis of Pregnancy. Can J Gastroenterol Hepatol 2021; 2021:6679322. [PMID: 34195157 PMCID: PMC8181114 DOI: 10.1155/2021/6679322] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a pregnancy-specific liver disease. The maternal symptoms are characterized by skin pruritus and elevated bile acids, causing several adverse outcomes for fetuses, including an increased risk of preterm birth, meconium-stained amniotic fluid, neonatal depression, respiratory distress syndrome, and stillbirth. Genetic, hormonal, immunological, and environmental factors contribute to the pathogenesis of ICP, and the estrogen-bile acid axis is thought to play a dominant role. The advances in the past 10 years uncover more details of this axis. Moreover, dysregulation of extracellular matrix and oxygen supply, organelle dysfunction, and epigenetic changes are also found to cause ICP, illuminating more potential drug targets for interfering with. Here, we summarize the molecular pathogenesis of ICP with an emphasis on the advancement in the past 10 years, aiming to give an updated full view of this field.
Collapse
|
17
|
Manna LB, Williamson C. Nuclear receptors, gestational metabolism and maternal metabolic disorders. Mol Aspects Med 2021; 78:100941. [PMID: 33455843 DOI: 10.1016/j.mam.2021.100941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
Normal pregnancy is characterised by a gradual alteration in metabolism that results in elevated serum bile acids, dyslipidaemia and impaired glucose tolerance in the third trimester. Nuclear receptors play important roles in regulating metabolic pathways that influence alterations in these parameters. There is evidence for altered function of FXR and LXR in gestation; these nuclear receptors play an integral role in bile acid and lipid homeostasis. There is some evidence for influence of clock genes in late pregnancy metabolic changes, and this may be linked to alterations in placental gene expression and function, thereby influencing fetal growth. This article will review the current data from human studies and investigation of animal models to illustrate the role of nuclear receptors (namely LXR, FXR, PPARs and clock genes) in gestational alterations in metabolism and the ways this may influence susceptibility to metabolic disorders of pregnancy such as gestational diabetes mellitus and intrahepatic cholestasis of pregnancy.
Collapse
Affiliation(s)
- Luiza Borges Manna
- Division of Women and Children's Health, King's College London, London, United Kingdom
| | - Catherine Williamson
- Division of Women and Children's Health, King's College London, London, United Kingdom.
| |
Collapse
|
18
|
Firman JW, Pestana CB, Rathman JF, Vinken M, Yang C, Cronin MTD. A Robust, Mechanistically Based In Silico Structural Profiler for Hepatic Cholestasis. Chem Res Toxicol 2020; 34:641-655. [PMID: 33314907 DOI: 10.1021/acs.chemrestox.0c00465] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Owing to the primary role which it holds within metabolism of xenobiotics, the liver stands at heightened risk of exposure to, and injury from, potentially hazardous substances. A principal manifestation of liver dysfunction is cholestasis-the impairment of physiological bile circulation from its point of origin within the organ to the site of action in the small intestine. The capacity for early identification of compounds liable to exert cholestatic effects is of particular utility within the field of pharmaceutical development, where contribution toward candidate attrition is great. Shortcomings associated with the present in vitro methodologies forecasting cholestasis render their predictivity questionable, permitting scope for the adoption of computational toxicology techniques. As such, the intention of this study has been to construct an in silico profiler, founded upon clinical data, highlighting structural motifs most reliably associated with the end point. Drawing upon a list of >1500 small molecular drugs, compiled and annotated by Kotsampasakou, E. and Ecker, G. F. (J. Chem. Inf. Model. 2017, 57, 608-615), we have formulated a series of 15 structural alerts. These describe fragments intrinsic within distinct pharmaceutical classes including psychoactive tricyclics, β-lactam antimicrobials, and estrogenic/androgenic steroids. Description of the coverage and selectivity of each are provided, alongside consideration of the underlying reactive mechanisms and relevant structure-activity concerns. Provision of mechanistic anchoring ensures that potential exists for framing within the adverse outcome pathway paradigm-the chemistry conveyed through the alert, in particular enabling rationalization at the level of the molecular initiating event.
