1
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
2
|
Lao Z, Raju GP, Bai CB, Joyner AL. MASTR: a technique for mosaic mutant analysis with spatial and temporal control of recombination using conditional floxed alleles in mice. Cell Rep 2012; 2:386-96. [PMID: 22884371 DOI: 10.1016/j.celrep.2012.07.004] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/11/2012] [Accepted: 07/10/2012] [Indexed: 11/17/2022] Open
Abstract
Mosaic mutant analysis, the study of cellular defects in scattered mutant cells in a wild-type environment, is a powerful approach for identifying critical functions of genes and has been applied extensively to invertebrate model organisms. A highly versatile technique has been developed in mouse: MASTR (mosaic mutant analysis with spatial and temporal control of recombination), which utilizes the increasing number of floxed alleles and simultaneously combines conditional gene mutagenesis and cell marking for fate analysis. A targeted allele (R26(MASTR)) was engineered; the allele expresses a GFPcre fusion protein following FLP-mediated recombination, which serves the dual function of deleting floxed alleles and marking mutant cells with GFP. Within 24 hr of tamoxifen administration to R26(MASTR) mice carrying an inducible FlpoER transgene and a floxed allele, nearly all GFP-expressing cells have a mutant allele. The fate of single cells lacking FGF8 or SHH signaling in the developing hindbrain was analyzed using MASTR, and it was revealed that there is only a short time window when neural progenitors require FGFR1 for viability and that granule cell precursors differentiate rapidly when SMO is lost. MASTR is a powerful tool that provides cell-type-specific (spatial) and temporal marking of mosaic mutant cells and is broadly applicable to developmental, cancer, and adult stem cell studies.
Collapse
Affiliation(s)
- Zhimin Lao
- Developmental Biology Department, Memorial Sloan-Kettering Cancer Center, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | |
Collapse
|
3
|
Paulmurugan R, Padmanabhan P, Ahn BC, Ray S, Willmann JK, Massoud TF, Biswal S, Gambhir SS. A novel estrogen receptor intramolecular folding-based titratable transgene expression system. Mol Ther 2009; 17:1703-11. [PMID: 19654568 DOI: 10.1038/mt.2009.171] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The use of regulated gene expression systems is important for successful gene therapy applications. In this study, ligand-induced structural change in the estrogen receptor (ER) was used to develop a novel ER intramolecular folding-based transcriptional activation system. The system was studied using ER-variants of different lengths, flanked on either side by the GAL4-DNA-binding domain and the VP16-transactivation domain (GAL4(DBD)-ER-VP16). The ER ligands of different types showed efficient ligand-regulated transactivation. We also characterized a bidirectional transactivation system based on the ER and demonstrated its utility in titrating both reporter and therapeutic gene expression. The ligand-regulated transactivation system developed by using a mutant form of the ER (G521T, lacking affinity for the endogenous ligand 17beta-estradiol, whereas maintaining affinity for other ligands) showed efficient activation by the ligand raloxifene in living mice without significant interference from the circulating endogenous ligand. The ligand-regulated transactivation system was used to test the therapeutic efficiency of the tumor suppressor protein p53 in HepG2 (p53(+/+)) and SKBr3 (p53(-/-)/mutant-p53(+/+)) cells in culture and tumor xenografts in living mice. The multifunctional capabilities of this system should be useful for gene therapy applications, to study ER biology, to evaluate gene regulation, ER ligand screening, and ER ligand biocharacterization in cells and living animals.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Department of Radiology, Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, 150 East Wing, 1st Floor, Stanford, CA 94305-5427, USA.
