1
|
Chasseloup F, Bernard V, Chanson P. Prolactin: structure, receptors, and functions. Rev Endocr Metab Disord 2024; 25:953-966. [PMID: 39476210 DOI: 10.1007/s11154-024-09915-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/06/2024] [Indexed: 12/08/2024]
Abstract
Prolactin (PRL) is a 23-kDa protein synthesized and secreted by lactotroph cells of the anterior pituitary gland but also by other peripheral tissues. PRL binds directly to a unique transmembrane receptor (PRLR), and the JAK2/signal transducer and activator of transcription 5 (Stat5) pathway is considered the major downstream pathway for PRLR signaling. To a lesser extent, PRL may be cleaved into the shorter 16-kDa PRL, also called vasoinhibin, whose signaling is not fully known. According to rodent models of PRL signaling inactivation and the identification of human genetic alterations in PRL signaling, a growing number of biological processes are partly mediated by PRL or its downstream effectors. In this review, we focused on PRL structure and signaling and its canonical function in reproduction. In addition to regulating reproductive functions, PRL also plays a role in behavior, notably in initiating nurturing and maternal behavior. We also included recent insights into PRL function in several fields, including migraines, metabolic homeostasis, inflammatory and autoimmune disease, and cancer. Despite the complexity of understanding the many functions of PRL, new research in this field offers interesting perspectives on physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Fanny Chasseloup
- Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse (HYPO), Hôpital Bicêtre, INSERM, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, 94275, France
| | - Valérie Bernard
- Department of Gynecology and Reproductive Medicine, CHU de Bordeaux, Bordeaux, F-33000, France
- Univ. Bordeaux, Bordeaux Institute in Oncology-BRIC-BioGo Team, INSERM U1312, Bordeaux, F-33000, France
| | - Philippe Chanson
- Physiologie et Physiopathologie Endocriniennes, Service d'Endocrinologie et des Maladies de la Reproduction, Centre de Référence des Maladies Rares de l'Hypophyse (HYPO), Hôpital Bicêtre, INSERM, Université Paris-Saclay, AP-HP, Le Kremlin-Bicêtre, 94275, France.
| |
Collapse
|
2
|
Nawaz S, Kulyar MFEA, Mo Q, Yao W, Iqbal M, Li J. Homeostatic Regulation of Pro-Angiogenic and Anti-Angiogenic Proteins via Hedgehog, Notch Grid, and Ephrin Signaling in Tibial Dyschondroplasia. Animals (Basel) 2023; 13:3750. [PMID: 38136788 PMCID: PMC10740744 DOI: 10.3390/ani13243750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
Precise coupling of two fundamental mechanisms, chondrogenesis and osteogenesis via angiogenesis, plays a crucial role during rapid proliferation of growth plates, and alteration in their balance might lead to pathogenic conditions. Tibial dyschondroplasia (TD) is characterized by an avascular, non-mineralized, jade-white "cartilaginous wedge" with impaired endochondral ossification and chondrocyte proliferation at the proximal end of a tibial bone in rapidly growing poultry birds. Developing vascular structures are dynamic with cartilage growth and are regulated through homeostatic balance among pro and anti-angiogenic proteins and cytokines. Pro-angiogenic factors involves a wide spectrum of multifactorial mitogens, such as vascular endothelial growth factors (VEGF), platelet-derived growth factors (PDGF), basic fibroblast growth factor (bFGF), placental growth factors, transforming growth factor-β (TGF-β), and TNF-α. Considering their regulatory role via the sonic hedgehog, notch-gridlock, and ephrin-B2/EphB4 pathways and inhibition through anti-angiogenic proteins like angiostatin, endostatin, decoy receptors, vasoinhibin, thrombospondin, PEX, and troponin, their possible role in persisting inflammatory conditions like TD was studied in the current literature review. Balanced apoptosis and angiogenesis are vital for physiological bone growth. Any homeostatic imbalance among apoptotic, angiogenetic, pro-angiogenic, or anti-angiogenic proteins ultimately leads to pathological bone conditions like TD and osteoarthritis. The current review might substantiate solid grounds for developing innovative therapeutics for diseases governed by the disproportion of angiogenesis and anti-angiogenesis proteins.
Collapse
Affiliation(s)
- Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Muhammad Fakhar-e-Alam Kulyar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Wangyuan Yao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| | - Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (S.N.); (M.F.-e.-A.K.); (W.Y.); (M.I.)
| |
Collapse
|
3
|
Skóra JP, Antkiewicz M, Kupczyńska D, Kulikowska K, Strzelec B, Janczak D, Barć P. Local intramuscular administration of ANG1 and VEGF genes using plasmid vectors mobilizes CD34+ cells to peripheral tissues and promotes angiogenesis in an animal model. Biomed Pharmacother 2021; 143:112186. [PMID: 34649339 DOI: 10.1016/j.biopha.2021.112186] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
INTRODUCTION Patients with peripheral artery disease have poor prognosis despite advances in vascular surgery. Therefore, attempts have been made at using gene and cell therapy to stimulate angiogenesis in the lower limbs in patients with critical lower limb ischemia (CLI). METHODS The study included 30 rats divided into 3 groups. An intramuscular injection of a therapeutic gene or cells in the right hind limb was administered in each group: angiopoietin-1 (ANG1) plasmid in group 1, ANG1/vascular endothelial growth factor (ANG1/VEGF) bicistronic construct in group 2, and naked plasmid in group 3 (control). After 3 months of follow-up, tissue samples were harvested, and vessels that stained positively for CD34 cells were quantified. RESULTS The highest CD34+ cell count was noted in the ANG1/VEGF group (98.26 cells), followed by the ANG1 group (80.31) and control group (47.93). The CD34+ cell count was significantly higher in the ANG1/VEGF and ANG1 groups than in the control group. There was no significant difference in the CD34+ cell count between the ANG1/VEGF and ANG1 groups. CONCLUSION Our study confirmed that therapy with ANG1 plasmid alone or ANG1/VEGF bicistronic construct is safe and effective in a rat model. The therapy resulted in the recruitment of more CD34+ vascular endothelial cells than in the control group receiving naked plasmid.
Collapse
Affiliation(s)
- Jan Paweł Skóra
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Antkiewicz
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland.
| | - Diana Kupczyńska
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Katarzyna Kulikowska
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Bartłomiej Strzelec
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Dariusz Janczak
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Barć
- Department and Clinic of Vascular, General and Transplantation Surgery, Jan Mikulicz-Radecki University Hospital, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
4
|
Yun BY, Cho C, Cho BN. Differential activity of 16K rat prolactin in different organic systems. Anim Cells Syst (Seoul) 2019; 23:135-142. [PMID: 30949401 PMCID: PMC6440500 DOI: 10.1080/19768354.2018.1554543] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Revised: 11/06/2018] [Accepted: 11/26/2018] [Indexed: 01/08/2023] Open
Abstract
The 16K isoform of rat prolactin (16K rPRL) performs multiple functions in various systems including angiogenesis, tumorigenesis, and reproduction. Recently, 16K rPRL has attained prominence as a possible therapeutic target in pathophysiological conditions. However, the integral function and mechanism of 16K rPRL in various systems has not been elucidated. To this end, a transient gain-of-function animal model was adopted. An expression DNA plasmid containing 16K rPRL or rPRL gene was introduced into the muscle of adult mice by direct injection. The mRNA and protein expression levels of 16K rPRL were detected by initial RT–PCR and subsequent Southern blot and western blot, respectively. When the expression vector was introduced, the results were as follows: First, 16K rPRL combined with rPRL reduced angiogenesis in the testis whereas rPRL alone induced angiogenesis. Second, 16K rPRL combined with rPRL reduced WBC proliferation, whereas rPRL alone increased WBC proliferation. Third, 16K rPRL combined with rPRL reduced diestrus, whereas rPRL alone extended diestrus. Fourth, 16K rPRL combined with rPRL unexpectedly increased testosterone (T) levels, whereas rPRL alone did not increase T levels. Taken together, our data suggest that the 16K rPRL isoform performs integral functions in angiogenesis in the testis, WBC proliferation, and reproduction, although the action of 16K rPRL is not always antagonistic.