Collapse
Affiliation(s)
- James W Firman
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - Cynthia B Pestana
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| | - James F Rathman
- Molecular Networks GmbH, Neumeyerstraße 28, 90411 Nuremberg, Germany.,Altamira, LLC, Columbus, Ohio 43210, United States.,Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, 1090 Brussels, Belgium
| | - Chihae Yang
- Molecular Networks GmbH, Neumeyerstraße 28, 90411 Nuremberg, Germany.,Altamira, LLC, Columbus, Ohio 43210, United States
| | - Mark T D Cronin
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Byrom Street, Liverpool L3 3AF, United Kingdom
| |
Collapse
|
19
|
Ursodeoxycholic acid improves feto-placental and offspring metabolic outcomes in hypercholanemic pregnancy. Sci Rep 2020; 10:10361. [PMID: 32587408 PMCID: PMC7316783 DOI: 10.1038/s41598-020-67301-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 04/14/2020] [Indexed: 11/08/2022] Open
Abstract
Perturbations in the intrauterine environment can result in lifelong consequences for metabolic health during postnatal life. Intrahepatic cholestasis of pregnancy (ICP) can predispose offspring to metabolic disease in adulthood, likely due to a combination of the effects of increased bile acids, maternal dyslipidemia and deranged maternal and fetal lipid homeostasis. Whereas ursodeoxycholic acid (UDCA) is a commonly used treatment for ICP, no studies have yet addressed whether it can also prevent the metabolic effects of ICP in the offspring and fetoplacental unit. We therefore analyzed the lipid profile of fetal serum from untreated ICP, UDCA-treated ICP and uncomplicated pregnancies and found that UDCA ameliorates ICP-associated fetal dyslipidemia. We then investigated the effects of UDCA in a mouse model of hypercholanemic pregnancy and showed that it induces hepatoprotective mechanisms in the fetal liver, reduces hepatic fatty acid synthase (Fas) expression and improves glucose tolerance in the adult offspring. Finally, we showed that ICP leads to epigenetic changes in pathways of relevance to the offspring phenotype. We therefore conclude that UDCA can be used as an intervention in pregnancy to reduce features of metabolic disease in the offspring of hypercholanemic mothers.
Collapse
|
20
|
Garzel B, Hu T, Li L, Lu Y, Heyward S, Polli J, Zhang L, Huang SM, Raufman JP, Wang H. Metformin Disrupts Bile Acid Efflux by Repressing Bile Salt Export Pump Expression. Pharm Res 2020; 37:26. [PMID: 31907698 DOI: 10.1007/s11095-019-2753-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/26/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE The bile salt export pump (BSEP), a key player in hepatic bile acid clearance, has been the center of research on drug-induced cholestasis. However, such studies focus primarily on the direct inhibition of BSEP, often overlooking the potential impact of transcriptional repression. This work aims to explore the disruption of bile acid efflux caused by drug-induced BSEP repression. METHODS BSEP activity was analyzed in human primary hepatocytes (HPH) using a traditional biliary-clearance experiment and a modified efflux assay, which includes a 72-h pretreatment prior to efflux measurement. Relative mRNA and protein expressions were examined by RT-PCR and Western blotting, respectively. RESULTS Metformin concentration-dependently repressed BSEP expression in HPH. Although metformin did not directly inhibit BSEP activity, longer metformin exposure reduced BSEP transport function in HPH by down-regulating BSEP expression. BSEP repression by metformin was found to be AMP-activated protein kinase-independent. Additional screening of 10 reported cholestatic non-BSEP inhibitors revealed that the anti-cancer drug tamoxifen also markedly repressed BSEP expression and reduced BSEP activity in HPH. CONCLUSIONS Repression of BSEP alone is sufficient to disrupt hepatic bile acid efflux. Metformin and tamoxifen appear to be prototypes of a class of BSEP repressors that may cause drug-induced cholestasis through gene repression instead of direct BSEP inhibition.
Collapse
Affiliation(s)
- Brandy Garzel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Tao Hu
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Linhao Li
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Yuanfu Lu
- Key Laboratory of Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Scott Heyward
- BioIVT, 1450 S Rolling Road, Baltimore, Maryland, 21227, USA
| | - James Polli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA
| | - Lei Zhang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Shiew-Mei Huang
- Office of Clinical Pharmacology, Office of Translational Sciences, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, 20993, USA
| | - Jean-Pierre Raufman
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, Maryland, 21201, USA.,VA Maryland Health Care System, 10 N. Greene Street, Baltimore, Maryland, 21201, USA
| | - Hongbing Wang
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, Maryland, 21201, USA.