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Paulmurugan R, Tamrazi A, Katzenellenbogen JA, Katzenellenbogen BS, Gambhir SS. A human estrogen receptor (ER)alpha mutation with differential responsiveness to nonsteroidal ligands: novel approaches for studying mechanism of ER action. Mol Endocrinol 2008; 22:1552-64. [PMID: 18451095 DOI: 10.1210/me.2007-0570] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Estrogens, acting through the estrogen receptors (ERs), play crucial roles in regulating the function of reproductive and other systems under physiological and pathological conditions. ER activity in regulating target genes is modulated by the binding of both steroidal and synthetic nonsteroidal ligands, with ligand binding inducing ERs to adopt various conformations that control their interactions with transcriptional coregulators. Previously, we developed an intramolecular folding sensor with a mutant form of ERalpha (ER(G521T)) that proved to be essentially unresponsive to the endogenous ligand 17beta-estradiol, yet responded very well to certain synthetic ligands. In this study, we have characterized this G521T-ER mutation in terms of the potency and efficacy of receptor response toward several steroidal and nonsteroidal ligands in two different ways: directly, by ligand effects on mutant ER conformation (by the split-luciferase complementation system), and indirectly, by ligand effects on mutant ER transactivation. Full-length G521T-ER shows no affinity for estradiol and does not activate an estrogen-responsive reporter gene. The synthetic pyrazole agonist ligand propyl-pyrazole-triol is approximately 100-fold more potent than estradiol in inducing intramolecular folding and reporter gene transactivation with the mutant ER, whereas both ligands have high potency on wild-type ER. This estradiol-unresponsive mutant ER can also specifically highlight the agonistic property of the selective ER modulator, 4-hydroxytamoxifen, by reporter gene transactivation, even in the presence of estradiol, and it can exert a dominant-negative effect on estrogen-stimulated wild-type ER. This system provides a model for ER-mutants that show differential ligand responsiveness to gene activation to gain insight into the phenomenon of hormone resistance observed in endocrine therapies of ER-positive breast cancers.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Department of Radiology, Stanford University School of Medicine, James H Clark Center, Stanford, CA 94305-5427, USA.
| | | | | | | | | |
Collapse
|
5
|
Skretas G, Meligova AK, Villalonga-Barber C, Mitsiou DJ, Alexis MN, Micha-Screttas M, Steele BR, Screttas CG, Wood DW. Engineered Chimeric Enzymes as Tools for Drug Discovery: Generating Reliable Bacterial Screens for the Detection, Discovery, and Assessment of Estrogen Receptor Modulators. J Am Chem Soc 2007; 129:8443-57. [PMID: 17569534 DOI: 10.1021/ja067754j] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Engineered protein-based sensors of ligand binding have emerged as attractive tools for the discovery of therapeutic compounds through simple screening systems. We have previously shown that engineered chimeric enzymes, which combine the ligand-binding domains of nuclear hormone receptors with a highly sensitive thymidylate synthase reporter, yield simple sensors that report the presence of hormone-like compounds through changes in bacterial growth. This work describes an optimized estrogen sensor in Escherichia coli with extraordinary reliability in identifying diverse estrogenic compounds and in differentiating between their agonistic/antagonistic pharmacological effects. The ability of this system to assist the discovery of new estrogen-mimicking compounds was validated by screening a small compound library, which led to the identification of two structurally novel estrogen receptor modulators and the accurate prediction of their agonistic/antagonistic biocharacter in human cells. Strong evidence is presented here that the ability of our sensor to detect ligand binding and recognize pharmacologically critical properties arises from allosteric communication between the artificially combined protein domains, where different ligand-induced conformational changes in the receptor are transmitted to the catalytic domain and translated to distinct levels of enzymic efficiency. To the best of our knowledge, this is one of the first examples of an engineered enzyme with the ability to sense multiple receptor conformations and to be either activated or inactivated depending on the nature of the bound effector molecule. Because the proposed mechanism of ligand dependence is not specific to nuclear hormone receptors, we anticipate that our protein engineering strategy will be applicable to the construction of simple sensors for different classes of (therapeutic) binding proteins.
Collapse
Affiliation(s)
- Georgios Skretas
- Department of Chemical Engineering, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Paulmurugan R, Gambhir SS. An intramolecular folding sensor for imaging estrogen receptor-ligand interactions. Proc Natl Acad Sci U S A 2006; 103:15883-8. [PMID: 17043219 PMCID: PMC1635097 DOI: 10.1073/pnas.0607385103] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strategies for high-throughput analysis of interactions between various hormones and drugs with the estrogen receptor (ER) are crucial for accelerating the understanding of ER biology and pharmacology. Through careful analyses of the crystal structures of the human ER (hER) ligand-binding domain (hER-LBD) in complex with different ligands, we hypothesized that the hER-LBD intramolecular folding pattern could be used to distinguish ER agonists from selective ER modulators and pure antiestrogens. We therefore constructed and validated intramolecular folding sensors encoding various hER-LBD fusion proteins that could lead to split Renilla/firefly luciferase reporter complementation in the presence of the appropriate ligands. A mutant hER-LBD with low affinity for circulating estradiol was also identified for imaging in living subjects. Cells stably expressing the intramolecular folding sensors expressing wild-type and mutant hER-LBD were used for imaging ligand-induced intramolecular folding in living mice. This is the first hER-LBD intramolecular folding sensor suited for high-throughput quantitative analysis of interactions between hER with hormones and drugs using cell lysates, intact cells, and molecular imaging of small living subjects. The strategies developed can also be extended to study and image other important protein intramolecular folding systems.