Collapse
Affiliation(s)
- Bo-Young Yun
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| | - Chunghee Cho
- Department of Life Science Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Byung-Nam Cho
- Department of Life Science, The Catholic University of Korea, Bucheon, Korea
| |
Collapse
|
5
|
Nakajima R, Nakamura E, Harigaya T. Vasoinhibin, an N-terminal Prolactin Fragment, Directly Inhibits Cardiac Angiogenesis in Three-dimensional Heart Culture. Front Endocrinol (Lausanne) 2017; 8:4. [PMID: 28163696 PMCID: PMC5247450 DOI: 10.3389/fendo.2017.00004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/06/2017] [Indexed: 12/31/2022] Open
Abstract
Vasoinhibins (Vi) are fragments of the growth hormone/prolactin (PRL) family and have antiangiogenic functions in many species. It is considered that Vi derived from PRL are involved in the pathogenesis of peripartum cardiomyopathy (PPCM). However, the pathogenic mechanism of PPCM, as well as heart angiogenesis, is not yet clear. Therefore, the aim of the present study is to clarify whether Vi act directly on angiogenesis inhibition in heart blood vessels. Endothelial cell viability was decreased by Vi treatment in a culture experiment. Furthermore, expression of proangiogenic genes, such as vascular endothelial growth factor, endothelial nitric oxide synthase, and VE-cadherin, were decreased. On the other hand, apoptotic factor gene, caspase 3, and inflammatory factor genes, tumor necrosis factor α and interleukin 6, were increased by Vi treatment. In three-dimensional left ventricular wall angiogenesis assay in mice, Vi treatment also inhibited cell migration, neovessel sprouting, and growth toward collagen gel. These data demonstrate that Vi treatment directly suppresses angiogenesis of the heart and support the hypothesis that Vi induce PPCM.
Collapse
Affiliation(s)
- Ryojun Nakajima
- Laboratory of Functional Anatomy, Faculty of Agriculture, Department of Life Sciences, Meiji University, Kawasaki, Japan
- *Correspondence: Ryojun Nakajima,
| | - Eri Nakamura
- Laboratory of Functional Anatomy, Faculty of Agriculture, Department of Life Sciences, Meiji University, Kawasaki, Japan
| | - Toshio Harigaya
- Laboratory of Functional Anatomy, Faculty of Agriculture, Department of Life Sciences, Meiji University, Kawasaki, Japan
| |
Collapse
|
6
|
Clapp C, Adán N, Ledesma-Colunga MG, Solís-Gutiérrez M, Triebel J, Martínez de la Escalera G. The role of the prolactin/vasoinhibin axis in rheumatoid arthritis: an integrative overview. Cell Mol Life Sci 2016; 73:2929-48. [PMID: 27026299 PMCID: PMC11108309 DOI: 10.1007/s00018-016-2187-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 03/08/2016] [Accepted: 03/18/2016] [Indexed: 12/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic, autoimmune, inflammatory disease destroying articular cartilage and bone. The female preponderance and the influence of reproductive states in RA have long linked this disease to sexually dimorphic, reproductive hormones such as prolactin (PRL). PRL has immune-enhancing properties and increases in the circulation of some patients with RA. However, PRL also suppresses the immune system, stimulates the formation and survival of joint tissues, acquires antiangiogenic properties upon its cleavage to vasoinhibins, and protects against joint destruction and inflammation in the adjuvant-induced model of RA. This review addresses risk factors for RA linked to PRL, the effects of PRL and vasoinhibins on joint tissues, blood vessels, and immune cells, and the clinical and experimental data associating PRL with RA. This information provides important insights into the pathophysiology of RA and highlights protective actions of the PRL/vasoinhibin axis that could lead to therapeutic benefits.
Collapse
MESH Headings
- Angiogenesis Inhibitors/immunology
- Animals
- Arthritis, Rheumatoid/epidemiology
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/physiopathology
- Cartilage, Articular/blood supply
- Cartilage, Articular/immunology
- Cartilage, Articular/pathology
- Cartilage, Articular/physiopathology
- Female
- Humans
- Immune Tolerance
- Immunity, Cellular
- Inflammation/epidemiology
- Inflammation/immunology
- Inflammation/pathology
- Inflammation/physiopathology
- Joints/blood supply
- Joints/immunology
- Joints/pathology
- Joints/physiopathology
- Male
- Prolactin/immunology
- Reproduction
- Sex Factors
- Stress, Physiological
- Stress, Psychological
Collapse
Affiliation(s)
- Carmen Clapp
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico.
| | - Norma Adán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| | - María G Ledesma-Colunga
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| | - Mariana Solís-Gutiérrez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| | - Jakob Triebel
- Institute for Clinical Chemistry, Laboratory Medicine and Transfusion Medicine, Paracelsus Medical University, Nuremberg, Germany
| | - Gonzalo Martínez de la Escalera
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM, Juriquilla, 76230, Querétaro, Mexico
| |
Collapse
|
7
|
Ioannou MS, McPherson PS. Regulation of Cancer Cell Behavior by the Small GTPase Rab13. J Biol Chem 2016; 291:9929-37. [PMID: 27044746 DOI: 10.1074/jbc.r116.715193] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The members of the Rab family of GTPases are master regulators of cellular membrane trafficking. With ∼70 members in humans, Rabs have been implicated in all steps of membrane trafficking ranging from vesicle formation and transport to vesicle docking/tethering and fusion. Vesicle trafficking controls the localization and levels of a myriad of proteins, thus regulating cellular functions including proliferation, metabolism, cell-cell adhesion, and cell migration. It is therefore not surprising that impairment of Rab pathways is associated with diseases including cancer. In this review, we highlight evidence supporting the role of Rab13 as a potent driver of cancer progression.