| |
Collapse
|
21
|
Petrov PD, Fernández-Murga L, Conde I, Martínez-Sena T, Guzmán C, Castell JV, Jover R. Epistane, an anabolic steroid used for recreational purposes, causes cholestasis with elevated levels of cholic acid conjugates, by upregulating bile acid synthesis (CYP8B1) and cross-talking with nuclear receptors in human hepatocytes. Arch Toxicol 2020; 94:589-607. [PMID: 31894354 DOI: 10.1007/s00204-019-02643-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Anabolic-androgenic steroids are testosterone derivatives, used by body-builders to increase muscle mass. Epistane (EPI) is an orally administered 17α-alkylated testosterone derivative with 2a-3a epithio ring. We identified four individuals who, after EPI consumption, developed long-lasting cholestasis. The bile acid (BA) profile of three patients was characterized, as well the molecular mechanisms involved in this pathology. The serum BA pool was increased from 14 to 61-fold, basically on account of primary conjugated BA (cholic acid (CA) conjugates), whereas secondary BA were very low. In in vitro experiments with cultured human hepatocytes, EPI caused the accumulation of glycoCA in the medium. Moreover, as low as 0.01 μM EPI upregulated the expression of key BA synthesis genes (CYP7A1, by 65% and CYP8B1, by 67%) and BA transporters (NTCP, OSTA and BSEP), and downregulated FGF19. EPI increased the uptake/accumulation of a fluorescent BA analogue in hepatocytes by 50-70%. Results also evidenced, that 40 μM EPI trans-activated the nuclear receptors LXR and PXR. More importantly, 0.01 μM EPI activated AR in hepatocytes, leading to an increase in the expression of CYP8B1. In samples from a human liver bank, we proved that the expression of AR was positively correlated with that of CYP8B1 in men. Taken together, we conclude that EPI could cause cholestasis by inducing BA synthesis and favouring BA accumulation in hepatocytes, at least in part by AR activation. We anticipate that the large phenotypic variability of BA synthesis enzymes and transport genes in man provide a putative explanation for the idiosyncratic nature of EPI-induced cholestasis.
Collapse
Affiliation(s)
- Petar D Petrov
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Leonor Fernández-Murga
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Isabel Conde
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain.,Unidad de Hepatotoxicidad Clínica, Servicio de Medicina Digestiva, Sección Hepatología, Hospital La Fe, Valencia, Spain
| | - Teresa Martínez-Sena
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - Carla Guzmán
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain
| | - José Vicente Castell
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Ramiro Jover
- Unidad Mixta de Hepatología Experimental, Instituto de Investigación Sanitaria La Fe (IIS La Fe), Av. Fernando Abril Martorell 106, 46026, Valencia, Spain. .,Departamento de Bioquímica Y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Valencia, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
22
|
Zhu B, Yin P, Ma Z, Ma Y, Zhang H, Kong H, Zhu Y. Characteristics of bile acids metabolism profile in the second and third trimesters of normal pregnancy. Metabolism 2019; 95:77-83. [PMID: 30959040 DOI: 10.1016/j.metabol.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/19/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE Bile acids are a group of cholesterol metabolites functioning as key regulators of glucose, lipid, and energy metabolism. Their homeostatic control is essential to the physiology of the normal pregnancy. Abnormalities of bile acids regulation in pregnancy lead to intrahepatic cholestasis of pregnancy, a serious condition associated with a number of fetal and maternal morbidities. Dysregulation of glucose and lipids is also tied to perturbations in bile acid concentrations. Changes in bile acid metabolic profiles in the second and third trimesters of pregnancy have been incompletely explored. We seek to establish pregnancy-specific normative ranges for a number of bile acids in women in the second and third trimesters and explore changes in their concentrations in the period from 12 to 40 weeks gestation. PROCEDURE In this cross-sectional study, a total of 782 normal pregnant women were enrolled including n = 290 in the second trimester (12-28 weeks) and n = 492 in the third trimester (29-40 weeks). The concentrations of 14 bile acids were measured by liquid chromatography and mass spectrometry (LC-MS) and compared at various time points. Reference intervals of these bile acids were calculated using standard statistical techniques. RESULTS A reference interval profile of 14 bile acids from a cohort of 782 normal pregnant women was developed. Significant differences in concentration were found between the second trimester and the third trimester. Unconjugated bile acids dominate the bile acid profile in the second trimester, while conjugated bile acids, especially (taurine-conjugated) dominate in the third trimester. 28-31 weeks gestation was the notable change period of bile acid metabolism. CONCLUSION This study establishes pregnancy-specific reference intervals for bile acids in the second and third trimesters. As bile acid composition changes with gestational age, this study establishes a foundation for trimester-specific clinical interpretation of bile acid metabolic profiles in pregnant women.