Collapse
Affiliation(s)
- Ramasamy Paulmurugan
- Departments of Radiology and Bioengineering, Bio-X Program, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, East Wing, First Floor, Stanford, CA 94305-5427
- *To whom correspondence may be addressed. E-mail:
or
| | - Sanjiv S. Gambhir
- Departments of Radiology and Bioengineering, Bio-X Program, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, James H. Clark Center, 318 Campus Drive, East Wing, First Floor, Stanford, CA 94305-5427
- *To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
7
|
Hunter NL, Awatramani RB, Farley FW, Dymecki SM. Ligand-activated Flpe for temporally regulated gene modifications. Genesis 2005; 41:99-109. [PMID: 15729687 DOI: 10.1002/gene.20101] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The selectivity by which site-specific recombinase-mediated genetic changes can be targeted to specific cells in the mouse has been limited by the fact that many genes used as recombinase "drivers" are expressed either in cell populations that change over time or constitutively in a given cell population for an extended time period, for example, in a germinal zone that gives rise successively to different lineages. These scenarios limit the selective dimension of conditional gene modification experiments as they preclude studying the later-generated lineages either because of earlier phenotypes (in the case of conditional mutagenesis experiments) or because the early and permanent activation of a reporter in a germinal zone results in all descendant lineages being marked (in the case of fate-mapping experiments). To circumvent this limitation, inducible forms of Cre recombinase have been developed, enabling the induction of genetic changes in late embryonic or adult cells accessible only through late aspects of a dynamic driver gene expression profile. To increase the number of tools available for engineering genetic changes in selective cell populations, we have generated a ligand-regulated form of Flpe using the recombinase-steroid receptor fusion approach. In two prototypical scenarios, we show that the fused gene product, FlpeER(T2), is competent to mediate DNA recombination in vivo and responds specifically to the inducer tamoxifen in a dose-dependent manner without detectable background activity.
Collapse
Affiliation(s)
- Nina L Hunter
- Harvard Medical School, Department of Genetics, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
8
|
Abstract
One of the most powerful tools that the molecular biology revolution has given us is the ability to turn genes on and off at our discretion. In the mouse, this has been accomplished by using binary systems in which gene expression is dependent on the interaction of two components, resulting in either transcriptional transactivation or DNA recombination. During recent years, these systems have been used to analyse complex and multi-staged biological processes, such as embryogenesis and cancer, with unprecedented precision. Here, I review these systems and discuss certain studies that exemplify the advantages and limitations of each system.
Collapse
Affiliation(s)
- M Lewandoski
- Section of Genetics of Vertebrate Development, Laboratory of Cancer and Developmental Biology, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland 21702-1201, USA.
| |
Collapse
|
9
|
Molina J, Massó F, Paez A, Mendez C, Rodríguez E, Mandoki JJ, Díaz de Léon L, Montaño LF. Differential effect of estradiol on antibody secretion of murine hybridomas. Hybridoma (Larchmt) 1999; 18:377-83. [PMID: 10571269 DOI: 10.1089/hyb.1999.18.377] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The need for increased antibody production by hybridomas has been approached by the addition to cell cultures of different growth factors; in vitro addition of estradiol-17beta (E2) to human blood lymphocytes increases the accumulation of plasma-blasts and Ig-secreting cells. Four different murine-murine hybridomas secreting different monoclonal antibodies (MAbs) were treated with E2. Specific antibody concentration was measured by enzyme-linked immunoadsorbent assay (ELISA) in culture supernatants whereas expression of E2-receptor in the hybridoma cells was determined by polymerase chain reaction (PCR). When E2 was added as a growth supplement to alpha-estrogen receptor positive murine-murine hybridomas it enhanced MAb secretion by as much as 255%, in a dose-dependant manner. This effect lasted for as long as the alpha-estrogen receptor was detected in the hybridoma cells, was inhibited by tamoxifen and was not observed in alpha-estrogen receptor negative hybridomas. The synthetic estrogen analogue diethylstilbestrol had no effect. Estradiol-17beta should be added to the list of hybridoma-inducing growth factors.
Collapse
Affiliation(s)
- J Molina
- Department de Biología Celular, Instituto Nacional de Cardiología Ignacio Chávez, México, DF Mexico
| | | | | | | | | | | | | | | |
Collapse
|