Collapse
Affiliation(s)
- Maria S Ioannou
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
8
|
Yang X, Friedl A. A positive feedback loop between prolactin and STAT5 promotes angiogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 846:265-80. [PMID: 25472543 DOI: 10.1007/978-3-319-12114-7_12] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The signal transduction events that orchestrate cellular activities required for angiogenesis remain incompletely understood. We and others recently described that proangiogenic mediators such as fibroblast growth factors can activate members of the signal transducers and activators of transcription (STAT) family. STAT5 activation is necessary and sufficient to induce migration, invasion and tube formation of endothelial cells. STAT5 effects on endothelial cells require the secretion of the prolactin (PRL) family member proliferin-1 (PLF1) in mice and PRL in humans. In human endothelial cells, PRL activates the PRL receptor (PRLR) resulting in MAPK and STAT5 activation, thus closing a positive feedback loop. In vivo, endothelial cell-derived PRL is expected to combine with PRL of tumor cell and pituitary origin to raise the concentration of this polypeptide hormone in the tumor microenvironment. Thus, PRL may stimulate tumor angiogenesis via autocrine, paracrine, and endocrine pathways. The disruption of tumor angiogenesis by interfering with PRL signaling may offer an attractive target for therapeutic intervention.
Collapse
Affiliation(s)
- Xinhai Yang
- Department of Pathology and Laboratory Medicine, University of Wisconsin, 6051 WIMR, MC-2275, 1111 Highland Avenue, 53705, Madison, WI, USA,
| | | |
Collapse
|
9
|
George EM, Garrett MR, Granger JP. Placental ischemia induces changes in gene expression in chorionic tissue. Mamm Genome 2014; 25:253-61. [PMID: 24668059 DOI: 10.1007/s00335-014-9505-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Accepted: 12/18/2013] [Indexed: 01/31/2023]
Abstract
Preeclampsia is a serious and common hypertensive complication of pregnancy, affecting ~5 to 8 % of pregnancies. The underlying cause of preeclampsia is believed to be placental ischemia, which causes secretion of pathogenic factors into the maternal circulation. While a number of these factors have been identified, it is likely that others remain to be elucidated. Here, we have utilized a relevant preclinical rodent model of placental ischemia-induced hypertension, the reduced uterine perfusion pressure (RUPP) model, to determine the effect of chronic placental ischemia on the underlying chorionic tissue and placental villi. Tissue from control and RUPP rats were isolated on gestational day 19 and mRNA from these tissues was subjected to microarray analysis to determine differential gene expression. At a statistical cutoff of p < 0.05, some 2,557 genes were differentially regulated between the two groups. Interestingly, only a small subset (22) of these genes exhibited changes of greater than 50 % versus control, a large proportion of which were subsequently confirmed using qRT-PCR analysis. Network analysis indicated a strong effect on inflammatory pathways, including those involving NF-κB and inflammatory cytokines. Of the most differentially expressed genes, the predominant gene classes were extracellular remodeling proteins, pro-inflammatory proteins, and a coordinated upregulation of the prolactin genes. The functional implications of these novel factors are discussed.
Collapse
Affiliation(s)
- Eric M George
- Departments of Physiology and Biophysics, University of Mississippi Medical Center, 2500 N. State St., Jackson, MS, 39216, USA,
| | | | | |
Collapse
|
10
|
Pescosolido N, Campagna O, Barbato A. Diabetic retinopathy and pregnancy. Int Ophthalmol 2014; 34:989-97. [PMID: 24482250 DOI: 10.1007/s10792-014-9906-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 01/16/2014] [Indexed: 12/18/2022]
Abstract
Diabetes mellitus and pregnancy have reciprocal influences between them, therefore diabetes mellitus may complicate the course of pregnancy as well as pregnancy can worsen the performance of diabetes especially at the fundus oculi. Several factors seem to play a role in retinal neovascularization. Actually it's not possible to understand the mechanisms underlying this progression. Moreover chronic hyperglycemia leads to several events such as: the activation of aldose reductase metabolic pathway, the activation of the diacylglycerol-protein kinase C, the non-enzymatic glycation of proteins with formation of advanced glycation endproducts and the increase of hexosamines pathway. Although every structure of the eye can be affected by diabetes, retinal tissue, with all its vessels, is particularly susceptible. Pregnancy may promote the onset of diabetic retinopathy, in about 10 % of cases, as well as contribute to its worsening when already present. The proliferative retinopathy must always be treated; treatment should be earlier in pregnant women compared to non-pregnant women. Pregnancy can also cause macular edema; it spontaneously regresses during the postpartum and therefore does not require immediate treatment. In summary, collaboration between the various specialists is primary to ensure the best outcomes for both mother's health and sight, and fetus' health.
Collapse
Affiliation(s)
- Nicola Pescosolido
- Department of Cardiovascular, Respiratory, Nephrology, Geriatric and Anesthesiology Science, "Sapienza" University of Rome, viale del Policlinico 155, 00161, Rome, Italy
| | | | | |
Collapse
|
11
|
Haeussler DJ, Pimentel DR, Hou X, Burgoyne JR, Cohen RA, Bachschmid MM. Endomembrane H-Ras controls vascular endothelial growth factor-induced nitric-oxide synthase-mediated endothelial cell migration. J Biol Chem 2013; 288:15380-9. [PMID: 23548900 PMCID: PMC3663556 DOI: 10.1074/jbc.m112.427765] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We demonstrate for the first time that endomembrane-delimited H-Ras mediates VEGF-induced activation of endothelial nitric-oxide synthase (eNOS) and migratory response of human endothelial cells. Using thiol labeling strategies and immunofluorescent cell staining, we found that only 31% of total H-Ras is S-palmitoylated, tethering the small GTPase to the plasma membrane but leaving the function of the large majority of endomembrane-localized H-Ras unexplained. Knockdown of H-Ras blocked VEGF-induced PI3K-dependent Akt (Ser-473) and eNOS (Ser-1177) phosphorylation and nitric oxide-dependent cell migration, demonstrating the essential role of H-Ras. Activation of endogenous H-Ras led to recruitment and phosphorylation of eNOS at endomembranes. The loss of migratory response in cells lacking endogenous H-Ras was fully restored by modest overexpression of an endomembrane-delimited H-Ras palmitoylation mutant. These studies define a newly recognized role for endomembrane-localized H-Ras in mediating nitric oxide-dependent proangiogenic signaling.
Collapse
Affiliation(s)
- Dagmar J Haeussler
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
12
|
Hilfiker-Kleiner D, Struman I, Hoch M, Podewski E, Sliwa K. 16-kDa prolactin and bromocriptine in postpartum cardiomyopathy. Curr Heart Fail Rep 2012; 9:174-82. [PMID: 22729360 DOI: 10.1007/s11897-012-0095-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Peripartum cardiomyopathy (PPCM) is a potentially life-threatening heart disease emerging toward the end of pregnancy or in the first postpartal months in previously healthy women. Recent data suggest a central role of unbalanced peri-/postpartum oxidative stress that triggers the proteolytic cleavage of the nursing hormone prolactin (PRL) into a potent antiangiogenic, proapoptotic, and proinflammatory 16-kDa PRL fragment. This notion is supported by the observation that inhibition of PRL secretion by bromocriptine, a dopamine D2-receptor agonist, prevented the onset of disease in an animal model of PPCM and by first clinical experiences where bromocriptine seem to exert positive effects with respect to prevention or treatment of PPCM patients. Here, we highlight the current state of knowledge on diagnosis of PPCM, provide insights into the biology and pathophysiology of 16-kDa PRL and bromocriptine, and outline potential consequences for the clinical management and treatment options for PPCM patients.