Collapse
Affiliation(s)
- Bo Zhu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Clinical Prenatal Diagnosis Center, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Peiyuan Yin
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China; The First affiliated Hospital of Dalian Medical University, Dalian, China
| | - Zhixin Ma
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Clinical Prenatal Diagnosis Center, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Yu Ma
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Clinical Prenatal Diagnosis Center, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Hong Zhang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Clinical Prenatal Diagnosis Center, Women's Hospital, School of Medicine, Zhejiang University, China
| | - Hongwei Kong
- Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yuning Zhu
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Clinical Prenatal Diagnosis Center, Women's Hospital, School of Medicine, Zhejiang University, China.
| |
Collapse
|
23
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
24
|
Yue Y, Xu D, Wang Y, Wang X, Xia F. Effect of inducible nitric oxide synthase and neuropeptide Y in plasma and placentas from intrahepatic cholestasis of pregnancy. J Obstet Gynaecol Res 2018; 44:1377-1383. [PMID: 29956420 DOI: 10.1111/jog.13681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 04/18/2018] [Indexed: 12/27/2022]
Abstract
AIM To analyze inducible nitric oxide synthase (iNOS) and neuropeptide Y (NPY) expression in maternal plasma and placentas of human with intrahepatic cholestasis of pregnancy (ICP). METHODS The plasma and placentas were collected from 35 women with normal pregnancies and 33 women with ICP. Enzyme-linked immunosorbent assays were used to investigate maternal plasma iNOS and NPY levels. The mRNA levels and cell-specific localization of iNOS and NPY were determined by quantitative PCR, Western Blotting and immunohistochemical analysis in placentas. RESULTS In human placentas, it revealed iNOS and NPY were mainly localized in syncytiotrophoblast, cytotrophoblastin and vascular endothelium cells using immunohistochemistry analysis. iNOS protein and mRNA expression in ICP maternal plasma and placental tissue were significantly lower than in control groups (P <0.01). In maternal plasma and placentas tissue from ICP patients, a marked up-regulation of NPY protein and mRNA expression were observed (P <0.01). CONCLUSION iNOS and NPY may play a role in the effect of maternal cholestasis on the placenta. The down-regulation of iNOS and up-regulation of NPY in ICP may influence the blood flow of the utero-placental-fetal unit, which may play a significant role in poor fetoplacental vascular perfusion, acute hypoxia and adverse pregnancy outcomes.
Collapse
Affiliation(s)
- Yongfei Yue
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of SooChow University, Suzhou, China.,Department of Obstetrics and Gynecology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Duo Xu
- Shenzhen Maternity and Child Health Care Hospital, Southern Medical University, Shenzhen, China
| | - Yun Wang
- Department of Obstetrics and Gynecology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Xiaoyan Wang
- Department of Obstetrics and Gynecology, Suzhou Municipal Hospital Affiliated to Nanjing Medical University, Suzhou, China
| | - Fei Xia
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of SooChow University, Suzhou, China
| |
Collapse
|
25
|
Wu G, Wen M, Sun L, Li H, Liu Y, Li R, Wu F, Yang R, Lin Y. Mechanistic insights into geniposide regulation of bile salt export pump (BSEP) expression. RSC Adv 2018; 8:37117-37128. [PMID: 35557817 PMCID: PMC9089303 DOI: 10.1039/c8ra06345a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/17/2018] [Indexed: 12/14/2022] Open
Abstract
Geniposide (GE) is a major component isolated from Gardenia jasminoides Ellis, which has been used to treat cholestasis liver diseases. Our previous study has shown that GE could notably increase mRNA and protein expressions of BSEP in cholestatic rats. BSEP plays a critical role in maintenance of the enterohepatic circulation of bile acids. BSEP could be regulated by the transactivation pathway of farnesoid X receptor (FXR) and nuclear factor erythroid 2-related factor (Nrf2). Here the mechanisms for BSEP regulation by GE were investigated. GE induced the mRNA levels of BSEP in HepG2 cells and cholestatic mice, and knockdown of FXR and Nrf2 reduced the mRNA expression of BSEP at varying degrees after treatment of GE. FXR acts as the major regulator of BSEP transcription. The involvement of FXR regulated BSEP expression by GE was further investigated. An enhancement was observed in FXR-dependent BSEP promoter activation using luciferase assay. ChIP assay further confirmed the interaction between FXR and BSEP after GE treatment. Using siRNA and ChIP assays, we demonstrated that peroxisome-proliferator-activated receptor γ co-activator-1α (PGC-1α) and co-activator-associated arginine methyltransferase 1 (CARM1) were predominantly recruited to the BSEP promoter upon FXR activation by GE. In conclusion, GE regulated the expression of BSEP through FXR and Nrf2 signaling pathway. The FXR transactivation pathway was enhanced by increasing recruitment of coactivators PGC-1α and CARM1 upon GE treatment, coupled with an increased binding of FXR to the BSEP promoter. PGC-1α and CARM1 interact with FXR to increase FXR-dependent BSEP expression upon GE treatment.![]()