Collapse
Affiliation(s)
- Denise Hilfiker-Kleiner
- Department of Cardiology and Angiology, Medizinische Hochschule Hannover, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| | | | | | | | | |
Collapse
|
13
|
Wu C, Horowitz A. Membrane traffic as a coordinator of cell migration and junction remodeling. Commun Integr Biol 2012; 4:703-5. [PMID: 22446532 DOI: 10.4161/cib.17140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The change in the overall shape of developing organs is a consequence of the cumulative movement, reshaping, and proliferation of the individual mural cells that make up the walls of these organs. Recent observations suggest that the shape and the position of endothelial cells (ECs) in growing blood vessels are highly dynamic, implying that these cells remodel their junctions extensively and do not preserve their initial relative positions. In order to determine the mechanisms that confer the dynamic behavior of mural ECs, we tracked the trafficking of a cell junction protein complex that consists of the RhoA-specific guanine exchange factor (GEF) Syx, the scaffold protein Mupp1, and the phospholipid binding protein Amot.1 We found that RhoA co-trafficked with this complex on the same endocytic vesicles, and that its cellular activity pattern was determined by Rab13-dependent trafficking. The vesicles were targeted by a Rab13-associated protein complex to Tyr(1175)-phosphorylated VEGFR2 at the leading edge of ECs migrating under a VEGF gradient. These results indicate that the dynamic behavior of ECs in sprouting vessels is conferred by using the same protein complex for the regulation of both cell junctions and cell motility. Together with previous studies that demonstrated regulation of Rac signaling by Rab5-dependent trafficking,(2) it appears now that membrane traffic is tightly coupled to the regulation of Rho GTPases, and, consequently, to the regulation of the actin cytoskeleton, cell junctions, and cell migration.
Collapse
Affiliation(s)
- Chuanshen Wu
- Department of Molecular Cardiology, Cleveland Clinic Lerner College of Medicine; Cleveland, OH USA
| | | |
Collapse
|
14
|
Horowitz A, Seerapu HR. Regulation of VEGF signaling by membrane traffic. Cell Signal 2012; 24:1810-20. [PMID: 22617029 DOI: 10.1016/j.cellsig.2012.05.007] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 05/09/2012] [Indexed: 01/13/2023]
Abstract
Recent findings have drawn attention to the role of membrane traffic in the signaling of vascular endothelial growth factor (VEGF). The significance of this development stems from the pivotal function of VEGF in vasculogenesis and angiogenesis. The outline of the regulation of VEGF receptor (VEGFR) signaling by membrane traffic is similar to that of the epidermal growth factor receptor (EGFR), a prototype of the intertwining between membrane traffic and signaling. There are, however, unique features in VEGFR signaling that are conferred in part by the involvement of the co-receptor neuropilin (Nrp). Nrp1 and VEGFR2 are integrated into membrane traffic through the adaptor protein synectin, which recruits myosin VI, a molecular motor that drives inward trafficking [17,21,64]. The recent detection of only mild vascular defects in a knockin mouse model that expresses Nrp1 lacking a cytoplasmic domain [104], questions the co-receptor's role in VEGF signaling and membrane traffic. The regulation of endocytosis by ephrin-B2 is another feature unique to VEGR2/3 [18,19], but it awaits a mechanistic explanation. Current models do not fully explain how membrane traffic bridges between VEGFR and the downstream effectors that produce its functional outcome, such as cell migration. VEGF-A appears to accomplish this task in part by recruiting endocytic vesicles carrying RhoA to internalized active VEGFR2 [58].
Collapse
Affiliation(s)
- Arie Horowitz
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, 9500 Euclid Avenue, Cleveland, OH 44195, USA.
| | | |
Collapse
|
15
|
Nguyen NQN, Castermans K, Berndt S, Herkenne S, Tabruyn SP, Blacher S, Lion M, Noel A, Martial JA, Struman I. The antiangiogenic 16K prolactin impairs functional tumor neovascularization by inhibiting vessel maturation. PLoS One 2011; 6:e27318. [PMID: 22087289 PMCID: PMC3210157 DOI: 10.1371/journal.pone.0027318] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 10/13/2011] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Angiogenesis, the formation of new blood vessels from existing vasculature, plays an essential role in tumor growth, invasion, and metastasis. 16K hPRL, the antiangiogenic 16-kDa N-terminal fragment of human prolactin was shown to prevent tumor growth and metastasis by modifying tumor vessel morphology. METHODOLOGY/PRINCIPAL FINDINGS Here we investigated the effect of 16K hPRL on tumor vessel maturation and on the related signaling pathways. We show that 16K hPRL treatment leads, in a murine B16-F10 tumor model, to a dysfunctional tumor vasculature with reduced pericyte coverage, and disruption of the PDGF-B/PDGFR-B, Ang/Tie2, and Delta/Notch pathways. In an aortic ring assay, 16K hPRL impairs endothelial cell and pericyte outgrowth from the vascular ring. In addition, 16K hPRL prevents pericyte migration to endothelial cells. This event was independent of a direct inhibitory effect of 16K hPRL on pericyte viability, proliferation, or migration. In endothelial cell-pericyte cocultures, we found 16K hPRL to disturb Notch signaling. CONCLUSIONS/SIGNIFICANCE Taken together, our data show that 16K hPRL impairs functional tumor neovascularization by inhibiting vessel maturation and for the first time that an endogenous antiangiogenic agent disturbs Notch signaling. These findings provide new insights into the mechanisms of 16K hPRL action and highlight its potential for use in anticancer therapy.
Collapse
Affiliation(s)
- Ngoc-Quynh-Nhu Nguyen
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Karolien Castermans
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Sarah Berndt
- Laboratory of Biology of Tumor and Development, GIGA-Research, University of Liège, Liège, Belgium
| | - Stephanie Herkenne
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Sebastien P. Tabruyn
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Silvia Blacher
- Laboratory of Biology of Tumor and Development, GIGA-Research, University of Liège, Liège, Belgium
| | - Michelle Lion
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Agnes Noel
- Laboratory of Biology of Tumor and Development, GIGA-Research, University of Liège, Liège, Belgium
| | - Joseph A. Martial
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
| | - Ingrid Struman
- Unit of Molecular Biology and Genetic Engineering, GIGA-Research, University of Liège, Liège, Belgium
- * E-mail:
| |
Collapse
|
16
|
Wu C, Agrawal S, Vasanji A, Drazba J, Sarkaria S, Xie J, Welch CM, Liu M, Anand-Apte B, Horowitz A. Rab13-dependent trafficking of RhoA is required for directional migration and angiogenesis. J Biol Chem 2011; 286:23511-20. [PMID: 21543326 DOI: 10.1074/jbc.m111.245209] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Angiogenesis requires concomitant remodeling of cell junctions and migration, as exemplified by recent observations of extensive endothelial cell movement along growing blood vessels. We report that a protein complex that regulates cell junctions is required for VEGF-driven directional migration and for angiogenesis in vivo. The complex consists of RhoA and Syx, a RhoA guanine exchange factor cross-linked by the Crumbs polarity protein Mupp1 to angiomotin, a phosphatidylinositol-binding protein. The Syx-associated complex translocates to the leading edge of migrating cells by membrane trafficking that requires the tight junction recycling GTPase Rab13. In turn, Rab13 associates with Grb2, targeting Syx and RhoA to Tyr(1175)-phosphorylated VEGFR2 at the leading edge. Rab13 knockdown in zebrafish impeded sprouting of intersegmental vessels and diminished the directionality of their tip cells. These results indicate that endothelial cell mobility in sprouting vessels is facilitated by shuttling the same protein complex from disassembling junctions to the leading edges of cells.