Collapse
Affiliation(s)
- Guixin Wu
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Min Wen
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Lin Sun
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Huitao Li
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Yubei Liu
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Rui Li
- School of Pharmacy
- Nanjing Medical University
- Nanjing 211166
- P. R. China
| | - Feihua Wu
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Rong Yang
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| | - Yining Lin
- School of Traditional Chinese Pharmacy
- China Pharmaceutical University
- Nanjing 211198
- P. R. China
| |
Collapse
|
26
|
Pataia V, Dixon PH, Williamson C. Pregnancy and bile acid disorders. Am J Physiol Gastrointest Liver Physiol 2017; 313:G1-G6. [PMID: 28450276 DOI: 10.1152/ajpgi.00028.2017] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 04/20/2017] [Accepted: 04/20/2017] [Indexed: 01/31/2023]
Abstract
During pregnancy, extensive adaptations in maternal metabolic and immunological physiology occur. Consequently, preexisting disease may be exacerbated or attenuated, and new disease susceptibility may be unmasked. Cholestatic diseases, characterized by a supraphysiological raise in bile acid levels, require careful monitoring during pregnancy. This review describes the latest advances in the knowledge of intrahepatic cholestasis of pregnancy (ICP), the most common bile acid disorder specific to pregnancy, with a focus on the disease etiology and potential mechanisms of ICP-associated adverse pregnancy outcomes, including fetal demise. The course of preexisting cholestatic conditions in pregnancy is considered, including primary sclerosing cholangitis, primary biliary cholangitis, biliary atresia, and Alagille syndrome. The currently accepted treatments for cholestasis in pregnancy and promising new therapeutics for the condition are described.
Collapse
Affiliation(s)
- Vanessa Pataia
- Division of Women's Health, King's College London, London, United Kingdom
| | - Peter H Dixon
- Division of Women's Health, King's College London, London, United Kingdom
| | | |
Collapse
|
27
|
McIlvride S, Dixon PH, Williamson C. Bile acids and gestation. Mol Aspects Med 2017; 56:90-100. [PMID: 28506676 DOI: 10.1016/j.mam.2017.05.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/27/2017] [Accepted: 05/08/2017] [Indexed: 12/22/2022]
Abstract
There are numerous profound maternal physiological changes that occur from conception onwards and adapt throughout gestation in order to support a healthy pregnancy. By the time of late gestation, when circulating pregnancy hormones are at their highest concentrations, maternal adaptations include relative hyperlipidemia, hypercholanemia and insulin resistance. Bile acids have now been established as key regulators of metabolism, and their role in gestational changes in metabolism is becoming apparent. Bile acid homeostasis is tightly regulated by the nuclear receptor FXR, which has been shown to have reduced activity during pregnancy. This review focuses on the gestational alterations in bile acid homeostasis that occur in normal pregnancy, which in some women can become pathological, leading to the development of intrahepatic cholestasis of pregnancy. As well as their important role in maternal metabolic health, we will review bile acid metabolism in the feto-placental unit.
Collapse
Affiliation(s)
- Saraid McIlvride
- Division of Women's Health, King's College London, Guy's Campus, Hodgkin Building, SE1 1UL, London, United Kingdom
| | - Peter H Dixon
- Division of Women's Health, King's College London, Guy's Campus, Hodgkin Building, SE1 1UL, London, United Kingdom
| | - Catherine Williamson
- Division of Women's Health, King's College London, Guy's Campus, Hodgkin Building, SE1 1UL, London, United Kingdom.
| |
Collapse
|
28
|
Thakkar N, Slizgi JR, Brouwer KLR. Effect of Liver Disease on Hepatic Transporter Expression and Function. J Pharm Sci 2017; 106:2282-2294. [PMID: 28465155 DOI: 10.1016/j.xphs.2017.04.053] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 12/27/2022]
Abstract
Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition.