Collapse
Affiliation(s)
- Chuanshen Wu
- Department of Molecular Cardiology, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sabatel C, Cornet AM, Tabruyn SP, Malvaux L, Castermans K, Martial JA, Struman I. Sprouty1, a new target of the angiostatic agent 16K prolactin, negatively regulates angiogenesis. Mol Cancer 2010; 9:231. [PMID: 20813052 PMCID: PMC2944818 DOI: 10.1186/1476-4598-9-231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 09/02/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Disorganized angiogenesis is associated with several pathologies, including cancer. The identification of new genes that control tumor neovascularization can provide novel insights for future anti-cancer therapies. Sprouty1 (SPRY1), an inhibitor of the MAPK pathway, might be one of these new genes. We identified SPRY1 by comparing the transcriptomes of untreated endothelial cells with those of endothelial cells treated by the angiostatic agent 16 K prolactin (16 K hPRL). In the present study, we aimed to explore the potential function of SPRY1 in angiogenesis. RESULTS We confirmed 16 K hPRL induced up-regulation of SPRY1 in primary endothelial cells. In addition, we demonstrated the positive SPRY1 regulation in a chimeric mouse model of human colon carcinoma in which 16 K hPRL treatment was shown to delay tumor growth. Expression profiling by qRT-PCR with species-specific primers revealed that induction of SPRY1 expression by 16 K hPRL occurs only in the (murine) endothelial compartment and not in the (human) tumor compartment. The regulation of SPRY1 expression was NF-κB dependent. Partial SPRY1 knockdown by RNA interference protected endothelial cells from apoptosis as well as increased endothelial cell proliferation, migration, capillary network formation, and adhesion to extracellular matrix proteins. SPRY1 knockdown was also shown to affect the expression of cyclinD1 and p21 both involved in cell-cycle regulation. These findings are discussed in relation to the role of SPRY1 as an inhibitor of ERK/MAPK signaling and to a possible explanation of its effect on cell proliferation. CONCLUSIONS Taken together, these results suggest that SPRY1 is an endogenous angiogenesis inhibitor.
Collapse
Affiliation(s)
- Céline Sabatel
- Unit of Molecular Biology and Genetic Engineering, GIGA-research, University of Liège, B34, Avenue de l'Hôpital, 1, Liège, Belgium
| | | | | | | | | | | | | |
Collapse
|
18
|
Kinet V, Nguyen NQN, Sabatel C, Blacher S, Noël A, Martial JA, Struman I. Antiangiogenic liposomal gene therapy with 16K human prolactin efficiently reduces tumor growth. Cancer Lett 2009; 284:222-8. [PMID: 19473755 DOI: 10.1016/j.canlet.2009.04.030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 04/21/2009] [Accepted: 04/23/2009] [Indexed: 10/20/2022]
Abstract
Human 16K PRL (16K hPRL) is a potent inhibitor of angiogenesis both in vitro and in vivo. It has been shown to prevent tumor growth in three xenograft mouse models. Here we have used a gene transfer method based on cationic liposomes to produce 16K hPRL and demonstrate that 16K hPRL inhibits tumor growth in a subcutaneous B16F10 mouse melanoma model. Computer-assisted image analysis shows that 16K hPRL treatment results in the reduction of tumor vessel length and width, leading to a 57% reduction in average vessel size. We thus show, for the first time, that administration of the 16K hPRL gene complexed to cationic liposomes is effective to maintain antiangiogenic activities of 16K hPRL level.
Collapse
Affiliation(s)
- Virginie Kinet
- GIGA-Research, Molecular Biology and Genetic Engineering Unit, University of Liège, 4000 Sart Tilman, Belgium
| | | | | | | | | | | | | |
Collapse
|
19
|
García C, Aranda J, Arnold E, Thébault S, Macotela Y, López-Casillas F, Mendoza V, Quiroz-Mercado H, Hernández-Montiel HL, Lin SH, de la Escalera GM, Clapp C. Vasoinhibins prevent retinal vasopermeability associated with diabetic retinopathy in rats via protein phosphatase 2A-dependent eNOS inactivation. J Clin Invest 2008; 118:2291-300. [PMID: 18497878 DOI: 10.1172/jci34508] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2007] [Accepted: 04/09/2008] [Indexed: 12/30/2022] Open
Abstract
Increased retinal vasopermeability contributes to diabetic retinopathy, the leading cause of blindness in working-age adults. Despite clinical progress, effective therapy remains a major need. Vasoinhibins, a family of peptides derived from the protein hormone prolactin (and inclusive of the 16-kDa fragment of prolactin), antagonize the proangiogenic effects of VEGF, a primary mediator of retinal vasopermeability. Here, we demonstrate what we believe to be a novel function of vasoinhibins as inhibitors of the increased retinal vasopermeability associated with diabetic retinopathy. Vasoinhibins inhibited VEGF-induced vasopermeability in bovine aortic and rat retinal capillary endothelial cells in vitro. In vivo, vasoinhibins blocked retinal vasopermeability in diabetic rats and in response to intravitreous injection of VEGF or of vitreous from patients with diabetic retinopathy. Inhibition by vasoinhibins was similar to that achieved following immunodepletion of VEGF from human diabetic retinopathy vitreous or blockage of NO synthesis, suggesting that vasoinhibins inhibit VEGF-induced NOS activation. We further showed that vasoinhibins activate protein phosphatase 2A (PP2A), leading to eNOS dephosphorylation at Ser1179 and, thereby, eNOS inactivation. Moreover, intravitreous injection of okadaic acid, a PP2A inhibitor, blocked the vasoinhibin effect on endothelial cell permeability and retinal vasopermeability. These results suggest that vasoinhibins have the potential to be developed as new therapeutic agents to control the excessive retinal vasopermeability observed in diabetic retinopathy and other vasoproliferative retinopathies.
Collapse
Affiliation(s)
- Celina García
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Lee SH, Kunz J, Lin SH, Yu-Lee LY. 16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway. Cancer Res 2007; 67:11045-53. [PMID: 18006851 DOI: 10.1158/0008-5472.can-07-0986] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiogenesis plays a key role in promoting tumorigenesis and metastasis. The 16-kDa fragment of prolactin (16k PRL) is an NH(2)-terminal natural breakdown fragment of the intact 23-kDa prolactin and has been shown to have potent antiangiogenic and antitumor activities. The mechanism(s) involved in the action of 16k PRL in endothelial cells remains unclear. In this study, we showed that 16k PRL reduced rat aortic endothelial cell (RAEC) migration in a wound-healing assay and in a Matrigel tube formation assay, suggesting that 16k PRL inhibits endothelial cell migration, an important activity involved in angiogenesis and tumorigenesis. We further investigated how 16k PRL attenuates endothelial cell migration. We first showed that RAEC migration is mediated through the Rho GTPase Rac1, as Rac1 inhibition by the Rac1-specific inhibitor NSC27366 or Rac1 knockdown by small interfering RNA both blocked RAEC migration. We next showed that 16k PRL reduced the activation of Rac1 in a concentration-dependent manner. Furthermore, 16k PRL inhibition of Rac1 is mediated through the suppression of T lymphoma invasion and metastasis 1 (Tiam1) and its upstream activator Ras in a phosphoinositide-3-kinase-independent manner. 16k PRL also down-regulated the phosphorylation of the downstream effector of Rac1, p21-activating kinase 1 (Pak1), and inhibited its translocation to the leading edge of migrating cells. Thus, 16k PRL inhibits cell migration by blocking the Ras-Tiam1-Rac1-Pak1 signaling pathway in endothelial cells.
Collapse
Affiliation(s)
- Sok-Hyong Lee
- Department of Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
21
|
González C, Parra A, Ramírez-Peredo J, García C, Rivera JC, Macotela Y, Aranda J, Lemini M, Arias J, Ibargüengoitia F, de la Escalera GM, Clapp C. Elevated vasoinhibins may contribute to endothelial cell dysfunction and low birth weight in preeclampsia. J Transl Med 2007; 87:1009-17. [PMID: 17676064 DOI: 10.1038/labinvest.3700662] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vasoconstriction and defective placental angiogenesis are key factors in the etiology of preeclampsia. Prolactin levels are elevated in maternal blood throughout pregnancy and the human decidua produces prolactin that is transported to the amniotic fluid. Prolactin is cleaved to yield vasoinhibins, a family of peptides that inhibit angiogenesis and nitric oxide-dependent vasodilation. Here, we conducted a case-control study to measure vasoinhibins in serum, urine, and amniotic fluid obtained from women with severe preeclampsia. We show that all three biological fluids contained significantly higher levels of vasoinhibins in preeclamptic women than in normal pregnant women. Amniotic fluid from preeclamptic women, but not from normal women, inhibited vascular endothelial growth factor-induced endothelial cell proliferation and nitric oxide synthase activity in cultured endothelial cells, and these actions were reversed by antibodies able to neutralize the effects of vasoinhibins. Furthermore, amniotic fluid does not appear to contain neutral prolactin-cleaving proteases, suggesting that vasoinhibins in amniotic fluid are derived from prolactin cleaved within the placenta. Also, cathepsin-D in placental trophoblasts cleaved prolactin to vasoinhibins, and its activity was higher in placental trophoblasts from preeclamptic women than from normal women. Importantly, birth weight of infants in preeclampsia inversely correlated with the extent to which the corresponding AF inhibited endothelial cell proliferation and with its concentration of prolactin+vasoinhibins. These data demonstrate that vasoinhibins are increased in the circulation, urine, and amniotic fluid of preeclamptic women and suggest that these peptides contribute to the endothelial cell dysfunction and compromised birth weight that characterize this disease.
Collapse
Affiliation(s)
- Carmen González
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, México
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tabruyn SP, Sabatel C, Nguyen NQN, Verhaeghe C, Castermans K, Malvaux L, Griffioen AW, Martial JA, Struman I. The Angiostatic 16K Human Prolactin Overcomes Endothelial Cell Anergy and Promotes Leukocyte Infiltration via Nuclear Factor-κB Activation. Mol Endocrinol 2007; 21:1422-9. [PMID: 17405903 DOI: 10.1210/me.2007-0021] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The 16-kDa N-terminal fragment of human prolactin (16K hPRL) is a potent angiostatic factor that inhibits tumor growth in mouse models. Using microarray experiments, we have dissected how the endothelial-cell genome responds to 16K hPRL treatment. We found 216 genes that show regulation by 16K hPRL, of which a large proportion turned out to be associated with the process of immunity. 16K hPRL induces expression of various chemokines and endothelial adhesion molecules. These expressions, under the control of nuclear factor-kappaB, result in an enhanced leukocyte-endothelial cell interaction. Furthermore, analysis of B16-F10 tumor tissues reveals a higher expression of adhesion molecules (intercellular adhesion molecule 1, vascular cell adhesion molecule 1, or E-selectin) in endothelial cells and a significantly higher number of infiltrated leukocytes within the tumor treated with 16K hPRL compared with the untreated ones. In conclusion, this study describes a new antitumor mechanism of 16K hPRL. Because cellular immunity against tumor cells is a crucial step in therapy, the discovery that treatment with 16K hPRL overcomes tumor-induced anergy may become important for therapeutic perspectives.
Collapse
Affiliation(s)
- Sébastien P Tabruyn
- Unit of Molecular Biology and Genetic Engineering. GIGA Research, GIGA, B34, University of Liege, Sart Tilman 4000, Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Tabruyn SP, Griffioen AW. Molecular pathways of angiogenesis inhibition. Biochem Biophys Res Commun 2007; 355:1-5. [PMID: 17276388 DOI: 10.1016/j.bbrc.2007.01.123] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2007] [Accepted: 01/23/2007] [Indexed: 11/22/2022]
Abstract
A large body of evidence now demonstrates that angiostatic therapy represents a promising way to fight cancer. This research recently resulted in the approval of the first angiostatic agent for clinical treatment of cancer. Progress has been achieved in decrypting the cellular signaling in endothelial cells induced by angiostatic agents. These agents predominantly interfere with the molecular pathways involved in migration, proliferation and endothelial cell survival. In the current review, these pathways are discussed. A thorough understanding of the mechanism of action of angiostatic agents is required to develop efficient anti-tumor therapies.
Collapse
Affiliation(s)
- Sebastien P Tabruyn
- Angiogenesis Laboratory, Department of Pathology, Research Institute for Growth and Development (GROW), University of Maastricht, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
| | | |
Collapse
|
24
|
Nguyen NQN, Tabruyn SP, Lins L, Lion M, Cornet AM, Lair F, Rentier-Delrue F, Brasseur R, Martial JA, Struman I. Prolactin/growth hormone-derived antiangiogenic peptides highlight a potential role of tilted peptides in angiogenesis. Proc Natl Acad Sci U S A 2006; 103:14319-24. [PMID: 16973751 PMCID: PMC1599962 DOI: 10.1073/pnas.0606638103] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Angiogenesis is a crucial step in many pathologies, including tumor growth and metastasis. Here, we show that tilted peptides exert antiangiogenic activity. Tilted (or oblique-oriented) peptides are short peptides known to destabilize membranes and lipid cores and characterized by an asymmetric distribution of hydrophobic residues along the axis when helical. We have previously shown that 16-kDa fragments of the human prolactin/growth hormone (PRL/GH) family members are potent angiogenesis inhibitors. Here, we demonstrate that all these fragments possess a 14-aa sequence having the characteristics of a tilted peptide. The tilted peptides of human prolactin and human growth hormone induce endothelial cell apoptosis, inhibit endothelial cell proliferation, and inhibit capillary formation both in vitro and in vivo. These antiangiogenic effects are abolished when the peptides' hydrophobicity gradient is altered by mutation. We further demonstrate that the well known tilted peptides of simian immunodeficiency virus gp32 and Alzheimer's beta-amyloid peptide are also angiogenesis inhibitors. Taken together, these results point to a potential new role for tilted peptides in regulating angiogenesis.