Collapse
Affiliation(s)
- Nilay Thakkar
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Jason R Slizgi
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Kim L R Brouwer
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| |
Collapse
|
29
|
Valanejad L, Nadolny C, Shiffka S, Chen Y, You S, Deng R. Differential Feedback Regulation of Δ4-3-Oxosteroid 5β-Reductase Expression by Bile Acids. PLoS One 2017; 12:e0170960. [PMID: 28125709 PMCID: PMC5268776 DOI: 10.1371/journal.pone.0170960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 01/14/2017] [Indexed: 02/08/2023] Open
Abstract
Δ4-3-oxosteroid 5β-reductase is member D1 of the aldo-keto reductase family 1 (AKR1D1), which catalyzes 5β-reduction of molecules with a 3-oxo-4-ene structure. Bile acid intermediates and most of the steroid hormones carry the 3-oxo-4-ene structure. Therefore, AKR1D1 plays critical roles in both bile acid synthesis and steroid hormone metabolism. Currently our understanding on transcriptional regulation of AKR1D1 under physiological and pathological conditions is very limited. In this study, we investigated the regulatory effects of primary bile acids, chenodeoxycholic acid (CDCA) and cholic acid (CA), on AKR1D1 expression. The expression levels of AKR1D1 mRNA and protein in vitro and in vivo following bile acid treatments were determined by real-time PCR and Western blotting. We found that CDCA markedly repressed AKR1D1 expression in vitro in human hepatoma HepG2 cells and in vivo in mice. On the contrary, CA significantly upregulated AKR1D1 expression in HepG2 cells and in mice. Further mechanistic investigations revealed that the farnesoid x receptor (FXR) signaling pathway was not involved in regulating AKR1D1 by bile acids. Instead, CDCA and CA regulated AKR1D1 through the mitogen-activated protein kinases/c-Jun N-terminal kinases (MAPK/JNK) signaling pathway. Inhibition of the MAPK/JNK pathway effectively abolished CDCA and CA-mediated regulation of AKR1D1. It was thus determined that AKR1D1 expression was regulated by CDCA and CA through modulating the MAPK/JNK signaling pathway. In conclusion, AKR1D1 expression was differentially regulated by primary bile acids through negative and positive feedback mechanisms. The findings indicated that both bile acid concentrations and compositions play important roles in regulating AKR1D1 expression, and consequently bile acid synthesis and steroid hormone metabolism.
Collapse
Affiliation(s)
- Leila Valanejad
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Christina Nadolny
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Stephanie Shiffka
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Yuan Chen
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Sangmin You
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| | - Ruitang Deng
- Department of Biomedical and Pharmaceutical Sciences, Center for Pharmacogenomics and Molecular Therapy, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, United States of America
| |
Collapse
|
30
|
Pařízek A, Dušková M, Vítek L, Šrámková M, Hill M, Adamcová K, Šimják P, Černý A, Kordová Z, Vráblíková H, Boudová B, Koucký M, Malíčková K, Stárka L. The role of steroid hormones in the development of intrahepatic cholestasis of pregnancy. Physiol Res 2016; 64:S203-9. [PMID: 26680481 DOI: 10.33549/physiolres.933117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intrahepatic cholestasis of pregnancy (ICP) is a disorder of liver function, commonly occurring in the third trimester but sometimes also as soon as the end of the second trimester of pregnancy. Symptoms of this disorder include pruritus, plus abnormal values of bile acids and hepatic transaminases. After birth, symptoms disappear and liver function returns to normal. Though ICP is relatively non-complicated and often symptomatically mild from the point-of-view of the mother, it presents a serious risk to the fetus, making this disease the subject of great interest. The etiology and pathogenesis of ICP is multifactorial and as yet not fully elucidated. Hormonal factors likely play a significant role, along with genetic as well as exogenous factors. Here we summarize the knowledge of changes in steroid hormones and their role in the development of intrahepatic cholestasis of pregnancy. In addition, we consider the role of exogenous factors as possible triggers of steroid hormone changes, the relationship between metabolic steroids and bile acids, as well as the combination of these factors in the development of ICP in predisposed pregnant women.