Collapse
Affiliation(s)
- Ngoc-Quynh-Nhu Nguyen
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Sebastien P. Tabruyn
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Laurence Lins
- Center of Numerical Molecular Biophysic, Gembloux Agricultural University, B-5030 Gembloux, Belgium
| | - Michelle Lion
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Anne M. Cornet
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Florence Lair
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Francoise Rentier-Delrue
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Robert Brasseur
- Center of Numerical Molecular Biophysic, Gembloux Agricultural University, B-5030 Gembloux, Belgium
| | - Joseph A. Martial
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
| | - Ingrid Struman
- Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B-4000 Liège, Belgium; and
- To whom correspondence should be addressed at:
Laboratory of Molecular Biology and Genetic Engineering, Center of Biomedical Integrative Genoproteomics, University of Liège, B6, Allée du 6 Août, B-4000, Sart Tilman, Belgium. E-mail:
| |
Collapse
|
25
|
Lee SH, Nishino M, Mazumdar T, Garcia GE, Galfione M, Lee FL, Lee CL, Liang A, Kim J, Feng L, Eissa NT, Lin SH, Yu-Lee LY. 16-kDa prolactin down-regulates inducible nitric oxide synthase expression through inhibition of the signal transducer and activator of transcription 1/IFN regulatory factor-1 pathway. Cancer Res 2005; 65:7984-92. [PMID: 16140971 DOI: 10.1158/0008-5472.can-05-0631] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Angiogenesis plays a key role in promoting tumorigenesis and metastasis. Several antiangiogenic factors have been shown to inhibit tumor growth in animal models. Understanding their mechanism of action would allow for better therapeutic application. 16-kDa prolactin (PRL), a NH2-terminal natural breakdown fragment of the intact 23-kDa PRL, exerts potent antiangiogenic and antitumor activities. The signaling mechanism involved in 16-kDa PRL action in endothelial cells remains unclear. One of the actions of 16-kDa PRL is to attenuate the production of nitric oxide (NO) through the inhibition of inducible NO synthase (iNOS) expression in endothelial cells. To delineate the signaling mechanism from 16-kDa PRL, we examined the effect of 16-kDa PRL on interleukin IL-1beta-inducible iNOS expression, which is regulated by two parallel pathways, one involving IFN regulatory factor 1 (IRF-1) and the other nuclear factor-kappaB (NF-kappaB). Our studies showed that 16-kDa PRL specifically blocked IRF-1 but not NF-kappaB signaling to the iNOS promoter. We found that IL-1beta regulated IRF-1 gene expression through stimulation of p38 mitogen-activated protein kinase (MAPK), which mediated signal transducer and activator of transcription 1 (Stat1) serine phosphorylation and Stat1 nuclear translocation to activate the IRF-1 promoter. 16-kDa PRL effectively inhibited IL-1beta-inducible p38 MAPK phosphorylation, resulting in blocking Stat1 serine phosphorylation, its subsequent nuclear translocation and activation of the Stat1 target gene IRF-1. Thus, 16-kDa PRL inhibits the p38 MAPK/Stat1/IRF-1 pathway to attenuate iNOS/NO production in endothelial cells.
Collapse
Affiliation(s)
- Sok-Hyong Lee
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Angiogenesis, the formation of new blood vessels, is required for many pathologic processes, including invasive tumor growth as well as physiologic organ/tissue maintenance. Angiogenesis during development and adulthood is likely regulated by a balance between endogenous proangiogenic and antiangiogenic factors. It is speculated that tumor growth requires disruption of such balance; thus, the angiogenic switch must be turned "on" for cancer progression. If the angiogenic switch needs to be turned on to facilitate the tumor growth, the question remains as to what the physiologic status of this switch is in the adult human body; is it "off," with inhibitors outweighing the stimulators, or maintained at a fine "balance," keeping the proangiogenic properties of many factors at a delicate "activity" balance with endogenous inhibitors of angiogenesis. The physiologic status of this balance is important to understand as it might determine an individual's predisposition to turn the switch on during pathologic events dependent on angiogenesis. Conceivably, if the physiologic angiogenesis balance in human population exists somewhere between off and even balance, an individual's capacity and rate to turn the switch on might reflect their normal physiologic angiogenic status. In this regard, although extensive knowledge has been gained in our understanding of endogenous growth factors that stimulate angiogenesis, the activities associated with endogenous inhibitors are poorly understood. In this review, we will present an overview of the knowledge gained in studies related to the identification and characterization of 27 different endogenous inhibitors of angiogenesis.
Collapse
Affiliation(s)
- Pia Nyberg
- Center for Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts 02215, USA
| | | | | |
Collapse
|
27
|
Tabruyn SP, Nguyen NQN, Cornet AM, Martial JA, Struman I. The Antiangiogenic Factor, 16-kDa Human Prolactin, Induces Endothelial Cell Cycle Arrest by Acting at Both the G0–G1 and the G2–M Phases. Mol Endocrinol 2005; 19:1932-42. [PMID: 15746189 DOI: 10.1210/me.2004-0515] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Abstract
The 16-kDa N-terminal fragment of human prolactin (16K hPRL) is a potent antiangiogenic factor that has been shown to prevent tumor growth in a xenograph mouse model. In this paper we first demonstrate that 16K hPRL inhibits serum-induced DNA synthesis in adult bovine aortic endothelial cells. This inhibition is associated with cell cycle arrest at both the G0–G1 and the G2–M phase. Western blot analysis revealed that 16K hPRL strongly decreases levels of cyclin D1 and cyclin B1, but not cyclin E. The effect on cyclin D1 is at least partially transcriptional, because treatment with 16K hPRL both reduces the cyclin D1 mRNA level and down-regulates cyclin D1 promoter activity. This regulation may be due to inhibition of the MAPK pathway, but it is independent of the glycogen synthase kinase-3β pathway. Lastly, 16K hPRL induces the expression of negative cell cycle regulators, the cyclin-dependent kinase inhibitors p21(cip1) and p27(kip1). In summary, 16K hPRL inhibits serum-induced proliferation of endothelial cells through combined effects on positive and negative regulators of cell cycle progression.
Collapse
Affiliation(s)
- Sébastien P Tabruyn
- Laboratoire de Biologie Moléculaire et de Génie Génétique, Université de Liège, Allée du 6 Aout B6A, B-4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
28
|
Piwnica D, Touraine P, Struman I, Tabruyn S, Bolbach G, Clapp C, Martial JA, Kelly PA, Goffin V. Cathepsin D Processes Human Prolactin into Multiple 16K-Like N-Terminal Fragments: Study of Their Antiangiogenic Properties and Physiological Relevance. Mol Endocrinol 2004; 18:2522-42. [PMID: 15192082 DOI: 10.1210/me.2004-0200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
16K prolactin (PRL) is the name given to the 16-kDa N-terminal fragment obtained by proteolysis of rat PRL by tissue extracts or cell lysates, in which cathepsin D was identified as the candidate protease. Based on its antiangiogenic activity, 16K PRL is potentially a physiological inhibitor of tumor growth. Full-length human PRL (hPRL) was reported to be resistant to cathepsin D, suggesting that antiangiogenic 16K PRL may be physiologically irrelevant in humans. In this study, we show that hPRL can be cleaved by cathepsin D or mammary cell extracts under the same conditions as described earlier for rat PRL, although with lower efficiency. In contrast to the rat hormone, hPRL proteolysis generates three 16K-like fragments, which were identified by N-terminal sequencing and mass spectrometry as corresponding to amino acids 1-132 (15 kDa), 1-147 (16.5 kDa), and 1-150 (17 kDa). Biochemical and mutagenetic studies showed that the species-specific digestion pattern is due to subtle differences in primary and tertiary structures of rat and human hormones. The antiangiogenic activity of N-terminal hPRL fragments was assessed by the inhibition of growth factor-induced thymidine uptake and MAPK activation in bovine umbilical endothelial cells. Finally, an N-terminal hPRL fragment comigrating with the proteolytic 17-kDa fragment was identified in human pituitary adenomas, suggesting that the physiological relevance of antiangiogenic N-terminal hPRL fragments needs to be reevaluated in humans.
Collapse
Affiliation(s)
- David Piwnica
- Institut National de la Santé et de la Recherche Médicale (INSERM) Unit 584, Hormone Targets, Faculté de Médecine Necker, 75730, Paris Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Angiogenesis is the process of new blood vessel development from preexisting vasculature. Although vascular endothelium is usually quiescent in the adult, active angiogenesis has been shown to be an important process for new vessel formation, tumor growth, progression, and spread. The angiogenic phenotype depends on the balance of proangiogenic growth factors such as vascular endothelial growth factor (VEGF) and inhibitors, as well as interactions with the extracellular matrix, allowing for endothelial migration. Endocrine glands are typically vascular organs, and their blood supply is essential for normal function and tight control of hormone feedback loops. In addition to metabolic factors such as hypoxia, the process of angiogenesis is also regulated by hormonal changes such as increased estrogen, IGF-I, and TSH levels. By measuring microvascular density, differences in angiogenesis have been related to differences in tumor behavior, and similar techniques have been applied to both benign and malignant endocrine tumors with the aim of identification of tumors that subsequently behave in an aggressive fashion. In contrast to other tumor types, pituitary tumors are less vascular than normal pituitary tissue, although the mechanism for this observation is not known. A relationship between angiogenesis and tumor size, tumor invasiveness, and aggressiveness has been shown in some pituitary tumor types, but not in others. There are few reports on the role of microvascular density or angiogenic factors in adrenal tumors. The mechanism of the vascular tumors, which include adrenomedullary tumors, found in patients with Von Hippel Lindau disease has been well characterized, and clinical trials of antiangiogenic therapy are currently being performed in patients with Von Hippel Lindau disease. Thyroid tumors are more vascular than normal thyroid tissue, and there is a clear correlation between increased VEGF expression and more aggressive thyroid tumor behavior and metastasis. Although parathyroid tissue induces angiogenesis when autotransplanted and PTH regulates both VEGF and MMP expression, there are few studies of angiogenesis and angiogenic factors in parathyroid tumors. An understanding of the balance of angiogenesis in these vascular tumors and mechanisms of vascular control may assist in therapeutic decisions and allow appropriately targeted treatment.
Collapse
Affiliation(s)
- Helen E Turner
- Department of Endocrinology, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | | | | | | |
Collapse
|
30
|
Abstract
The contribution of prolactin (PRL) to the pathogenesis and progression of human breast cancer at the cellular, transgenic, and epidemiological levels is increasingly appreciated. Acting at the endocrine and autocrine/paracrine levels, PRL functions to stimulate the growth and motility of human breast cancer cells. The actions of this ligand are mediated by at least six recognized PRL receptor isoforms found on, or secreted by, human breast epithelium. The PRL/PRL receptor complex associates with and activates several signaling networks that are shared with other members of the cytokine receptor superfamily. Coupled with the recently identified intranuclear function of PRL, these networks are integrated into the in vitro and in vivo actions induced by ligand. These findings indicate that antagonists of PRL/PRL receptor interaction or PRL receptor-associated signal transduction may be of considerable utility in the treatment of human breast cancer.
Collapse
Key Words
- cis, cytokine-inducible inhibitor of signaling
- cypb, cyclophilin b
- ecd, extracellular domain
- egf, epidermal growth factor
- ghr, gh receptor
- hprlr, human prlr
- icd, intracellular domain
- jak, janus kinase 2
- jnk, c-jun n-terminal kinase
- pias, peptide inhibitor of activated stat
- pi3k, phosphatidylinositol 3′-kinase
- prl, prolactin
- ptdins, phosphatidylinositol
- prlbp, prl binding protein
- prlr, prl receptor
- shp-2, sh2-containing protein tyrosine phosphatase
- socs, suppressor of cytokine signaling
- stat, signal transducer and activator of transcription
Collapse
Affiliation(s)
- Charles V Clevenger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | |
Collapse
|
31
|
Martini JF, Piot C, Humeau LM, Struman I, Martial JA, Weiner RI. The antiangiogenic factor 16K PRL induces programmed cell death in endothelial cells by caspase activation. Mol Endocrinol 2000; 14:1536-49. [PMID: 11043570 DOI: 10.1210/mend.14.10.0543] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We asked whether the antiangiogenic action of 16K human PRL (hPRL), in addition to blocking mitogen-induced vascular endothelial cell proliferation, involved activation of programmed cell death. Treatment with recombinant 16K hPRL increased DNA fragmentation in cultured bovine brain capillary endothelial (BBE) and human umbilical vein endothelial (HUVE) cells in a time- and dose-dependent fashion, independent of the serum concentration. The activation of apoptosis by 16K hPRL was specific for endothelial cells, and the activity of the peptide could be inhibited by heat denaturation, trypsin digestion, and immunoneutralization, but not by treatment with the endotoxin blocker, polymyxin-B. 16K hPRL-induced apoptosis was correlated with the rapid activation of caspases 1 and 3 and was blocked by pharmacological inhibition of caspase activity. Caspase activation was followed by inactivation of two caspase substrates, poly(ADP-ribose) polymerase (PARP) and the inhibitor of caspase-activated deoxyribonuclease (DNase) (ICAD). Furthermore, 16K hPRL increased the conversion of Bcl-X to its proapoptotic form, suggesting that the Bcl-2 protein family may also be involved in 16K hPRL-induced apoptosis. These findings support the hypothesis that the antiangiogenic action of 16K hPRL includes the activation of programmed cell death of vascular endothelial cells.
Collapse
Affiliation(s)
- J F Martini
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California School of Medicine, San Francisco 94143, USA
| | | | | | | | | | | |
Collapse
|
32
|
Abstract
Recent research on the formation and maintenance of the vasculature in the embryo and in the adult has provided a greater understanding of the cellular signals involved in these processes. With this understanding comes the potential means of controlling vascularization in pathological situations such as tumorigenesis and wounding. For the purpose of this review, we will discuss the key receptor tyrosine kinases involved in vascular function and the molecules which relay signals downstream of receptor activation. The receptor tyrosine kinases discussed include the vascular endothelial cell growth factor receptors, Eph receptors, Tie1, and Tie2, all of which are expressed on vascular endothelial cells. We also discuss the roles of the platelet derived growth factor receptors which are expressed on vascular smooth muscle cells. While all of these receptor tyrosine kinases activate many similar effector molecules, some of the signals initiated appear to be distinct. This may explain, at least in part, how different receptor tyrosine kinases expressed in overlapping patterns on the developing vasculature, direct unique biological functions.
Collapse
Affiliation(s)
- M D Tallquist
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | | | |
Collapse
|