Collapse
Affiliation(s)
- A Pařízek
- Department of Obstetrics and Gynecology of the First Faculty of Medicine and General Teaching Hospital, Prague, Czech Republic, Institute of Endocrinology, Prague, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Wu T, Zhang Q, Li J, Chen H, Wu J, Song H. Up-regulation of BSEP and MRP2 by Calculus Bovis administration in 17α-ethynylestradiol-induced cholestasis: Involvement of PI3K/Akt signaling pathway. JOURNAL OF ETHNOPHARMACOLOGY 2016; 190:22-32. [PMID: 27237619 DOI: 10.1016/j.jep.2016.05.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 05/23/2016] [Accepted: 05/25/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE Calculus Bovis, also known as Niuhuang, is a rare traditional Chinese medicine that has been widely used in China for 2000 years in pharmacology for sedation, anti-spasm, relieving fever, diminishing inflammation and recovering gallbladder functions. AIM OF THE STUDY This study aimed to investigate the choleretic potential and molecular responses in rats to Calculus Bovis (CB) administration after 17α-ethynylestradiol (EE)-induced cholestasis. MATERIAL AND METHODS CB (50 and 100mg/kg per day) was intragastrically (i. g.) given to experimental rats for five consecutive days in coadministration with EE (5mg/kg daily for five days, s.c.). The levels of serum biomarkers were determined biochemically. The histopathology of the liver tissue was evaluated. Expression of bile salt export pump (BSEP) and multidrug resistance-associated protein 2 (MRP2) were studied by western blot and immunohistochemical assay. The expression of Akt and phospho-Akt (pAkt) were also measured by western blot. RESULTS In response to EE, CB treatment significantly prevented an increase in serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma glutamyltransferase (GGT) and total bilirubin (TBIL). CB treatment also repaired tissue lesions caused by EE. Western blots showed that EE significantly decreased the protein expression of BSEP and MRP2. EE also dramatically increased levels of pAkt and decreased levels of Akt. Compared to the EE group, CB treatment increased levels of hepatic BSEP and MRP2 while pAkt levels decreased and Akt levels increased. Immunohistochemistry also indicated that EE decreased the expression of BSEP and MRP2. LY294002 is a selective PI3K inhibitor and showed similar beneficial effects as CB. Decreased expression of BSEP and MRP2 caused by EE were also prevented by LY294002 treatment. CONCLUSION Calculus Bovis administration can alleviate liver injury and up-regulate the expression of BSEP and MRP2 in 17α-ethynylestradiol-induced cholestasis by a mechanism that may involve inhibiting the activated PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Tao Wu
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Qianrui Zhang
- Department of Pharmacy, General Hospital of the Yangtze River Shipping, Wuha 430022, China
| | - Jingjing Li
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hong Chen
- Department of Gastroenterology, The Fifth Hospital of Huangshi City, Huangshi 435005, China
| | - Ji Wu
- Department of Medicine, City College, Wuhan University of Science and Technology, Wuhan 430083, China
| | - Hongping Song
- Department of Pharmacy, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
32
|
Lipoprotein lipase and lipid profiles in plasma and placenta from normal pregnancies compared with patients with intrahepatic cholestasis of pregnancy. Eur J Obstet Gynecol Reprod Biol 2016; 203:279-85. [PMID: 27400425 DOI: 10.1016/j.ejogrb.2016.06.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 05/05/2016] [Accepted: 06/21/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To analyse lipoprotein lipase (LPL) expression and lipid levels in placenta and plasma of patients with intrahepatic cholestasis of pregnancy (ICP) and normal pregnancies. METHODS This prospective study included 30 patients with ICP and 30 gestational-age-matched pregnancies without any complications. Enzyme-linked immunosorbent assays were used to investigate plasma LPL levels from 28 weeks of gestation, at 4-weekly intervals, to 38 weeks of gestation, and data were assessed longitudinally. Immunohistochemistry, Western blotting and real-time polymerase chain reaction were used to detect placental LPL expression and activity. Placental triglyceride and total cholesterol levels were also analysed. The clinical data related to ICP and lipid profiles were collected retrospectively. RESULTS Plasma LPL concentration increased with gestational age in both groups, but the increase was limited in the ICP group. Immunohistochemistry revealed LPL staining mainly in syncytiotrophoblasts, and 3,3'-diamino-benzidine tetrahydrochloride wt% was lower in ICP placenta compared with normal placenta (p<0.01). LPL protein and mRNA expression in ICP placenta were significantly lower than in normal placenta (p<0.01). LPL activity was not significantly different in both groups. Correlation analysis indicated that the plasma LPL level was negatively associated with the corresponding concentration of total bile acid (r=-0.57) in the ICP group. CONCLUSION Reduced LPL expression in placenta, limited increase in LPL level in maternal plasma, and abnormal lipid profiles were found in patients with ICP. LPL was possibly related to ICP by participating abnormal lipid metabolism.
Collapse
|
33
|
Immunology of hepatic diseases during pregnancy. Semin Immunopathol 2016; 38:669-685. [PMID: 27324237 DOI: 10.1007/s00281-016-0573-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023]
Abstract
The mother's immune system has to adapt to pregnancy accepting the semi-allograft fetus and preventing harmful effects to the developing child. Aberrations in feto-maternal immune adaptation may result in disease of the mother, such as liver injury. Five pregnancy-associated liver disorders have been described so far, however, little is known concerning immune alterations promoting the respective disease. These liver disorders are pre-eclampsia, hemolysis, elevated liver enzymes, low platelet count (HELLP), acute fatty liver, hyperemesis gravidarum, and intrahepatic cholestasis of pregnancy. On the other hand, pre-existing autoimmune liver injury of the mother can be affected by pregnancy. This review intends to summarize current knowledge linking feto-maternal immunology and liver inflammation with a special emphasis on novel potential biomarkers.
Collapse
|
34
|
Abstract
Intrahepatic cholestasis of pregnancy, also known as obstetric cholestasis, is a pruritic condition of pregnancy characterized by an underlying elevation in circulating bile acids and liver derangement, and associated with adverse fetal outcomes, such as preterm labor and stillbirth. Limited understanding of the underlying pathophysiology and mechanisms involved in adverse outcomes has previously restricted treatment options and pregnancy management. Recent advances in these research fields provide tantalizing targets to improve the care of pregnant women affected by this condition.
Collapse
Affiliation(s)
- Caroline Ovadia
- Women's Health Academic Centre, King's College London, London, United Kingdom
| | | |
Collapse
|
35
|
Larson SP, Kovilam O, Agrawal DK. Immunological basis in the pathogenesis of intrahepatic cholestasis of pregnancy. Expert Rev Clin Immunol 2015; 12:39-48. [PMID: 26469633 DOI: 10.1586/1744666x.2016.1101344] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Intrahepatic cholestasis of pregnancy poses a great risk to both maternal and fetal health. Despite extensive research, much of the pathogenesis of this disorder is unknown. The increase in bile acids observed in patients with intrahepatic cholestasis of pregnancy has been noted to cause a change in the immune system from the normally mediated TH2 response to one that is more oriented towards TH1. In this literature review, we have critically reviewed the current literature regarding the changes in the immune system and the potential effects of immunological changes in the management of the patient. The current treatment, ursodeoxycholic acid, is also discussed along with potential combination therapies and future directions for research.
Collapse
Affiliation(s)
- Spencer P Larson
- a Center for Clinical & Translational Science , Creighton University School of Medicine , Omaha , NE , USA.,b Department of Obstetrics and Gynecology , Creighton University School of Medicine , Omaha , NE , USA
| | - Oormila Kovilam
- b Department of Obstetrics and Gynecology , Creighton University School of Medicine , Omaha , NE , USA
| | - Devendra K Agrawal
- a Center for Clinical & Translational Science , Creighton University School of Medicine , Omaha , NE , USA
| |
Collapse
|
36
|
Zhang MY, Wang JP, Feng CH, Li B, Xia XM. Bile salt export pump expression in bile duct tissues of rats with bile duct cancer. Shijie Huaren Xiaohua Zazhi 2015; 23:3254-3258. [DOI: 10.11569/wcjd.v23.i20.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a rat model of bile duct cancer and detect bile salt export pump (Bsep) expression in bile duct tissues of this model, in order to provide a new method for the prevention and treatment of bile duct cancer.
METHODS: Sixty Wistar rats were randomly divided into either a control group or an experimental group, with 30 rats in each group. The control group was fed an ordinary diet, and the experimental group was fed a 3'-Me-DAB diet. After 20 wk, the bile duct cancer model was successfully established. Bile duct tissues were taken from rats in both groups to detect the expression of Bsep by immunohistochemistry (streptavidin-peroxidase) and Western blot.
RESULTS: Both immunohistochemistry and Western blot analyses showed that the expression levels of Bsep were significantly higher in the control group than in the experiment group (66.21% vs 18.75%, χ2 = 10.11, P < 0.05; 0.886 ± 0.017 vs 0.297 ± 0.011, P < 0.05).
CONCLUSION: The expression of Bsep protein decreases significantly in rats with bile duct cancer, which suggests that drugs targeting Bsep may be a new therapeutic strategy for bile duct cancer.
Collapse
|